
Supplementary Notes on
Concurrent Processes

15-312: Foundations of Programming Languages
Frank Pfenning

Modified by Jonathan Aldrich

Lecture 25
November 20, 2003

We have seen in the last lecture that by investigating the reactive be-
havior of systems, we obtain a very different view of computation. Instead
of termination and the values of expressions, it is the interactions with the
outside world that are of interest. As an example, we showed an important
notion of program equivalence, namely strong bisimulation and contrasted
it with observational equivalence of computation with respect to values.

The processes we have considered so far were non-deterministic, but
sequential. In this lecture we generalize this to allow for concurrency and
also name restriction to obtain a form of abstraction.

In order to model concurrency we allow process composition, P1 | P2. In-
tuitively, this means that processes P1 and P2 execute concurrently. Such
concurrent processes can interact in a synchronous fashion when one pro-
cess wants to perform an input action and another process wants to per-
form a matching output action. As a very simple example, consider two
processes A and B plugged together in the following way. A performs in-
put action a and then wants to perform output action b, returning to state
A. Process B performs an input action b followed by an output action c,
returning to state B upon completion.

A
def= a.b.A

B
def= b.c.B

We assume we start with A and B operating concurrently, that is, in state

A | B

SUPPLEMENTARY NOTES NOVEMBER 20, 2003

L25.2 Concurrent Processes

Now we can have the following sequence of transitions:

A | B a−→ b.A | b.c.B −→ A | c.B c−→ A | B

We have explicitly unfolded B after the first step to make the interaction
between b and b clear. Note that this synchronization is not an external
event, so the transition arrow is unadorned. We call this an internal action
or silent action are write τ .

The second generalization from the sequential processes is to permit
name hiding (abstraction). In the example above, we plugged processes A
and B together, intuitively connecting the output b from A with the input
b from B. However, it is still possible to put another process in parallel
with A and B that could interact with both of them using b. In order to
prohibit such behavior, we can locally bind the name b. We write new a.P
for a process with a locally bound name a. Names bound with new a.P
are subject to α-conversion (renaming of bound variables) as usual. In the
example above, we would write

new b.A | B.

However, we have created a new problem: the name b is bound in this
expression, but the scope of b does not include the definitions of A and B. In
order to avoid this scope violation we parameterize the process definitions
by all names that they use, and apply uses of the process identifier with the
appropriate local names. We can think of this as a special form of parameter
passing or renaming.

A(a, b) def= a.b.A〈a, b〉
B(b, c) def= b.c.B〈b, c〉

The process expression can now hygienically refer to locally bound names.

new b.A〈a, b〉 | B〈b, c〉

This leads to the following language of concurrent process expressions.

Process Exps P : : = A〈a1, . . . , an〉 | N | (P1 | P2) | new a.P
Sums N : : = α.P | N1 + N2 | 0

Action Prefix α : : = a | a | τ

We define the operational semantics of concurrent processes with the
set of rules below. In this semantics an action is made explicit in a transi-
tion, but matching input/output actions become silent. We use λ to stand
for either a or a and λ for a or a, respectively.

SUPPLEMENTARY NOTES NOVEMBER 20, 2003

Concurrent Processes L25.3

M + α.P + N
α−→ P

Sumt
P

λ−→ P ′ Q
λ−→ Q′

P | Q τ−→ P ′ | Q′
Reactt

P
α−→ P ′

P | Q α−→ P ′ | Q
L-Part

Q
α−→ Q′

P | Q α−→ P | Q′
R-Part

P
α−→ P ′ (α /∈ {a, a})

new a.P
α−→ new a.P ′

Rest

{b1/a1, . . . , bn/an}PA
α−→ P ′ (A(a1, . . . , an) def= PA)

A〈b1, . . . , bn〉
α−→ P ′

Identt

If we want to examine the interaction of a system with its environment
we consider the environment as another testing process that is run concur-
rently with the system whose behavior we wish to examine. As example
for the above rules, consider the following process expression.

P = (new a.((a.Q1 + b.Q2) | a.0)) | (b.R1 + a.R2)

Note that the output action before R2 is a different name than a used as
the input action to Q1, the latter being locally quantified. This means there
are only two possible transitions.

P −→ (new a.(Q1 | 0)) | (b.R1 + a.R2)
P −→ (new a.(Q2 | a.0)) | R1

As another example of this form of concurrent processes, consider two
two-way transducers of identical structure.

A(a, a′, b, b′) def= a.b.A〈a, a′, b, b′〉+ b′.a′.A〈a, a′, b, b′〉

We now compose to instances of this process concurrently, hiding the
internal connection between.

new b.new b′.(A〈a, a′, b, b′〉 | A〈b, b′, c, c′〉)

At first one might suspect this is bisimilar with A〈a, a′, c, c′〉, which
shortcircuits the internal synchronization along b and b′. While we have
not formally defined bisimilarity in this new setting, this new composition

SUPPLEMENTARY NOTES NOVEMBER 20, 2003

L25.4 Concurrent Processes

is in fact buggy: it can deadlock when put in parallel with a.P , c.P ′, c′.Q,
a′.Q′

a.P | c.P ′ | c′.Q | a′.Q′ | new b.new b′.(A〈a, a′, b, b′〉 | A〈b, b′, c, c′〉)
−→ P | c.P ′ | c′.Q | a′.Q′ | new b.new b′.(b.A〈a, a′, b, b′〉 | A〈b, b′, c, c′〉)
−→ P | c.P ′ | Q | a′.Q′ | new b.new b′.(b.A〈a, a′, b, b′〉 | b′.A〈b, b′, c, c′〉)

At this point all interactions are blocked and we have a deadlock. This
can not happen with the process A〈a, a′, c, c′〉. It can evolve in different
ways but not deadlock in the manner above; here is an example.

a.P | c.P ′ | c′.Q | a′.Q′ | A〈a, a′, c, c′〉
−→ P | c.P ′ | c′.Q | a′.Q′ | c.A〈a, a′, c, c′〉
−→ P | P ′ | c′.Q | a′.Q′ | A〈a, a′, c, c′〉
−→ P | P ′ | Q | a′.Q′ | a′.A〈a, a′, c, c′〉
−→ P | P ′ | Q | Q′ | A〈a, a′, c, c′〉

The reader should make sure to understand these transition and re-
design the composed two-way buffer so that this deadlock situation cannot
occur.

Observational Equivalence for Concurrent Processes .
Next we consider the question of observational equivalence for the cal-

culus of concurrent, communicating processes.
Recall from the last lecture our definition of a strong simulation S: If

P S Q and P
α−→ P ′ then there exists a Q′ such that Q

α−→ Q′ and P ′ S Q′.
In pictures:

P S

α

��

Q

α

��
P ′ S Q′

where the solid lines indicate given relationships and the dotted lines in-
dicate the relationships whose existence we have to verify (including the
existence of Q′). If such a strong simulation exists, we say that Q strongly
simulates P .

Futhermore, we say that two states are strongly bisimilar if there is a
single relation S such that both the relation and its converse are strong
simulations.

Strong simulation does not distinguish between silent (also called inter-
nal or unobservable) transitions τ and observable transitions λ (consisting

SUPPLEMENTARY NOTES NOVEMBER 20, 2003

Concurrent Processes L25.5

either of names a or co-names a). When considering the observable behav-
ior of a process we would like to “ignore” silent transitions to some extent.
Of course, this is not entirely possibly, since a silent transition can change
from a state with many enabled actions to one with much fewer or differ-
ent ones. However, we can allow any number of internal actions in order
to simulate a transition. We define

P
τ∗−→ P ′ iff P

τ−→ · · · τ−→ P ′

P
τ∗ λ τ∗−→ P ′ iff P

τ∗−→ P1
λ−→ P2

τ∗−→ P ′

In particular, we always have P
τ∗−→ P . Then we say that S is a weak simu-

lation if the following two conditions are satisfied:1

(i) If P S Q and P
τ−→ P ′

then there exists a Q′ such that Q
τ∗−→ Q′ and P ′ S Q′.

(ii) If P S Q and P
λ−→ P ′

then there exists a Q′ such that Q
τ∗ λ τ∗−→ Q′ and P ′ S Q′.

In pictures:

P S

τ

��

Q

τ∗

��
P ′ S Q′

P S

λ

��

Q

τ∗

λ
τ∗

��
P ′ S Q′

As before we say that Q weakly simulates P if there is a weak simulation S
with P S Q. We say P and Q are weakly bisimilar if there is a relation S such
that both S and its inverse are weak simulations. We write P ≈ Q if P and
Q are weakly bisimular.

We can see that the relation of weak bisimulation concentrates on the
externally observable behavior. We show some examples that demonstrate
processes that are not weakly bisimilar.

1This differs slightly, but I believe insignificantly from Milner’s definition.

SUPPLEMENTARY NOTES NOVEMBER 20, 2003

L25.6 Concurrent Processes

P

a
		��
��
�� b

��,
,,

,,
,

0 0

Q

a
		��
��
�� τ

��.
..

..
.

0 Q1

b
��.

..
..

.

0

R

τ
����
��
�� τ

��/
//

//
/

R1

a
����
��
��

R2

b
��.

..
..

.

0 0

P = a.0 + b.0 Q = a.0 + τ.b.0 R = τ.a.0 + τ.b.0

Even though P , Q, and R can all weakly simulate each other, no two are
weakly bisimilar. As an example, consider P and Q. Then any weak bisim-
ulation must relate P and Q1, because if Q

τ−→ Q1 then P can match this
only by idling (no transition). But P

a−→ 0 and Q1 cannot match this step.
Therefore P and and Q cannot be weakly bisimilar. Analogous arguments
suffice for the other pairs of processes.

As positive examples of weak bisimulation, we have

a.P ≈ τ.a.P
a.P + τ.a.P ≈ τ.a.P

a.(b.P + τ.c.Q) ≈ a.(b.P + τ.c.Q) + τ.c.Q

The reader is encouraged to draw the corresponding transition diagrams.
As an example, consider the second equation.

Q1 = a.P + τ.a.P and Q2 = τ.a.P

We relate Q1 S Q2 and a.P S a.P and P S P . In one direction we have

1. Q1
a−→ P which can be simulated by Q2

τ a−→ P .

2. Q1
τ−→ a.P which can be simulated by Q2

τ−→ a.P .

In the other direction we have

1. Q2
τ−→ a.P which can be simulated by Q1

τ−→ a.P .

Together these cases yield the desirect result: Q1 ≈ Q2.
In the next lecture we extend extend the calculus to allow us communi-

cation to transmit values, which leads to the π-calculus. Then we will see
how a variant of the π-calculus can be embedded in a full-scale language
such as Standard ML to offer rich concurrency primitives in addition to
functional programming.

SUPPLEMENTARY NOTES NOVEMBER 20, 2003

