
Lecture Notes on
Type Inference

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 19
October 30, 2003

In the previous lecture on type checking, our goal was first to ensure
that every expression synthesized a unique type and later, that every ex-
pression synthesized a principal type. We accomplished this by a mode
analysis of the typing rules, which allowed us to read a set of typing rules
as describing an algorithm.

The principal judgments (here indicated with their modes, where ()+

means input and ()− means output) are:
Γ+ ` e+ ↑ τ− e synthesizes principal type τ
τ+ v σ+ τ is a subtype of σ
τ+ t σ+ ⇒ ρ− ρ is the least upper bound of τ and σ
τ+ u σ+ ⇒ ρ− ρ is the greatest lower bound of τ and σ

Any of these judgments might fail when executed with the given input
constituents, which means that type synthesis fails. Overall, we use this in
a theorem which guarantees that Γ ` e : τ if and only if Γ ` e ↑ σ and
σ v τ .

However, programs in this language remain excessively verbose, espe-
cially when advanced type constructs are involved. Consider the example
of recursive types. Using mode analysis we obtain the following rules.

Γ ` e ↑ {µt.σ/t}σ
Γ ` roll (t.σ, e) ↑ µt.σ

Γ ` e ↑ µt.σ

Γ ` unroll (e) ↑ {µt.σ/t}σ

The unfortunate property here is that we need to endow the roll con-
struct with a type in order to guarantee principal types. It is possible to
consider roll and unroll as coercions, but various problems such as decid-
ing subtyping and existence or lack of principal becomes very difficult and

LECTURE NOTES OCTOBER 30, 2003

L19.2 Type Inference

delicate, so we will not pursue this here. The example below shows some
redundant information, necessitated by the decision to always propagate
types upward when type-checking.

nat = µt.1+t
zero = roll (nat, inl (nat, unitel))
succ = fn (nat, x.roll (nat, inr (1, x)))

The question is how to improve on the situation. A simple mechanism
for improvement is to split the one judgment for synthesis into two, mu-
tually dependent judgments. One synthesizes a type from an expression,
the other analyzes an expression against a type. The idea is by propagating
information in two directions, we can save significantly in the verbosity of
the type system. This is called a bidirectional system.

We would like to preserve the determinism and syntax-directed na-
ture of type-checking. We therefore consider for each construct whether
it should synthesize or analyze. It turns out that judgments of least up-
per bound and greatest lower bound are also no longer needed, providing
another benefit of the typing rules.

Γ+ ` e+ ↑ τ− e synthesizes τ
Γ+ ` e+ ↓ τ+ e checks against τ
τ+ v σ+ τ is a subtype of σ

The subtype judgment is the same as before; the other two look signifi-
cantly different from a pure synthesis judgment.

Generally, for constructors of a type we can propagate the type informa-
tion downward into the term, which means it should be used in the analysis
judgment e+ ↓ τ+. Conversely, the destructors generate a result of a smaller
type from a constituent of larger type and can therefore be used for synthe-
sis, propagating information upward.

We consider some examples. First, functions. A function constructor
will be checked, and application synthesizes, in accordance with the rea-
soning above.

Γ, x:τ1 ` e ↓ τ2

Γ ` fn (τ1, x.e) ↓ τ1 → τ2

Γ ` e1 ↑ τ2 → τ1 Γ ` e2 ↓ τ2

Γ ` apply (e1, e2) ↑ τ1

Careful checking against the desired modes is required. In particular,
the order of the premises in the rule for application is critical so that τ2 is
available to check e2. Note that unlike in the case of pure synthesis, no

LECTURE NOTES OCTOBER 30, 2003

Type Inference L19.3

subtype checking is required at the application rule. Instead, this must be
handled implicitly in the definition of Γ ` e2 ↓ τ2. In fact, we will need a
general rule that mediates between the two directions. This rule replaces
subsumption in the general system.

Γ ` e ↑ τ τ v σ

Γ ` e ↓ σ

Note that the modes are correct: Γ, e, and σ are known as inputs in
the conclusion. This means that Γ and e are known and τ is free, so the
first premise is mode-correct. This yields a τ as output (if successful). This
means we can now check if τ v σ, since both τ and σ are known.

For sums, the situation is slightly trickier, but not much. Again, the
constructors are checked against a given type.

Γ ` e ↓ τ1

Γ ` inl (e) ↓ τ1+τ2

Γ ` e ↓ τ2

Γ ` inr (e) ↓ τ1+τ2

For the destructor, we go from e ↑ τ1+τ2 to the two assumptions x1:τ1

and x2:τ2 in the two branches. These assumptions should be seen as syn-
thesis, variable synthesize their type from the declarations in Γ (which are
given).

Γ1, x:τ,Γ2 ` x ↑ τ

Γ ` e ↑ τ1+τ2 Γ, x:τ1 ` e1 ↓ σ Γ, x:τ2 ` e2 ↓ σ

Γ ` case (e, x1.e1, x2.e2) ↓ σ

Here, both branches are checked against the same type σ. This avoids
the need for computing the least upper bound, because one branch might
synthesize σ1, the other σ2, but they are checked separately against σ. So σ
must be an upper bound, but since we don’t have to synthesize a principal
type we never need to compute the least upper bound.

Finally, we consider recursive types. The simple idea that construc-
tors (here: roll) should be checked against a type and destructors (here:
unroll) should synthesize a type avoids any annotation on the type.

Γ ` e ↓ {µt.σ/t}σ
Γ ` roll(e) ↓ µt.σ

Γ ` e ↑ µt.σ

Γ ` unroll(e) ↑ {µt.σ/t}σ

This seems too good to be true, because so far we have not needed any
type information in the terms! However, there are still a multitude of situ-
ations where we need a type, namely where an expression requires a type

LECTURE NOTES OCTOBER 30, 2003

L19.4 Type Inference

to be checked, but we are in synthesis mode. Because of our general phi-
losophy, this happens precisely where a destructor is meets a constructors,
that is, where we can apply reduction in the operational semantics! For
example, in the expression

(fn x => x) 3

the function part of the application is required to synthesize, but fn x =>
x can only be checked.

The general solution is to allow a type annotation at the place where
synthesis and analysis judgments meet in the opposite direction from the
subsumption rule shown before. This means we require a new form of
syntax, e : τ , and this is the only place in an expression where a type needs
to occur. Then the example above becomes

(fn x => x : int -> int) 3

From this example it should be clear that bidirectional checking is not
necessarily advantageous over pure synthesis, at least with the simple strat-
egy we have employed so far.

Γ ` e ↓ τ

Γ ` (e : τ) ↑ τ

Looking back at our earlier example, we obtain:

nat = µt.1+t
zero = roll (inl (unitel)) : nat
succ = fn (x.roll (inr (x))) : nat → nat

One reason this seems to work reasonably well in practice that code
rarely contains explicit redexes. Programmers instead tend to turn them
into definitions, which then need to be annotated. So the rule of thumb is
that in typical programs one needs to annotate the outermost functions and
recursions, and the local functions and recursions, but not much else.

With these ideas in place, one can prove a general soundness and com-
pleteness theorem with respect to the original subtyping system. We will
not do so yet, but move on to discuss full type inference.

The idea here is that for a fragment of the language (which does not
include full recursive, existential, or universal types) we can in fact solve

LECTURE NOTES OCTOBER 30, 2003

Type Inference L19.5

the full inference problem where we are given an expression without any
type information and have to determine the set of all types, giving it some
finitary description. Consider the simple example

fn x => x

This expression clearly has type τ → τ for any type τ . We can express this
is ML by saying

fn x => x : ’a -> ’a

where ’a is a type variable that is (implicitly) universally quantified. In
MinML we might express this with

· ` fn (x.x) : ∀t. t → t

but we have to be careful to recognize that the universal type constructor
∀t has a different interpretation than before. This is because the expression
we assign such a type does not have explicit type abstractions and instan-
tiations as in our previous discussion of parametric polymorphism.

Ignoring the nature of quantification for now, the question is how we
actually carry out type inference (for the fragment where it is possible). We
repeat a few rules for type assignment, which is the name for a system where
we assign types to expressions containing no explicit types themselves.

We begin with functions and variables.

Γ1, x:τ,Γ2 ` x : τ

Γ, x:τ1 ` e : τ2

Γ ` fn (x.e) : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ1

No matter how we try to assign modes to the Γ ` e : τ judgment, these
three rules will not be well-moded at the same time. If we picture how
type inference should work in practice, it makes most sense to assume that
Γ and e are given, and we synthesize a type τ for e in context Γ. This works
for the variable rule, but breaks down for functions and for applications.

In order to turn this into a judgment that can be executed, we intro-
duce placeholders for types that we cannot determine at the time a rule is
executed. We then collect constraints on these placeholders in the form of
equations (or, more generally, inequalities). Any solution to the constraint
equations should yield a valid typing derivation, and any valid typing
derivation in the type assignment system should yield a system solution
to the constraints. We call this constraint-based type inference.

LECTURE NOTES OCTOBER 30, 2003

L19.6 Type Inference

We write this as a new judgment Γ ` e =⇒ τ | C, stating that in context
Γ the type inference on e yields type τ under constraints C. We only need
very simple constraints here since we do not consider subtyping or other
difficult constructs (∀, ∃, µ); much more complex system are imaginable
and have in fact been designed and used in practice.

Constraints C : : = · | τ .= σ,C

We write the placeholders as existential variables α, β, etc, although we will
not make the quantification over them explicit for now. Since existential
variables are just a new syntactic notation for types we consider them as
known during the constraint generation process.

Γ+ ` e+ =⇒ τ− | C− Generation on e wrt. Γ yields type τ under C
Revisiting the earlier typing rules, it is easy to see where constraints

need to be generated. Note that constraint generation should never fail,
even if the term is ill-typed. In that case, the constraints should just not
have a solution.

Γ1, x:τ,Γ2 ` x =⇒ τ | ·
Γ, x:α1 ` e =⇒ τ2 | C (α1 new)

Γ ` fn (x.e) =⇒ α1 → τ2 | C

Γ ` e1 =⇒ τ | C1 Γ ` e2 =⇒ τ2 | C2 (α1 new)
Γ ` apply (e1, e2) =⇒ α1 | C1, C2, τ

.= τ2 → α1

As examples, we have the following judgments

· ` fn (x.x) =⇒ α → α | ·
· ` apply (fn (x.x), num(3)) =⇒ α2 | α1 → α1

.= int → α2

· ` apply (num(3), num(3)) =⇒ α | int
.= int → α

· ` fn (x.apply (x, x)) =⇒ α1 → α2 | α1
.= α1 → α2

Note that the first two are well-typed, while the latter two are not. In the
earlier type system, this simply meant that no typing derivation existed.
Here, the collected constraints are unsatisfiable. For example, there is no
type α such that int

.= int → α. Similarly, there can be no types α1 and α2

such that α1
.= α1 → α2, because the right-hand side of the equation will

always be larger than the left-hand side.
It is very important to recognize the difference between the judgment

τ = σ (defined only by the reflexivity axiom τ = τ) and and equation
τ

.= σ which is a new syntactic construct. We now need a new judgment to
determine if a set of contraints is satisfiable, that is, if there is a substitution
for the existential variables that makes all the equations true.

LECTURE NOTES OCTOBER 30, 2003

Type Inference L19.7

The algorithm for solving the set of equations is written once again as
an inference system. We define a judgment

τ+ | C+ =⇒ τ ′− type τ under constraints C becomes τ ′

where the output τ ′ is the type τ after the solution to the constraints has
been applied. Note that if the constraints are inconsistent (that is, have no
solution), then the process of computing τ ′ will fail.

The first rule states that the empty set of constraints has a solution, with-
out any need for substitution for type variables.

τ | · =⇒ τ

The remaining rules break down the constraints into simpler constraint,
when read in the bottom-up direction until we either fail or reach the case
above. The first category of rules just eliminates basic types that are seen
as equal to themselves.

τ | C =⇒ τ ′

τ | int
.= int, C =⇒ τ ′

τ | C =⇒ τ ′

τ | bool
.= bool, C =⇒ τ ′

τ | C =⇒ τ ′

τ | α .= α, C =⇒ τ ′

There are similar rules to break down constructors. We only show the
case of function types and disjoint sums.

τ | σ1
.= ρ1, σ2

.= ρ2, C =⇒ τ ′

τ | σ1 → σ2
.= ρ1 → ρ2, C =⇒ τ ′

τ | σ1
.= ρ1, σ2

.= ρ2, C =⇒ τ ′

τ | σ1+σ2
.= ρ1+ρ2, C =⇒ τ ′

In both of these cases, one equation is replaced by two smaller ones,
eliminating the top-level type constructor. Similar rules apply to other type
constructors. We do not need any rules for mismatches, for example σ1 →
σ2

.= ρ1+ρ2. Such equations have no solution, which is modeled by simply
having no rules for them.

This reduces us to the case where at least one side of the first equation
in C is a type variable. In that case we know the variable must be equal
to the other side, and we can simply substitute. However, there is one
subtlety to consider. Consider the earlier example of fn x => x x . In the
generated constraints, we have an equation α1

.= α1 → α2 which has no
solution, because no matter what we substitute for α1, the right-hand side
will always be larger than the left-hand side. We therefore need a condition:
when processing an equation α

.= σ we can subsitute σ for α, but only if α
does not occur in σ.

LECTURE NOTES OCTOBER 30, 2003

L19.8 Type Inference

{σ/α}τ | {σ/α}C =⇒ τ ′ (α not in σ)
τ | α .= σ,C =⇒ τ ′

{σ/α}τ | {σ/α}C =⇒ τ ′ (α not in σ) (σ not a type variable)
τ | σ .= α, C =⇒ τ ′

Note that we do not substitute in the output τ ′: when this is finally
generated at the axiom τ | · =⇒ τ , all substitutions have already taken
place in τ . Therefore, all the rules are well-moded. If we have an equation
α1

.= α2, both rules may apply. In this case it does not really matter which
one we use, so we arbitrarily restrict the second rule so only the first one
applies. In order to understand these rules best, the reader should trace
their behavior in the examples above.

We say a substitution θ for some free type variables unifies σ
.= ρ if

{θ}σ = {θ}ρ. Note the use of the (ordinary!) type equality judgment in this
definition. We say a substitution θ unifies a collection of equations C if it
unifies every equation in C.

The following theorem states some properties of the algorithm above.

Theorem 1 (Correctness of Unification)
(i) If τ | C =⇒ τ ′ then there is a substitution for θ that unifies C and,

moreover, {θ}τ = τ ′.

(ii) If there is a substitution θ that unifies C, then for any τ there is a τ ′

such that τ | C =⇒ τ ′.

The proofs are not difficult, but they are tricky in the details. It remains
to relate constraint synthesis and solving to type assignment.

Theorem 2 (Correctness of Constraint-Based Inference)
(i) For every Γ and e such that all free variables of e are declared in Γ,

there exist a τ and C such that Γ ` e =⇒ τ | C.

(ii) If Γ ` e =⇒ τ | C and τ | C =⇒ τ ′, then Γ ` e : τ ′.

(iii) If Γ ` e : σ and Γ ` e =⇒ τ | C then τ | C =⇒ τ ′ and there is a
substitution θ such that {θ}τ ′ = σ.

Again, the proofs are not difficult on the language fragment we have
considered here, but they are tricky since they involve substitutions and
freshness conditions. In particular, we must choose different fresh variables

LECTURE NOTES OCTOBER 30, 2003

Type Inference L19.9

in different branches of a derivation that generates constraints, a condition
which is difficult to capture formally with the mechanisms presented here.

The main aspect of ML that the above analysis does not cover is the
behavior of let and top-level definitions. For example, the following is
well-typed:

let f = (fn x => x)
in

(f 3, f true)
end

The reason it is well-typed is after we infer a type α → α for the identity
function, we assign f a type which is equivalent to ∀t. t → t. It implicitly
instantiates t to int at the first occurrence and bool at the second occurrence.
In order to model this more formally, we need to introduce the notion of a
type scheme, which is a (non-polymorphic) type with a sequence of leading
universal quantifiers.

We define Gen(τ) for the result of quantifying over all free (existential)
type variables in τ and Inst(σ) for the result of instantiating all quantified
types in the scheme σ with some new (existential) type variables. For ex-
ample, Gen(α1 → α2 → α1) = ∀t1.∀t2. t1 → t2 → t1 and Inst(∀t1.∀t2. t1 →
t2 → t1) = α1 → α2 → α1.

When we see a top-level definition x = e when processing in the inter-
active loop or reading a file, we can then proceed as follows:

1. Compute Γ ` e =⇒ τ | C. This must always succeed.

2. Solve τ | C =⇒ τ ′. This may fail, in which case we report a type error.

3. Otherwise we can now (compile and) evaluate e yielding v.

4. Generalize σ = Gen(τ ′)

5. Add x:σ to the pervasive context for type-checking and x = v to the
pervasive environment for evaluation.

The constraint generation rule for variables now has to be modified to
allow instantiation of the type schemes that are assigned to variables in
the pervasive context. It is important that all generated existential type
variables are new and do not already occur in the context.

LECTURE NOTES OCTOBER 30, 2003

L19.10 Type Inference

Inst(σ) = τ

Γ1, x:σ,Γ2 ` x =⇒ τ | ·

Handling local let-definitions in a similar manner is more difficult to
describe, because it forces us to interleave unification (that is, constraint
solving) with type inference and generalization (the Gen operation), so we
will not formally describe it here.

A less realistic alternative that is easy to describe is to transform em-
bedded occurrences of let (e1, x.e2) to {e1/x}e2 for the purposes of type-
checking. This means for every occurrence of x in e2 we have a separate
copy of e1 that can be type-checked differently. If some provision is made
so that at least one copy of e1 survives, this is a sound and complete method
in the absence of effects. When we add effects, several copies of e1 will be-
have differently than a single copy, so we need to restrict e1 to be a value; if
e1 is not a value we leave the let and infer a single type for e1.

Unfortunately, constrained type inference of the style of this lecture
(and therefore in the style of Standard ML) breaks down under various
useful extensions of the type system, such as fully general universal, exis-
tential, and recursive types. Interestingly, subtyping by itself still works,
although the constraint solving algorithm is more complex. The Standard
ML language (which does not support subtyping) adopts various solutions
to retain (almost) full type inference. Universal types are restricted to oc-
cur in the prefix of a type, as described in this lecture. Existential types
are modeled only at the level of modules where signatures are available
to check the implementation against. This is unavoidable, since existen-
tial types provide an mechanism for data abstraction that is incompatible
with full inference: it could not possibly guess what to hold abstract and
what not. Recursive types can be defined only via the datatype construct
so that they remain abstract and don’t cause any deep problems in type
reconstruction. Furthermore, datatype constructors and pattern matching
expressions are compiled into the proper roll and unroll expressions after
type inference.

LECTURE NOTES OCTOBER 30, 2003

