Supplementary Notes on
Inheritance and Subtyping

15-312: Foundations of Programming Languages
Jonathan Aldrich

Lecture 22
November 11, 2003

In this lecture we look at the relationship between inheritance and sub-
typing in more detail. First, we look at the tradeoffs between structural
subtyping (the form of subtyping we have studied in functional languages)
and by-name subtyping (the form of subtyping that is more common in
object-oriented languages). Next, we look at the differences between sub-
typing and inheritance, and why many object-oriented languages merge
the two. Finally, we look at the fragile base class problem, a breach of mod-
ularity that can occur due to the open recursion supported by the semantics
of inheritance.

Structural vs. By-Name Subtyping.

In this class, we began our study of subtyping using structural rules. For
example, we say that a pair 7 X 72 is a subtype of another pair type 7| x 7}
if the components of the pair also have the proper subtyping relationship
(11 <:7{ and 15 <: 79).

In contrast, the base rule for subtyping in EML, copied below, is very
different. The rule says nothing about the representation of classes C' and
C'-instead it just relies on the declaration stating that C' inherits from C’.
This is known as “by-name” subtyping, or nominal subtyping. In EML,
the inheritance relationship induces a subtyping relationship-this is made
explicit by the rule below. Inheritance also implies subtyping in Java, but
as we will see in the next subsection, this is not the case in every language.

([abstract]class Cextends C’...)€ Decls
C<:C

SubBase

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

L22.2 Inheritance and Subtyping

Note that although the subtyping rule does not refer to the represen-
tation of C' and C’, the rules for inheritance impose constraints that en-
sure that the representations are compatible. For example, C' has at least
the fields the C’ does (because it inherits them) and C' cannot change their
types in an incompatible way. These rules ensure that C' is substitutable for
C’, which constitutes the core of subtyping.

So the rules imply that if C' inherits from C”, then C is substitutable for
C'. Somewhat suprisingly, the converse is not the case: if there is some class
D that is structurally substitutable for C’, but does not inherit (directly or
transitively) from C’, it will not be a subtype according to the rules of EML.
So nominal subtyping in EML implies structural subtyping, but structural
subtyping does not imply nominal subtyping.

What are the tradeoffs between the two forms of subtyping? Well, con-
sider the following code:

class Bag of {es:int list }
fun add : Bag * int -> Bag
fun size : Bag -> int

class Set of {es:int list }
fun add : Set * int -> Set

fun size : Set -> int

fun union : Set * Set -> Set

The classes Bag and Set seem to be in a natural subtyping relationship,
as determined by the data members and the functions defined over the
classes. For example, Set has the same fields as Bag, and every operation
that applies to a Bag (add and size, in this simplified exmaple) can be ap-
plied to Set as well.

However, despite the fact that Set is a structural subtype of Bag, it
would be a mistake to consider Set as a subtype. Set is not substitutable for
Bag, because “add” has different semantics on sets. For example, adding
an integer to a Bag always results in a Bag whose size is greater by one,
while adding an integer to a Set does not always increase the size because
of the check for duplicates. If a client thought it was using a Bag object, but
the Bag was really behaving like a Set, the clients internal invariants could
be broken.

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

Inheritance and Subtyping L22.3

As this example shows, nominal inheritance is useful to avoid “spuri-
ous” examples of subtyping, where the signatures of two classes make it
appear that one is substitutable for the other, but there is not a semantic
subtyping relationship between them.

Another attractive features of nominal inheritance is that it supports
efficient type tests at run time. Because types correspond to classes, just
looking up the inheritance relationship in a table is enough to determine
if two types are in a subtyping relationship. These subtyping tests are
used in object-oriented dispatch, as well as in constructs like casts and
instanceof tests in Java.

Finally, nominal inheritance is useful for modeling abstract data types.
We may not want to expose the internal representation of a class to clients,
but we still may want clients to know the subtyping relationship between
classes. Nominal subtyping provides a natural way to do this, whereas
structural subtyping would require exposing the internal representation of
these classes to clients.

The advantages of nominal inheritance are compelling enough in the
object-oriented setting that nearly all object-oriented languages use nomi-
nal inheritance. However, structural subtyping also has advantages. For
example, consider the code below:

abstract class Shape of {i }
class Circle extends Shape of
{origin:Point, radius:int, color:Color }
(* much later in the code *)
abstract class Colored of {color:Color }

In the example, the Colored class was defined separately from the Shape
hierarchy. Since the implementor of the shapes didn’t know about the Col-
ored class, Circle was not made a subtype of Colored (although EML does
not have multiple inheritance, the full language supports a notion of inter-
face inheritance similar to that in Java). A version of EML with structural
subtyping would allow us to consider Circle to be a subtype of Colored,
even though that relationship was not anticipated beforehand.

In addition to supporting unanticipated subtyping relationships, struc-
tural subtyping is valuable because it combines cleanly both with primitive
features of a functional language (pairs, functions, etc.) and also with more
advanced constructs like polymorphism. For example, the full version of
EML includes polymorphic classes, which look something like this:

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

L22.4 Inheritance and Subtyping

abstract class 'a Set of {}
class ’'a ListSet extends 'a Set of {es : 'a list }

In this extension of EML we can use a more advanced subtyping rule
which combines nominal and structural subtyping. Many object-oriented
languages allow one to state properties such as “’a is a covariant param-
eter.” The rule below, for subtyping of classes with covariant parameters,
would imply that 'a ListSet is a subtype of ‘b Set if and only if 'a is
a subtype of 'b .

([abstract]class ‘a C'extends ‘aC’ ...) € Decls
'a <: 'b C'iscovariantin’a

'aC <:'vbC"

SubBase

As this example shows, realistic object-oriented languages need a sub-
typing relation that combines features of nominal and structural subtyping.

Subtyping and Inheritance.

Although most object-oriented languages equate subtyping and inheritance,
it is important to recognize that these are two distinct concepts. Some lan-
guages (for example, Cecil) provide separate constructs for declaring inher-
itance and subtyping relationships between classes. To see the difference,
consider how one might want inheritance without subtyping, or subtyping
without inheritance.

class Bag of {es:int list }

fun add : Bag * int -> Bag

fun size : Bag -> int

extend fun add (b as Bag, i as int) = ...
extend fun size (b as Bag) = ...

class Set inherits Bag of {}

fun add : Set * int -> Set

fun size : Set -> int

fun union : Set * Set -> Set

extend fun add (s as Set, i as int) = ...
extend fun union ...

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

Inheritance and Subtyping L22.5

The code above describes an imaginary variant of EML that separates
inheritance (written “inherits”) from subtyping (written “implements”). It
may be convenient for the Set class to inherit methods such as size from
Bag, because these methods have the same semantics. Set will override
the add method to check for duplicates, and define new methods such as
union. However, as discussed above, it would be semantically incorrect
to treat Set as a subtype of Bag. By keeping subtyping and inheritance
separate, one can reuse the Bag code for size and other functions without
making Set a subtyping of Bag.

Inheritance without subtyping is known as private inheritance in C++.
One problem with private inheritance is that it is hard to completely hide
the inheritance relationship from clients, thus violating a key criterion of
modularity. For example, a client could use a cast to observe that HashSet
inherits from HashSet, even if the subtyping relationship between them
was not visible to that client.

The following code demonstrates a potential use of subtyping without
inheritance:

class Set of {es : int list }
fun add : Set * int -> Set

fun size : Set -> int

fun union : Set * Set -> Set

class HashSet implements Set
of {buckets : array of int ... }
(* definition of HashSet functions, etc... *)

In the code above, the Set class has been inefficiently implemented as
a linked list. An enterprising developer decides to create a HashSet that
will implement the same interface, but be more efficient. There is no reason
for HashSet to inherit any of the fields of Set, because they would only
waste space. However, it is important that HashSet be substitutable for the
original Set class, so that clients that used Set in the past can use HashSet
now without being changed. Separating subtyping from inheritance allows
us to specify that HashSet is a subtype of Set but does not inherit from it.

Most object-oriented languages do not provide this clean separation be-
tween subtyping and inheritance, despite the advantages we have seen.

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

L22.6 Inheritance and Subtyping

One reason is that these advantages can be obtained with only a little bit of
additional planning or rewriting of code. For example, instead of having
Set inherit from Bag (in the first example), we can define a common super-
class Collection. The Collection class does not pin down the semantics of
add-subclasses are free to implement it either with Bag semantics or with
Set semantics. Thus, we can put the common code (the size method, etc.)
into Collection and have both Bag and Set be subclasses that both inherit
from and subtype class collection.

In the second example, the real problem is that Set should have been an
abstract class or interface. If it was written in this way, it would be easy
to define separate ListSet and HashSet classes that both implement the Set
interface.

As this discussion shows, current object-oriented languages survive with-
out cleanly separating inheritance and subtyping. However, when design-
ing object-oriented software it is important to keep the distinctions in mind
in order to avoid semantic problems (such as making Set a subtype of Bag).

Open Recursion: The Fragile Base Class Problem.

Object-oriented languages, including EML, have the feature that when a
class C inherits a method m from class B, and m calls some other method
m2 on the same object, then C’s implementation of m2 is invoked (rather
than B’s). This feature, called open recursion, means that code in class C
can depend on the implementation details of class B, breaking the encap-
sulation of the superclass. The example we show here is taken from Item
14 of Joshua Bloch: Effective Java, Addison-Wesley, 2001,

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

Inheritance and Subtyping L22.7

public class InstrumentedHashSet extends HashSet {
/[The number of attempted element insertions
private int addCount = 0;

public InstrumentedHashSet () {

¥

public InstrumentedHashSet(Collection c¢) {
super(c);

public boolean add(Object 0) {
addCount++;

return super.add(o);

public boolean addAll(Collection c) {
addCount += c.size();
return super.addAll(c);

}

public int getAddCount() {
return addCount;

}

}

Now the following sequence

InstrumentedHashSet s = new InstrumentedHashSet();
s.addAll(Arrays.asList(new String[]

{"Snap", "Crackle", "Pop")
s.getAddCount();

may return either 3 or 6, depending on whether the library implementation
of addAll has internal calls to add or not.

There are a number of possible solutions to this problem. One solu-
tion is to carefully document the internal calling patterns of each class. In
the example above, the implementor of HashSet would have to document
whether addAll calls add as part of its implementation. This solution, how-
ever, still exposes implementation decisions that should rightfully be inter-
nal to HashSet. This means that implementation decisions in addAll cannot
be changed without affecting subclasses-the only difference is that the de-
pendency is now explicitly documented.

A second solution to this problem (suggested by Bloch) is to write a
wrapper class that instruments the HashSet in this way, rather than making
a subclass of HashSet. For example:

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

L22.8 Inheritance and Subtyping

/I Wrapper class - uses composition in place of inheritance
public class InstrumentedSet implements Set {
private final Set s;
private in addCount = 0;
public InstrumentedSet(Set s) {
this.s = s;

public boolean add(Object 0) {
addCount++;
return s.add(o);

}

public boolean addAll(Collection c) {
addCount += c.size();
return s.addAll(c);

}
public int getAddCount() {
return addCount;
}
/I Forwarding methods
public void clear() { s.clear ();
public boolean contains(Object 0) { return s.contains(o);
public boolean isEmpty() { return s.isEmpty();
..
public String toString () { return s.toString();
}
Intheplaceof// ... all the relevant public methods of s are exported

again. In ML we would use a wrapper functor instead (assuming we really
wanted the implementation of Set to be ephemeral):

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

- e

Inheritance and Subtyping L22.9

signature InstrumentedSet =

sig
include Set
val getAddCount : unit -> int
end;
functor InstrumentWrapper (structure S : Set)
. InstrumentedSet =
struct
val addcount = ref 0
open S

fun add(o) = (addcount := laddcount+1; S.add(0))
fun addAli(c) =

(addcount := !addcount+List.length(c);
S.addAll(c))
fun getAddCount() = 'addCount

end;
structure InstrumentedSet =
InstWrapper (structure S = Set);

Unfortunately, this solution has drawbacks as well. In Java, the devel-
oper has to write all of the forwarding methods; this is a pain, and creates
spurious forwarding code that has no functional purpose, making systems
harder to maintain and evolve. The ML solution avoids this problem using
the open construct, which automatically imports the definitions of func-
tions from S into the InstrumentWrapper structure.

A more serious problem is that open recursion can often be beneficial
as well as harmful. For example, graphical user interface libraries use open
recursion to allow programmers to specify how a window object should
react to events such as menu selections and mouse clicks. Using wrapping
instead of inheritance throws the baby out with the bathwater by prohibit-
ing open recursion entirely.

Warning: research ahead!

The fragile base class problem is a great example of an important research
problem that has yet to be solved cleanly. Below, I'll sketch some (largely
untested) ideas for a potential solution to this problem. Although this so-
lution may or may not work out in practice, it's an example of a problem
you might tackle if you decide to go on to do research in programming
languages.

Consider the following change to the semantics of Java. Method dis-

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

L22.10 Inheritance and Subtyping

patch is modified to distinguish “external” and “internal” calls to object
methods. An external call is a call to a method from an outside object; these
calls are dispatched exactly as they are in Java. An internal call is a call to
a method from within the object. We change the semantics of dispatch for
internal calls to call the method in the local class, rather than the run-time
class of the object.

For example, consider the InstrumentedHashSet code described above.
If a client called addAll on the InstrumentedHashSet, the version of ad-
dAll in InstrumentedHashSet would be invoked. This method calls su-
per.addAll(c), which invokes the corresponding method in HashSet. Now,
assume the addAll method in HashSet is implemented so as to call add in-
ternally. Since this is an internal call, we invoke HashSet’s version of add,
instead of using “open recursion” to call the InstrumentedHashSet version
of add (as ordinary Java would do). Thus, we avoid calling the Instrument-
edHashSet’s version of add and so we don’t increment count beyond the
correct amount.

Essentially, we are building the forwarding technique into the language,
so that the programmer does not have to write explicit forwarding meth-
ods. This solves the fragile base class problem in a cleaner way than manual
forwarding, and is similar to the solution provided by opening a module
in ML.

As noted before, however, the forwarding technique has the additional
drawback that open recursion cannot be used even when it is useful, as
in GUI libraries. To ameliorate this problem, we allow the programmer
to annotate some methods with the keyword “open.” Methods declared
“open” use the normal, open-recursion semantics of Java. For example,
we could write a GUI window base class as follows. In this code, the dis-
pach() method is called by the system. It interprets the SystemEvent as a
MouseClick event or a MenuSelection event. These events are passed to
subclasses by using the “open” methods mouseClick and menuSelection.

class Window {

final void dispatch(SystemEvent e) { .. }
open void mouseClick(MouseClickEvent e) {}
open void menuSelection(MenuSelectionEvent e) {}

}

We need to follow a discipline in using open so that we can gain the
benefits of open recursion without the drawbacks of the fragile base class

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

Inheritance and Subtyping L22.11

problem. One such discipline is to only declare methods as “open” if they
are called when some semantic event occurs—such as a mouse click or a
menu selection in the example. By tying open methods to a semantic event,
a superclass such as Window is making a promise that these open methods
will always be called in the same way, even if other implementation details
of Window are later changed. Methods which are not declared “open” are
not subject to this promise. The way in which they are used can be freely
changed without affecting subclasses.

We’ve presented the fragile base class problem in Java, along with a
potential solution using the “open” construct. You might ask, how does
this work in EML? That’s a hard question to answer, because in EML there’s
not as much of a distinction between the internals and the externals of an
object. Figuring out if this solution makes sense in EML is still an open
research question. Another, more technical research question is, can we do
better in proving properties of a program using this new feature? There
ought to be some benefits in proofs, since we are making the relationship
between a superclass and its subclasses more modular. When we talk about
program equivalence, we’ll have the beginnings of a tool for answering this
question.

SUPPLEMENTARY NOTES NOVEMBER 11, 2003

