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In this lecture we first generalize the calculus of concurrent processes so
that values can be transmitted during communication. But our language
has no primitive values, so this just reduces to transmitting names along
channels that are themselves represented as names. This means that a sys-
tem of processes can dynamically change its communication structure be-
cause connections to processes can be passed as first class values. This is
why the resulting language, the π-calculus, is called a calculus of mobile and
concurrent communicating processes. In the second part of the lecture we
show how concurrency primitives along the lines of the π-calculus can be
embedded in ML, leading to Concurrent ML (CML).

We generalize actions and differentiate them more explicitly into input
actions and output actions, since one side of a synchronized communica-
tion act has to send and the other to receive a name. We also replace prim-
itive process identifiers and defining equations by process replication !P
explained below.

Action prefixes π : : = a(y) receive y along a
| a〈b〉 send b along a
| τ unobservable action

Process exps P : : = N | (P1 | P2) | new x.P | !P
Sums N : : = 0 | N1 + N2 | π.P

In examples π.0 is often abbreviated by π. Note that in a summand
a(y).P , y is a bound variable with scope P that stands for the value received
along a. On the other hand, a〈b〉.P does not bind any variables. Even
though the syntax does not formally distinguish, we use x for binding
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L26.2 The π-Calculus and Concurrent ML

occurrences of names (subject to renaming), and a and b for non-binding
occurrences.

The structural congruence remains the same as before, except that in
addition we have !P ≡ P | !P , that is, a process !P can spawn arbitrarily
many copies of itself. For references, we repeat the laws here.

1. Renaming of bound variables (α-conversion)

2. Reordering of terms in a summation

3. P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) = (P | Q) | R

4. new x.(P | Q) ≡ P | new x.Q if x 6∈ fn(P )
new x.0 ≡ 0, new x.new y.P ≡ new y.new x.P

5. !P ≡ P | !P

Before presenting the transition semantics, we consider the following
example.

P = ((x〈y〉.0 + z(w).w〈y〉.0) | x(u).u〈v〉.0 | x〈z〉.0)

The middle process can synchronize and communicate with either the first
or the last one. Reaction with the first leads to

P1 = (0 | y〈v〉.0 | x〈z〉.0) ≡ (y〈v〉.0 | x〈z〉.0)

which cannot transition further. Reaction with the seconds leads to

P ′
1 = ((x〈y〉.0 + z(w).w〈y〉.0) | z〈v〉.0 | 0)

which can step further to

P ′
2 = (v〈y〉.0 | 0 | 0)

Next we show the reaction rules in a form which does not make an
externally observable action explicit, and exploits structural congruence.

τ.P + N −→ P
Tau

(a(x).P + M) | (a〈b〉.Q + N) −→ ({b/x}P ) | Q React

P −→ P ′

P | Q −→ P ′ | Q Par P −→ P ′

new x.P −→ new x.P ′ Res

Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′ Struct
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As a simple example we will model a storage cell that can hold a value
and service get and put requests to read and write the cell contents. We first
show it using definitions for process identifiers and then rewrite it using
process replication.

C(x, get,put) def= get〈x〉.C〈x, get,put〉
+ put(y).C〈y, get,put〉

We express this in the π-calculus by turning C itself into a name, left-
hand side into an input action and occurrences on the right-hand side into
an output action.

! c(x, get,put).(get〈x〉.c〈x, get,put〉.0 + put(y).c〈y, get,put〉.0)

We abbreviate this process expression by !C. In order to be in the cal-
culus we must be able to receive and send multiple names at once. It is
straightforward to add this capability. As an example, consider how to cre-
ate cell with initial contents 3, write 4 to it, read the cell and then print the
contents some output device. Printing a is represented by an output action
print〈a〉.0. We also consider 3 and 4 just as names here.

!C | new g.new p.c〈3, g, p〉.p〈4〉.g(x).print〈x〉.0

Note that c and print are the only free names in this expression. Note
also that we are creating new names g and p to stand for the channel to
get or put a names into the storage cell C. We leave it to the reader as an
instructive exercise to simulate the behavior of this expression. It should be
clear, however, that we need to use structural equivalence initially to obtain
a copy of C with which we can react after moving the quantifiers of g and
p outside.

As a more involved example, consider the following specification of the
sieve of Eratosthenes. We start with a stream to produce integers, assuming
we have a primitive successor operation on integer names.1 The idea is to
have a channel which sends successive numbers.

!count(n, out).out〈n〉.count〈n + 1, out〉

Second we show a process to filter all multiples of a given prime num-
ber from its input stream while producing the output stream. We assume
an oracle (xmod p = 0) and its negation.

1This can also be coded in the π-calculus, but we prefer to avoid this complication here.
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!filter(p, in, out).in(x).((xmod p = 0)().filter〈p, in, out〉.0
+ (xmod p 6= 0)().out(x).filter〈p, in, out〉.0)

Finally, we come to the process that generates a sequence of prime num-
bers, starting from the first item of the input channel which should be prime
(by invariant).

!primes(in, out).in(p).out〈p〉.
new mid.(filter〈p, in,mid〉.0 | primes〈mid, out〉.0)

primes establishes a new filtering process for each prime and threads the
input stream in into the filter. The first element of the filtered result stream
is guaranteed to be prime, so we can invoke the primes process recursively.

At the top level, we start the process with the stream of numbers count-
ing up from 2, the smallest prime. This will generate communication re-
quests out〈p〉 for each successive prime.

new nats.count〈2,nats〉 | primes〈nats, out〉

In this implementation, communication is fully synchronous, that is,
both sender and receiver can only move on once the message has been ex-
changed. Here, this means that the prime numbers are guaranteed to be
read in their natural order. If we don’t care about the order, we can rewrite
the process so that it generates the primes asynchronously. For this we use
the general transformation of

a〈b〉.P =⇒ τ.(a〈b〉.0 | P )

which means the computation of P can proceed regardless whether the
message b has been received along channel a. In our case, this would be a
simple change in the primes generator.

!primes(in, out).in(p).
out〈p〉.0 | new mid.(filter〈p, in,mid〉.0 | primes〈mid, out〉.0)

The advantage of an asynchronous calculus is its proximity to a realistic
model of computation. On the other hand, synchronous communciation al-
lows for significantly shorter code, because no protocol is needed to make
sure messages have been received, and in received in order. Since asyn-
chronous communication is very easily coded here, we stick to Milner’s
original π-calculus which was synchronous.
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The π-Calculus and Concurrent ML L26.5

In the remainder of this lecture we discuss how Concurrent ML (CML)
implements concurrency primitives that heavily borrow from the π-calculus.
In CML, channels can carry values (including other channels), communica-
tion is synchronous, and execution is concurrent. However, there are also
differences. Standard ML is a full-scale programming language, so some
idioms that have to be coded painfully in the π-calculus are directly avail-
able. Moreover, CML offers another mechanism called negative acknowledg-
ments. In this lecture we will not discuss negative acknowledgments and
concentrate on the fragment of CML that corresponds most directly to the
π-calculus. The examples are drawn from the standard reference:2

John H. Reppy, Concurrent Programming in ML, Cambridge Uni-
versity Press, 1999.

We begin with the representation of names. In CML they are represented
by the type τ chan that carries values of type τ . We show the relevant
portion of the signature for the structure CML.

type ’a chan
val channel : unit -> ’a chan
val send : ’a chan * ’a -> unit
val recv : ’a chan -> ’a

The send and recv operations are synchronous which means that a call
send (a, v) will block until there is a matching recv (a) in another
thread of computation and the two rendezvous. We will see later that send
and recv are actually definable in terms of some lower-level constructs.

What we called a process in the π-calculus is represented as a thread
of computation in CML. They are called threads to emphasize their rela-
tively lightweight nature. Also, they are executing with shared memory
(the Standard ML heap), even though the model of communication is mes-
sage passing. This imposes a discipline upon the programmer not to resort
to possibly dangerous and inefficient use of mutable references in shared
memory and use message passing instead.

The relevant part of the CML signature is reproduced below. In this
lecture we will not use thread id which is only necessary for other styles
of concurrent programming.

2See also http://people.cs.uchicago.edu/˜jhr/cml/ .

LECTURE NOTES DECEMBER 2, 2003



L26.6 The π-Calculus and Concurrent ML

type thread id
val spawn : (unit -> unit) -> thread id
val exit : unit -> ’a

Even without non-deterministic choice, that is, the sums from the π-
calculus, we can now write some interesting concurrent programs. The ex-
ample we use here is the sieve of Eratosthenes presented in the π-calculus
in the last lecture. The pattern of programming this examples and other re-
lated programs in CML is the following: a function will accept a parameter,
spawn a process, and return one or more channels for communication with
the process it spawned.

The first example is a counter process that produces a sequence of in-
tegers counting upwards from some number n. The implementation takes
n as an argument, creates an output channel, defines a function which will
be the looping thread, and then spawns the thread before returning the
channel.

(* val counter : int -> int CML.chan *)
fun counter (n) =

let
val outCh = CML.channel ()
fun loop (n) = (CML.send (outCh, n); loop (n+1))

in
CML.spawn (fn () => loop n);
outCh

end

The internal state of the process is not stored in a reference, but as the
argument of the loop function which runs in the counter thread.

Next we define a function filter which takes a prime number p as
an argument, together with an input channel inCh , spawns a new filtering
process and returns an output channel which returns the result of removing
all multiples of p from the input channel.
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(* val filter : int * int CML.chan -> int CML.chan *)
fun filter (p, inCh) =

let
val outCh = CML.channel ()
fun loop () =

let val i = CML.recv inCh
in

if i mod p <> 0
then CML.send (outCh, i)

else ();
loop ()

end
in

CML.spawn (fn () => loop ());
outCh

end

Finally, the sieve function which returns a channel along which an
external thread can receive successive prime numbers. It follows the same
structure as the functions above.

(* val sieve : unit -> int CML.chan *)
fun sieve () =

let
val primes = CML.channel ()
fun loop ch =

let
val p = CML.recv ch
val = CML.send (primes, p)
val mid = filter (p, ch)

in
loop (mid)

end
in

CML.spawn (fn () => loop (counter 2));
primes

end

When sieve is creates a new channel and then spawns a process that
will produces prime numbers along this channel. It also spawns a process
to enumerate positive integers, starting with 2 and counting upwards. At
this point it blocks, however, until someone tries to read the first prime
number from its output channel. Once that rendezvous has taken place,
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it spawns a new thread to filter multiples of the last prime produced with
filter (p, ch) and uses that as its input thread.

To produce a list of the first n prime numbers, we successively commu-
nicate with the main thread spawned by the call to sieve .

(* val primes : int -> int list *)
fun primes (n) =

let
val ch = sieve ()
fun loop (0, l) = List.rev l

| loop (n, l) = loop (n-1, CML.recv(ch)::l)
in

loop (n, nil)
end

For non-deterministic choice during synchronization, we need a new
notion in CML which is called an event. Events are values that we can
synchronize on, which will block the current thread. Event combinators
will allow us to represent non-deterministic choice. The simplest forms of
events are receive and send events. When synchronized, they will block until
the rendezvous along a channel has happened.

type ’a event
val sendEvt : ’a chan * ’a -> unit event
val recvEvt : ’a chan -> ’a event
val never : ’a event
val alwaysEvt : ’a -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event
val choose : ’a event list -> ’a event
val sync : ’a event -> ’a

Synchronization is achieved with the function sync . For example, the
earlier send function can be defined as

val send = fn (a,x) => sync (sendEvt (a,x))

that is, val send = sync o sendEvt .
We do not use alwaysEvt here, but its meaning should be clear: it

corresponds to a τ action returning a value without any communication.
choose [ v1, . . . , vn] for event values v1, . . . , vn corresponds to a sum N1+
· · ·+Nn. In particular, choose [] will block and can never proceed, while
choose [ v] should be equivalent to v.
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wrap ( v, f ) provides a function v to be called on the result of synchro-
nizing v. This is needed because different actions may be taken in the dif-
ferent branches of a choose . It is typical that each primitive receive or
send event in a non-deterministic choice is wrapped with a function that
indicates the action to be taken upon the synchronization with the event.

As an example we use the implementation of a storage cell via a con-
current process. This is an implementation of the following signature.

signature CELL =
sig

type ’a cell
val cell : ’a -> ’a cell
val get : ’a cell -> ’a
val put : ’a cell * ’a -> unit

end;

In this example, creating a channel returns two channels for communi-
cation with the spawned thread: one to read the contents of the cell, and
one to write the contents of the cell. It is up to the client program to make
sure the calls to get and put are organized in a way that does not create
incorrect interference in case different threads want to use the cell.

structure Cell’ :> CELL =
struct
datatype ’a cell =

CELL of ’a CML.chan * ’a CML.chan
fun cell x =

let
val getCh = CML.channel ()
val putCh = CML.channel ()
fun loop x = CML.synch (

CML.choose [CML.wrap (CML.sendEvt (getCh, x),
fn () => loop x),

CML.wrap (CML.recvEvt putCh,
fn x’ => loop x’)])

in
CML.spawn (fn () => loop x);
CELL (getCh, putCh)

end
fun get (CELL(getCh, )) = CML.recv getCh
fun put (CELL( , putCh), x) = CML.send (putCh, x)
end;
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This concludes our treatment of the high-level features of CML. Next
we will sketch a formal semantics that accounts for concurrency and syn-
chronization. The most useful basis is the C-machine, which makes a con-
tinuation stack explicit. This allows us to easily talk about blocked pro-
cesses or synchronization. The semantics is a simplified version of the one
presented in Reppy’s book, because we do not have to handle negative
acknowledgments. Also, the notation is more consistent with our earlier
development.

First, we need to introduce channels. We denote them by a, follow-
ing the π-calculus. Channels are typed a : τ chan for types τ . During the
evaluation, new channels will be created and have to be carried along as a
channel environment. This reminiscent of thunks, or memory in other evalu-
ation models we have discussed. These channels are global, that is, shared
across the whole process state. Finally we have the state s of individual
thread, which are as in the C-machine.

Channel env N : : = · | N , a chan
Machine state P : : = · | P, s

Thread state s : : = K > e | K < v

In order to write rules more compactly, we allow the silent re-ordering
of threads in a machine state. This does imply any scheduling strategy.

We have two judgments for the operational semantics

s 7→ s′ Thread steps from s to s′

(N ` P ) 7→ (N ′ ` P ′) Machine steps from P to P ′

In the latter case we know that N ′ is either N or contains one additional
channel that may have been created. The first judgment, s 7→ s′ is exactly
as it was before in the C-machine. We have one general rule

s 7→ s′

(N ` P, s) 7→ (N ` P, s′)

We now define the new constructs, one by one.

Channels. Channels are created with the channel function. They are
value.

a value

(a chan 6∈ N )
(N ` P,K > channel ()) 7→ (N , a chan ` P,K < a)

We do not define the semantics of the send and recv functions because
they are definable.
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Threads. New threads are created with the spawn function. We ignore
here the thread id type and return a unit element instead.

(N ` P,K > spawn v) 7→ (N ` P, • > v (),K < ())

(N ` P,K > exit ()) 7→ (N ` P )

Recall that even though we write the relevant thread among P last, it could
in fact occur anywhere by our convention that the order of the threads is
irrelevant.

Finally, we come to events. We make one minor change to make them
syntactically easier to handle. Instead of choose to take an arbitrary list of
events, we have two constructs:

val choose : ’a event * ’a event -> ’a event
val never : ’a event

Events must be values in this implementation, because they must be-
come arguments to the synchronization function sync .

v value
sendEvt (a, v) value recvEvt (a) value

v value
always (v) value

v1 value v2 value

choose (v1, v2) value never value

v1 value v2 value

wrap (v1, v2) value

From these value definitions one can straightforwardly derive the rules
that evaluate subexpressions. Interestingly, there only two new rules for
the operational semantics: for two-way synchronization (corresponding to
a value being sent) and one-way synchronization (corresponding to a τ -
action with a value). This requires two new judgments, (v, v′) (e, e′) and
v  e. We leave the one-way synchronization as an exercise and show the
details of two-way synchronization.

(v, v′) (e, e′)
(N ` P,K > sync (v),K > sync (v′)) 7→ (N ` P,K > e,K > e′)

R2

v  e
(N ` P,K > sync (v)) 7→ (N ` P,K > e)

R1
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The judgment (v, v′)  (e, e′) means that v and v′ can rendezvous, re-
turning expression e to the first thread and e′ to the second thread. We
show the rules for it in turn, considering each event combinator. We pre-
suppose that subexpressions marked v are indeed values, without checking
this explicitly with the v value judgment.

Send and receive events. This is the base case. The sending thread con-
tinues with the unit element, while the receiving thread continues with the
value carried along the channel a.

(sendEvt (a, v), recvEvt (a)) ((), v)
sr

(recvEvt (a), sendEvt (a, v)) (v, ())
rs

Choice events. There are no rules to synchronize on never events, and
there are four rules for the binary choose event.

(v1, v
′) (e, e′)

(choose (v1, v2), v′) (e, e′)
cl
1

(v2, v
′) (e, e′)

(choose (v1, v2), v′) (e, e′)
cl
2

(v, v′
1) (e, e′)

(v, choose (v′
1, v

′
2)) (e, e′)

cr
1

(v, v′
2) (e, e′)

(v, choose (v′
1, v

′
2)) (e, e′)

cr
2

Wrap events. Finally we have wrap events that construct bigger expres-
sions, to be evaluated if synchronization selects the corresponding event.
This is way synchronization returns an expression, to be evaluated further,
rather than a value.

(v1, v
′) (e1, e

′)
(wrap (v1, v2), v′) (v2 e1, e

′) wl

(v, v′
1) (e, e′

1)
(v, wrap (v′

1, v
′
2)) (e, v′

2 e′
1)

wr

With the typing rules derived from the CML signature and the opera-
tional semantics, it is straightforward to prove a type preservation result.
The only complication is presented by names, since they are created dy-
namically. But we have already seen the solution to a very similar problem
when dealing with mutable references (since locations l are also created
dynamically), so no new concepts are required.
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Progress is more difficult. The straightforward statement of the progress
theorem would be false, since the type system does not track whether pro-
cesses can in fact deadlock. Also, we would have to re-think what non-
termination means, because some processes might run forever, while oth-
ers terminate, while yet others block. We will not explore this further, but it
would clearly be worthwhile to verify that any thread can either progress,
exit, return a final value, or block on an event. This means that there are no
“unexpected” violations of progress. Along similar lines, it would be very
interesting to consider type systems in which concurrency and communi-
cation is tracked to the extent that a potential deadlock would be a type
error! This is currently an active area of research.
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