
Programming Languages:
Theory and Practice

(WORKING DRAFT OF AUGUST 28, 2002)

Robert Harper
Carnegie Mellon University

Spring Semester, 2002

Copyright c©2002. All Rights Reserved.

Preface

This is a collection of lecture notes for Computer Science 15–312 Program-
ming Languages. This course has been taught by the author in the Spring of
1999 and 2000 at Carnegie Mellon University, and by Andrew Appel in the
Fall of 1999, 2000, and 2001 at Princeton University. I am grateful to An-
drew for his advice and suggestions, and to our students at both Carnegie
Mellon and Princeton whose enthusiasm (and patience!) was instrumental
in helping to create the course and this text.

What follows is a working draft of a planned book that seeks to strike
a careful balance between developing the theoretical foundations of pro-
gramming languages and explaining the pragmatic issues involved in their
design and implementation. Many considerations come into play in the de-
sign of a programming language. I seek here to demonstrate the central role
of type theory and operational semantics in helping to define a language
and to understand its properties.

Comments and suggestions are most welcome. Please send any you
may have to me by electronic mail.

Enjoy!

iv Preface

WORKING DRAFT AUGUST 28, 2002

Contents

Preface iii

I Preliminaries 1

1 Inductive Definitions 3
1.1 Informal Overview . 3

1.1.1 Judgements and Rules 3
1.1.2 Rule Induction . 5
1.1.3 Defining Functions by Rule Induction 7
1.1.4 Admissible and Derivable Rules 7

1.2 A More Rigorous Development 9
1.2.1 Universes . 9
1.2.2 Inference Rules . 10
1.2.3 Rule Induction . 11
1.2.4 Admissibility and Derivability 13

1.3 Exercises . 14

2 Transition Systems 15
2.1 Transition Systems . 15
2.2 Exercises . 16

II Defining a Language 17

3 Concrete Syntax 19
3.1 Context-Free Grammars . 19
3.2 Ambiguity . 21
3.3 Exercises . 23

WORKING DRAFT AUGUST 28, 2002

vi CONTENTS

4 First-Order Abstract Syntax 25
4.1 Abstract Syntax Trees . 25
4.2 Structural Induction . 26
4.3 Parsing . 27
4.4 Exercises . 29

5 Higher-Order Abstract Syntax 31
5.1 Variables, Binding, and Scope 31
5.2 Higher-Order Terms . 35
5.3 Renaming and Substitution 36
5.4 de Bruijn Indices . 37
5.5 Exercises . 39

6 Static Semantics 41
6.1 Well-Formed Arithmetic Expressions 41
6.2 Exercises . 42

7 Dynamic Semantics 43
7.1 Structured Operational Semantics 43
7.2 Evaluation Semantics . 46
7.3 Relating Transition and Evaluation Semantics 47
7.4 Exercises . 48

III A Functional Language 49

8 MinML , A Minimal Functional Language 51
8.1 Abstract Syntax . 51
8.2 Static Semantics . 52
8.3 Properties of Typing . 54
8.4 Dynamic Semantics . 56
8.5 Properties of the Dynamic Semantics 58
8.6 Exercises . 58

9 Type Safety for MinML 59
9.1 Defining Type Safety . 59
9.2 Type Safety of MinML . 60
9.3 Run-Time Errors and Safety 63

WORKING DRAFT AUGUST 28, 2002

CONTENTS vii

IV An Imperative Language 67

10 TinyC , An Imperative Language 69
10.1 Syntax . 70
10.2 Static Semantics . 71
10.3 Dynamic Semantics . 74
10.4 Block Structure . 78
10.5 Type Safety . 79
10.6 Exercises . 79

V Control and Data Flow 81

11 Abstract Machines 83
11.1 Control Flow . 84
11.2 Environments . 91

12 Continuations 97
12.1 Informal Overview of Continuations 99
12.2 Semantics of Continuations 102
12.3 Coroutines . 104

13 Exceptions 109

VI Imperative Functional Programming 117

14 Mutable Storage 119
14.1 References . 119

15 Monads 125
15.1 Monadic MinML . 126
15.2 Reifying Effects . 128
15.3 Exercises . 129

VII Cost Semantics and Parallelism 131

16 Cost Semantics 133
16.1 Evaluation Semantics . 133
16.2 Relating Evaluation Semantics to Transition Semantics . . . 134

WORKING DRAFT AUGUST 28, 2002

viii CONTENTS

16.3 Cost Semantics . 135
16.4 Relating Cost Semantics to Transition Semantics 136
16.5 Exercises . 137

17 Implicit Parallelism 139
17.1 Tuple Parallelism . 139
17.2 Work and Depth . 141
17.3 Vector Parallelism . 144

18 A Parallel Abstract Machine 149
18.1 A Simple Parallel Language 149
18.2 A Parallel Abstract Machine 151
18.3 Cost Semantics, Revisited . 153
18.4 Provable Implementations (Summary) 154

VIII Data Structures and Abstraction 157

19 Aggregate Data Structures 159
19.1 Products . 159
19.2 Sums . 161
19.3 Recursive Types . 162

20 Polymorphism 165
20.1 Polymorphic MinML . 166
20.2 ML-style Type Inference . 172
20.3 Parametricity . 173

20.3.1 Informal Discussion 174
20.3.2 Relational Parametricity (Optional) 177

21 Data Abstraction 183
21.1 Existential Types . 184

21.1.1 Abstract Syntax . 184
21.1.2 Correspondence With ML 184
21.1.3 Static Semantics . 186
21.1.4 Dynamic Semantics . 187
21.1.5 Safety . 188

21.2 Representation Independence 188

WORKING DRAFT AUGUST 28, 2002

CONTENTS ix

IX Laziness 193

22 Lazy Types 195
22.1 Lazy Types in MinML . 197

22.1.1 Lazy Lists in an Eager Language 199
22.1.2 Delayed Evaluation and Lazy Data Structures 205

23 Lazy Languages 209
23.0.3 Call-by-Name and Call-by-Need 211
23.0.4 Strict Types in a Lazy Language 213

X Dynamic Typing 215

24 Dynamic Typing 217
24.1 Dynamic Typing . 219
24.2 Implementing Dynamic Typing 220
24.3 Dynamic Typing as Static Typing 222

25 Featherweight Java 225
25.1 Abstract Syntax . 225
25.2 Static Semantics . 228
25.3 Dynamic Semantics . 230
25.4 Type Safety . 232
25.5 Acknowledgement . 233

XI Subtyping and Inheritance 235

26 Subtyping 237
26.1 MinML With Subtyping . 237
26.2 Varieties of Subtyping . 239

26.2.1 Arithmetic Subtyping 239
26.2.2 Function Subtyping 240
26.2.3 Product and Record Subtyping 242
26.2.4 Reference Subtyping 243

26.3 Type Checking With Subtyping 244
26.4 Implementation of Subtyping 246

26.4.1 Coercions . 246

WORKING DRAFT AUGUST 28, 2002

x CONTENTS

27 Inheritance and Subtyping in Java 251
27.1 Inheritance Mechanisms in Java 251

27.1.1 Classes and Instances 251
27.1.2 Subclasses . 253
27.1.3 Abstract Classes and Interfaces 254

27.2 Subtyping in Java . 256
27.2.1 Subtyping . 256
27.2.2 Subsumption . 257
27.2.3 Dynamic Dispatch . 258
27.2.4 Casting . 259

27.3 Methodology . 261

XII Concurrency 263

28 Concurrent ML 265

XIII Type Checking 267

29 Type Checking 269
29.1 Type Synthesis . 269
29.2 Synthesis and Analysis . 271
29.3 Exercises . 274

30 Type Reconstruction 275
30.1 Informal Overview . 275
30.2 Type Reconstruction . 278
30.3 Constraint Generation . 283
30.4 Solving Constraints . 288

XIV Storage Management 295

31 Storage Management 297
31.1 The A Machine . 297
31.2 Garbage Collection . 301

WORKING DRAFT AUGUST 28, 2002

Part I

Preliminaries

WORKING DRAFT AUGUST 28, 2002

Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of program-
ming languages. In this chapter we will develop the basic framework of
inductive definitions, and give some examples of their use.

1.1 Informal Overview

In this section we give an informal overview of inductive definitions, with
an emphasis on how they are used in practice.

1.1.1 Judgements and Rules

An inductive definition consists of a collection of inference rules defining
one or more judgements. A judgement is an assertion stating that a property
holds of some object. For example, the judgement x nat might state that x
is a natural number, and the judgement t tree might state that t is a binary
tree.

The inference rules determine the conditions under which a judgement
may be inferred, or derived. An inference rule has the form of an impli-
cation, stating that a judgement is inferrable whenever some other judge-
ments (possibly none) are inferrable. Rules are written in the form

J1 . . . Jn

J

where J and each Ji (1 ≤ i ≤ n) are judgements. The judgement J is called
the conclusion of the rule, and the judgements J1,. . . , Jn are its premises. If a
rule has no premises (i.e., n = 0), the rule is called an axiom.

WORKING DRAFT AUGUST 28, 2002

4 Inductive Definitions

A rule of this form states that the judgement J is inferrable, provided
that each of the judgements J1, . . . , Jn is inferrable. Thus axioms state that a
judgement is inferrable unconditionally, whereas rules with premises state
the conditional inferrability of a judgement. For example, the following set
of rules, RN , constitute an inductive definition of the judgement x nat:

zero nat
x nat

succ (x) nat

The first rule states that zero is a natural number. The second states that if
x is a natural number, then so is succ (x).

Rules may be composed to form a derivation of a judgement J from premises
J1, . . . , Jn. A derivation is a tree whose nodes are judgements such that the
children of a node are the premises of some rule ending with the judgement
at that node. Such a tree is a derivation of a judgement J from premises
J1, . . . , Jn iff the root of the tree is J and its leaves are the judgements
J1, . . . , Jn.

Derivation trees are normally depicted as “stacked” inference rules. For
example, here is a derivation of the judgement succ (succ (zero)) nat:

zero nat
succ (zero) nat

succ (succ (zero)) nat

To take another example, here is an inductive definition of the judge-
ment t tree, stating that t is a binary tree:

empty tree

x tree y tree

node (x, y) tree

Using these rules, we may construct a derivation of the judgement

node (empty , node (empty , empty)) tree

as follows:

empty tree

empty tree empty tree

node (empty , empty) tree

node (empty , node (empty , empty)) tree

In practice, we find a derivation of a judgement J by starting with J
and working “backwards”, looking for a rule ending with J with premises
J1, . . . , Jn, then finding derivations of each of the Ji’s by the same proce-
dure. This process is called goal-directed search; the judgement J is the goal,

WORKING DRAFT AUGUST 28, 2002

1.1 Informal Overview 5

and each of the Ji’s are subgoals. Note that there may be many rules ending
with J ; if we fail to find a derivation by using one rule, we may have to
abandon the attempt, and try another rule instead. If J is, in fact, deriv-
able, then this process will eventually find a derivation, but if not, there is
no guarantee that it will terminate! We may, instead, futilely apply rules
forever, introducing more sub-goals each time, and never completing the
derivation.

Often we give a simultaneous inductive definition of several judgements
at once. For example, here is a simultaneous inductive definition of the
judgements t tree, stating that t is a variadic tree, and f forest, stating that
f is a variadic forest. By “variadic” we mean that the number of children of
any given node in a tree varies with each node.

f forest

node (f) tree nil forest

t tree f forest

cons (t, f) forest

1.1.2 Rule Induction

What makes an inductive definition inductive is that the rules are exhaustive
in the sense that a judgement is defined to hold iff it can be inferred by these
rules. This means that if a judgement J is inferrable from a rule set R, then
there must be a rule in R ending with J such that each of its premises are
also inferrable. For example, if n nat is inferrable according to the rules
RN , then either it is inferrable by the first rule, in which case n = zero ,
or by the second, in which case n = succ (m) and m nat is itself inferrable.
Similarly, if t tree is inferrable according to the rules RT given above, then
either t = empty or t = node (t1, t2), where t1 tree and t2 tree are both
inferrable.

This observation provides the basis for reasoning about derivable judge-
ments by rule induction (also known as induction on derivations). For any set
of rules, R, to show that a property P holds of every inferrable judgement,
it is enough to show that for every rule

J1 . . . Jn

J

inR, if J1, . . . , Jn all have property P , then J also has property P . By doing
this for every rule in R, we cover all the cases, and establish that P holds
for every inferrable judgement.

The assumption that P holds for each premise of a rule is called the in-
ductive hypothesis. The proof that P holds for the conclusion, under these

WORKING DRAFT AUGUST 28, 2002

6 Inductive Definitions

assumptions, is called the inductive step. In the case of axioms the inductive
hypothesis is vavuous; we must simply establish the conclusion outright,
with no further assumptions to help us. If we can carry out the induc-
tive step for each rule in R, we thereby establish that P holds for every
inferrable judgement, since the inference must arise by the application of
some rule whose premises are derivable (and hence, by inductive hypoth-
esis, have the property P).

For example, consider again the rule set RN . The principle of rule in-
duction for RN states that to show P (n nat), it is enough to show

1. P (zero nat);

2. if P (n nat), then P (succ (n) nat).

This is, of course, the familiar principle of mathematical induction.
Similarly, the principle of rule induction for RT states that if we are to

show that P (t tree), it is enough to show

1. P (empty tree);

2. if P (t1 tree) and P (t2 tree), then P (node (t1, t2) tree).

This is called the principle of tree induction, or induction on the structure of a
tree.

As a notational convenience, when the judgements in question are all of
the form x l for x an object and l is a property of the object x, we often write
Pl(x), rather than the more cumbersome P (x l). If there is only one form of
judgement, x l, then we often drop the subscript entirely, writing just P (x),
rather than Pl(x) or P (x l). Thus, instead of writing P (n nat), we may write
Pmathsfnatn, or just P (n), when it is clear from context that we are working
the RN . Similarly P (t tree) is often written Ptree(t), or just P (t).

Rule sets that define more than one judgement give rise to proofs by
simultaneous induction. For example, if we wish to show Ptree(t) for all t
such that t tree and Pforest(f) for all f such that f forest, then it is enough to
show

1. if Pforest(f), then Ptree(node (f)).

2. Pforest(nil).

3. if Ptree(t) and Pforest(f), then Pforest(cons (t, f)).

It is easy to check that this induction principle follows from the general
principle of rule induction by simply working through the rules RTF , tak-
ing account of the notational conventions just mentioned.

WORKING DRAFT AUGUST 28, 2002

1.1 Informal Overview 7

1.1.3 Defining Functions by Rule Induction

A common use of rule induction is to justify the definition of a function by a
set of equations. For example, consider the following recursion equations:

hgt tree(empty) = 0
hgt tree(node (t1, t2)) = 1 + max(hgt tree(t1), hgt tree(t2))

We prove by rule induction that if t tree then there exists a unique n ≥ 0
such that hgt tree(t) = n. In other words, the above equations determine a
function, hgt .

We consider each rule inRT in turn. The first rule, stating that empty tree,
is covered by the first equation. For the second rule, we may assume that
hgt tree assigns a unique height to t1 and t2. But then the second equation
assigns a unique height to t = node (t1, t2).

Similarly, we may prove by simultaneous induction that the followng
equations define the height of a variadic tree and a variadic forest:

hgt tree(node (f)) = 1 + hgt forest(f)

and
hgt forest(nil) = 0

hgt forest(cons (t, f)) = max(hgt tree(t), hgt forest(f)).

It is easy to show by simultaneous induction that these equations deter-
mine two functions, hgt tree and hgt forest.

1.1.4 Admissible and Derivable Rules

Given an inductive definition consisting of a set of rules R, there are two
senses in which a rule

J1 · · · Jn

J

may be thought of as being redundant.
Such a rule is said to be derivable iff there is a derivation of J from

premises J1, . . . , Jn. This means that there is a composition of rules start-
ing with the Ji’s and ending with J . For example, the following rule is
derivable in RN :

n nat
succ (succ (succ (n))) nat.

WORKING DRAFT AUGUST 28, 2002

8 Inductive Definitions

Its derivation is as follows:

n nat
succ (n) nat

succ (succ (n)) nat

succ (succ (succ (n))) nat.

Such a rule is said to be admissible iff its conclusion is derivable from
no premises whenever its premises are derivable from no premises. For
example, the following rule as admissible in RN :

succ (n) nat
n nat .

First, note that this rule is not derivable for any choice of n. For if n = zero ,
then the only rule that applies has no premises, and if n = succ (m), then
the only rule that applies has as premise m nat, rather than n nat. However,
this rule is admissible! We may prove this by induction on the derivation
of the premise of the rule. For if succ (n) nat is derivable from no premises,
it can only be by second rule, which means that n nat is also derivable, as
required.

While this example shows that not every admissible rule is derivable,
the converse holds. For a rule to be derivable means precisely that if its
premises are derivable, then so is its conclusion!

The distinction between admissible and derivable rules can be hard to
grasp at first. One way to gain intuition is to note that if a rule is derivable
in a rule set R, then it remains derivable in any rule set R′ ⊇ R. This is
because the derivation of that rule depends only on what rules are avail-
able, and is not sensitive to whether any other rules are also available. In
contrast a rule can be admissible in R, but inadmissible in some extension
R′ ⊇ R! For example, suppose that we add to RN the rule

succ (junk) nat.

Now it is no longer the case that the rule

succ (n) nat
n nat .

is admissible, because if the premise were derived by the additional rule,
there is no way to obtain a derivation of junk nat!

WORKING DRAFT AUGUST 28, 2002

1.2 A More Rigorous Development 9

Since admissibility is sensitive to which rules are absent, as well as to
which are present, a proof of admissibility almost always proceeds by in-
duction on one or more of its premises. This constitutes an exhaustive anal-
ysis of how the premises might have been derived, and concludes that in
each case the conclusion must also have been derived. Adding an addi-
tional rule requires that we add an additional case to the proof, and there
is no assurance (as we have just illustrated) that this will go through.

1.2 A More Rigorous Development

In this section we will give a more rigorous account of inductive definitions
of a subset of a given set. This will include as a special case the foregoing
treatment of inductive definitions of judgements, and will make clear the
mathematical underpinnings of the principle of rule induction.

1.2.1 Universes

We will consider inductive definitions of subsets of some fixed universe of
objects. In principle we may consider inductive definitions over any set
of objects we like, but in practice we confine ourselves to sets of finitary
objects, which can be put into one-to-one correspondence with the natural
numbers. Given such a correspondence, it suffices to make all inductive
definitions over the set of natural numbers. However, doing so requires
that we explicitly define the encoding of each object of interest as a natural
number, called its Gödel number. To avoid this complication we take a more
liberal approach in which we admit inductive defnitions over any specified
set of objects.

For example, we will make use of the set of (finite) strings over a given
alphabet as a universe for inductive defitions. Let Σ be a countable set of
symbols, or letters, or characters. For example, Σ might be the set of ASCII
or UniCode characters. The set of strings over Σ, written Σ∗, consists of the
finite sequences of symbols from Σ. We write s1 s2 for the concatenation of
the string s1 followed by the string s2, write ε for the null string, and treat
every a ∈ Σ as string of length 1.

Another example is the set of (first-order) terms over a given set of op-
erators. Let O be a countable set of operators, and let α : O → N be an
assignment of arities to each of the operators. An operator o ∈ O of ar-
ity n (i.e., for which α(o) = n) is said to be n-ary; the 0-ary operators are
called constants. The set T of ast’s, or terms, consists of all expressions of

WORKING DRAFT AUGUST 28, 2002

10 Inductive Definitions

the form o(t1, . . . , tn), where o is an n-ary operator, and t1, . . . , tn are them-
selves ast’s. Such a term may be depicted as an ordered tree with root
labelled by the operator o, and with n children corresponding to the terms
t1, . . . , tn.

We often work with combinations of these basic universes. For exam-
ple, we may consider inductive subsets of T ×T , the set of ordered pairs of
ast’s, and so forth. Generally we will leave implicit the exact choice of the
universe for a particular inductive definition.

1.2.2 Inference Rules

An inductive definition of a subset of a universe U consists of a collection
of rules over U . A rule over U has the form

x1 . . . xn
x

where x ∈ U and each xi ∈ U (1 ≤ i ≤ n). Thus a rule consists of a finite
subset of U and an element of U . The element x is called the conclusion of
the rule; the elements x1, . . . , xn are called the premises of the rule. A rule
set is, quite obviously, a set of rules.

A subset A ⊆ U is closed under R, or R-closed, iff x ∈ A whenever

x1 . . . xn
x

is a rule in R and each xi ∈ A for every 1 ≤ i ≤ n.
The subset I = I(R) inductively defined by R is given by the equation

I(R) =
⋂
{A ⊆ U | A is R-closed }.

As we shall see shortly, this is the smallest set closed under R.

For example, here is a set, RP , of rules for deriving strings that are, as
we shall prove later, are palindromes:

ε a
s

a s a

The set of rules RP just given has 2 × |Σ| + 1 rules, where |Σ| is the
cardinality of the alphabet Σ. In particular, if Σ is infinite, then there are in-
finitely many rules! Since we cannot expect to write down infinitely many
rules, we need some means of defining large (or even infinite) rule sets.
Here we have specified these using rule schemes. A rule scheme is a rule

WORKING DRAFT AUGUST 28, 2002

1.2 A More Rigorous Development 11

involving one or more parameters ranging over a specified set (by default,
the universe). For example, the third rule above is a rule scheme with two
parameters, a and s. The rule scheme determines one rule for each possible
choice of character a ∈ Σ and s ∈ Σ∗.

A simultaneous inductive definition of one or more judgements can be
considered a single inductive definition of a subset of a suitable universe
by a simple “labelling” device. A simultaneous inductive definition of the
judgements x1 l1, . . . , xn ln, where each xi ranges over a universe U , may be
thought of as a simple inductive definition of a subset of the disjoint union
of n copies of U , namely

U × { l1, . . . , ln } = {x li | x ∈ U , 1 ≤ i ≤ n },

where we write x li for the ordered pair (x, li). The rules defining these
judgements emerge as rules over this enlarged universe. Thus the rules
RTF given above may be seen as defining an inductive subset of the uni-
verse T × { tree, forest }.

1.2.3 Rule Induction

As we mentioned earlier, the set I(R) is the least set closed under R.

Theorem 1
Let R be a rule set over U , and let I = I(R).

1. I is R-closed.

2. If A is R-closed, then I ⊆ A.

Proof:

1. Suppose that
x1 . . . xn

x

is a rule in R, and that

X = {x1, . . . , xn } ⊆ I.

Since I is the intersection of all R-closed sets, X ⊆ A for each R-
closed set A. But then x ∈ A for each such A, by the definition of
R-closure, and hence x is an element of their intersection, I .

2. If A is R-closed, then it is among the sets in the intersection defining
I . So I ⊆ A.

WORKING DRAFT AUGUST 28, 2002

12 Inductive Definitions

�

The importance of this theorem is that it licenses the principle of proof
by rule induction for a rule set R:

To show that I(R) ⊆ X , it suffices to show that X is R-closed.

That is, if we wish to show that x ∈ X for every x ∈ I(R), it is enough to
show that X is closed under the rules R.

Returning to the inductively defined set P above, suppose we wish to
show that every s ∈ P is in fact a palindrome. That is, we wish to show
that

P ⊆ { s ∈ Σ∗ | s = sR }.

For this to hold, it is enough to show that the set of palindromes is closed
under the rules R. We consider each rule in turn, showing that if the
premises are palindromes, then so is the conclusion.

1. ε = εR, so ε is a palindrome.

2. a = aR for every a ∈ Σ, so a is a palindrome.

3. Assume that s = sR. Observe that

(a s a)R = a sR a
= a s a.

This completes the proof.1

The parity of a palindrome is either 0 or 1, according to whether its
length is either even or odd. Now that we know that the set of palindromes
is inductively defined by the rules given earlier, we may define the parity
function by the following equations:

parity(ε) = 0
parity(a) = 1

parity(a s a) = parity(s)

Notice that we include one clause of the function definition for each rule
defining the domain of the function.

Why does this define a function? We must prove that if s is a palin-
drome, then there exists a unique x ∈ { 0, 1 } such that parity(s) = x. This

1You might also like to prove that every palindrome is a member of P . This can be
achieved by (strong) induction over the length of palindrome s.

WORKING DRAFT AUGUST 28, 2002

1.2 A More Rigorous Development 13

may be proved by rule induction by showing that the property P (s) given
by the formula

∃! x ∈ { 0, 1 } parity(s) = x

is closed under the rules RP . The first two rules, for the null string and the
single-letter strings, are covered by the first two clauses of the definition of
parity . For the third rule, we assume that parity is well-defined for s (i.e.,
there exists a unique x such that parity(s) = x). But then it follows directly
from the third clause of the definition of parity that it is uniquely defined
for a s a.

1.2.4 Admissibility and Derivability

Using this machinery we may shed additional light on admissibility and
derivability of inference rules. Fix a rule set R over some universe U . A
rule

x1 · · · xn
x

is derivable iff x ∈ I(R ∪ {x1, . . . , xn }). That is, we take x1, . . . , xn as new
axioms, and ask whether x is derivable according to this expansion of the
rule set. The same rule is admissible iff x ∈ I(R) whenever xi ∈ I(R) for
each 1 ≤ i ≤ n. That is, we check whether x is in the set inductively defined
by R, whenever the xi’s are in that same set.

For example, consider the rule set RP defining the palindromic strings.
It is easy to see that the rule

s
a b s b a

is derivable, since if we add s as a new axiom, then we can apply the third
rule of RP to this axiom twice to obtain a derivation of a b s b a. On the
other hand, the rule

a s a
s

is admissible, since if a s a ∈ I(R), then so we must also have s ∈ I(R).
This is easily proved by rule induction, showing that the set

{ t | t = a s a and s ∈ I(R) }

is R-closed.

WORKING DRAFT AUGUST 28, 2002

14 Inductive Definitions

1.3 Exercises

1. Give (simultaneous) inductive definitions of various languages.

2. Prove properties of these languages, including well-definedness of
certain functions over them.

3. Fill in missing proofs.

WORKING DRAFT AUGUST 28, 2002

Chapter 2

Transition Systems

Transition systems are fundamental to the study of programming languages.
They are used to describe the execution behavior of programs by defining
an abstract computing device with a set, S, of states that are related by a
transition relation, 7→. The transition relation describes how the state of the
machine evolves during execution.

2.1 Transition Systems

A transition system consists of a set S of states, a subset I ⊆ S of initial states,
a subset F ⊆ S of final states, and a binary transition relation 7→ ⊆ S×S. We
write s 7→ s′ to indicate that (s, s′) ∈ 7→. It is convenient to require that s 67→
in the case that s ∈ F .

An execution sequence is a sequence of states s0, . . . , sn such that s0 ∈ I ,
and si 7→ si+1 for every 0 ≤ i < n. An execution sequence is maximal iff
sn 67→; it is complete iff it is maximal and, in addition, sn ∈ F . Thus every
complete execution sequence is maximal, but maximal sequences are not
necessarily complete.

A state s ∈ S for which there is no s′ ∈ S such that s 7→ s′ is said to be
stuck. We require that all final states are stuck: if s ∈ F , then s 67→. But not
all stuck states are final; these correspond to “run-time errors”, states for
which there is no well-defined next state.

A transition system is deterministic iff for every s ∈ S there exists at most
one s′ ∈ S such that s 7→ s′. Most of the transition systems we will consider
in this book are deterministic, the notable exceptions being those used to
model concurrency.

WORKING DRAFT AUGUST 28, 2002

16 Transition Systems

The reflexive, transitive closure, 7→∗, of the transition relation 7→ is induc-
tively defined by the following rules:

s 7→∗ s
s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′

It is easy to prove by rule induction that 7→∗ is indeed reflexive and transi-
tive.

The complete transition relation, 7→! is the restriction to 7→∗ to S×F . That
is, s 7→! s′ iff s 7→∗ s′ and s′ ∈ F .

The multistep transition relation, 7→n, is defined by induction on n ≥ 0
as follows:

s 7→0 s
s 7→ s′ s′ 7→n s′′

s 7→n+1 s′′

It is easy to show that s 7→∗ s′ iff s 7→n s′ for some n ≥ 0.
Since the multistep transition is inductively defined, we may prove that

P (e, e′) holds whenever e 7→∗ e′ by showing

1. P (e, e).

2. if e 7→ e′ and P (e′, e′′), then P (e, e′′).

The first requirement is to show that P is reflexive. The second is often
described as showing that P is closed under head expansion, or closed under
reverse evaluation.

2.2 Exercises

1. Prove that s 7→∗ s′ iff there exists n ≥ 0 such that s 7→n s′.

WORKING DRAFT AUGUST 28, 2002

