
15-312 Foundations of Programming Languages

Recitation 3: De Bruijn Representation

Daniel Spoonhower
spoons+@cs

September 10, 2003

1 Substitution

While named variables are certainly useful from a programmer’s point of view,
we saw last week in lecture how they can create problems for those of us trying
to reason about and implement a language. In particular, we saw that defining
substitution in the presence of named variables is not as trivial as it might
initially seem.

For the discussion that follows we’ll concentrate on a subset of MinML,
shown in mathematical notation below.

e ::= x | λx.e | e1 e2 | . . .

(Why is this a meaningful subset? Convince yourself that the remaining cases
will be handled in similar ways.)

To refresh your memory, carry out each of the following substitutions.

{x/y}λz.y z {z/y}λz.y z {x/y}λy.y z

Notice when we are required to rename bound variables: this is easy to do
when writing on a blackboard, but it’s not as easy to carry out in an implemen-
tation.

2 A Nameless Representation

Rather than refer to variables by name, we will replace them with pointers to
the binders that define them. For our nameless representation, we will use the
following syntax.

e′ ::= k | λ.e′ | e′1 e′2 | . . .

(In assignment 2, this corresponds to the version of the abstract syntax repre-
sented by the structure DBMinML.)

1

For example, the expression

λx.λy.x

becomes
λ.λ.2

(How would we write the identity function in this syntax?) Write the fol-
lowing expressions in de Bruijn form:

λs.λz.s (s z)
λx.λy.y (λz.x z)

Define a (recursive) function that takes named expressions to their corre-
sponding nameless counterparts. (Hint: define one clause for each form of ex-
pression.)

2.1 Substitution with de Bruijn Indices

Take our original example of substitution, this time in de Bruijn form. How
would we carry out substitution in this case?

{3/1}λ.2 1

(We will chose an arbitrary index for each of the free variables.) Each time
we move a variable under a function abstraction, we simply add one to its
index. (We must also remember to increment the variable for which we are
substituting.) We can extend this idea in a straightforward manner to simple
applications:

{(2 3)/1}λ.2 1

Just as before, we add one to the variable that is being replaced (1) as it is
pushed under the abstraction, along with each of the variables in the left-hand
side of the substitution. Unfortunately, this is not always the case. Think about
the following substitution:

{λ.1/1}λ.2 1

In this case, we should not modify the left-hand side of the substitution, because
all of the variables that appear in it are bound within it. In other words, it is
a closed expression. Any closed expressions may be substituted as is, without
any shifting of variables.

While you work on assignment 2, you should convince yourself that only
closed expressions are substituted for variables. You may take advantage of this
fact in your implementation, but leave yourself a reminder to reconsider this
invariant in future assignments!

2.2 Further Reading

• Pierce gives a more detailed treatment of de Bruijn indices (including shift-
ing and substitution) in Chapter 6 of Types and Programming Languages.

2

