Lecture Notes on
Storage Management

15-312: Foundations of Programming Languages
Daniel Spoonhower

Lecture 18
October 28, 2003

In our discussion of mutable storage, a question was raised: if we al-
locate a new storage cell for each ref expression we encounter, when do
we release these storage cells? As we will discover today, a similar ques-
tion will be raised when we reconsider our implementation of pairs and
closures.

In designing the E machine, our goal was to describe a machine that
more accurately modeled the way that programs are executed on real hard-
ware (for example, by using environments rather than substitution). How-
ever, most real machines will treat small values (such as integers) differently
from large values (such as pairs and closures). Small values may be stored
in registers or on the stack, while larger values, such as pairs and closures,
must be allocated from the heap. While the storage associated with regis-
ters and the stack can be reclaimed at the end of a function invocation or
lexical scope, there is no “obvious” program point at which we can reuse
the storage allocated from the heap.

Clearly, for programs that run for hours, days, or weeks, we must pe-
riodically reclaim any unused storage. One possible solution is to require
the programmer to explicitly manage storage, as one might in languages
such as C or C++. However, doing so not only exposes the programmer to
a host of new programming errors, but also makes it exceedingly difficult
to prove properties of languages such as preservation.

An alternative approach is to require that the implementation of the
language manage storage for the programmer. Automatic memory man-
agement or garbage collection can be found in most modern languages, in-
cluding Java, C#, Haskell, and SML.

LECTURE NOTES OCTOBER 28, 2003

L18.2 Storage Management

In this lecture, we will modify and extend the semantics of the E ma-
chine to account for the differences between small and large values and
include new transition rules for automatically reclaiming unused storage.

1 Definitions

1.1 The A Machine

In order to extend the semantics of the E machine with transition rules for
automatic storage management, we must enrich our model of expressions,
values, and program states. For the purposes of our discussion today, we
will use a version of MinML that includes integers, booleans, functions, and
pairs. As we eluded to above, in order to provide a framework for au-
tomatic storage management, the A machine will distinguish small values
from large values, as follows.

(small values) v == num(n)|true |false | unitel
(large values) V== ((m;e) | pair (vi,v2)

Closures and pairs (i.e. large values) will not be stored directly in the stack
or environment; instead we will use locations to refer to them indirectly. As
in our formulation of references, locations (denoted syntactically as /) will
not appear in the concrete syntax.

(locations) l
(expressions) e == ... |l
(small values) v == ... |l

We will also maintain a finite mapping from locations to large values,
called a heap. We allow locations to appear in the stack and environment,
but whenever we are forced to compute with a pair or closure, we must
look-up the actual value in the heap.!

(heaps) H == -|H[l=V]

(environments) n == -|n,x="v

(states) s u= Hlk|n>e
| H|k|n<uw

IThe heap is similar in notion to the store as it appeared in our discussion of mutable
references; however, while the store may be updated by assignment, the heap is immutable
from the programmer’s perspective.

LECTURE NOTES OCTOBER 28, 2003

Storage Management L18.3

(Frames f and stacks k are given as before but with the replacement of
small values for values.)

Since the A machine does not allow small values to be maintained in or
returned to the stack, in states where we previously returned large values,
we must instead create and look-up locations. For example, pairs are now
introduced and eliminated according to the following rules.

H | kr>pair (v,0)|n <wvg >, H[l =pair (vi,v)] | k|n<l
H[l = pair (v1,v2)] | kefst (O) | n <l H[l = pair (vi,v2)] | k|n<wv

We will now return to the question, when can values safely be removed
from the heap??

1.2 Garbage and Collection

We would like to state that “the collector does not change the behavior of
the program.” That is, garbage should be exactly those parts of the program
state that do not affect the result of evaluation. Consider the following
program,

(let p = (3, 4) in
let n = fst p in
[a] fn x:iint => n
end
end [b))7 |[c;

If we allocate p as described above, when it is safe to free it? At point [a]?
[b]? [c]? We would like to release the storage associated with a location
as soon as it becomes unnecessary to the correct execution of the program.
As it turns out, we will not be able to determine exactly when a particular
location is no longer necessary: doing so is undecidable!

Instead we will make a conservative® assumption about whether or not
a location is necessary: we will assume that any location that is reachable
may be necessary. To do so, we will need to enumerate the free locations of a

*Though if we recall our original question with respect to references, we should note
that the ideas described here can also be extended to encompass mutable storage.

3“Conservative” is also, somewhat erroneously, used to describe garbage collection in
the presence of incomplete knowledge of the structure of the stack or heap (e.g. as in an
implementation of C).

LECTURE NOTES OCTOBER 28, 2003

L18.4 Storage Management

heap, stack, environment or value. (For the moment will we use the syntax
FL() to informally refer to these free locations; we will be more precise
later.)

Given this notion of garbage, collection is exactly the process of remov-
ing garbage from the heap. During our discussion of mutable storage,
something akin to the following transition rule was suggested.

FL(H, k,5) =0 .
HUH' |k|n>e—aH|k|n>e"

Recall that this rule was deficient in its inability to reclaim (unreachable)
cycles in H. For the time being, however, we will tackle a larger problem:
how can we separate H from H'?

2 Semi-space Collection

Consider the following heap and program state.

L[V |
Iy | pair (6,[2)
la | pair (7,8)
I3 | pair (9,1s)
Iy pair (lg,lﬁ)
ls | pair (11,11)
l¢ | pair (9,10)

.| - |z=1y>snd(snd(fst (z)))

What parts of the heap are garbage? How might we (algorithmically) de-
termine this?

Below, we describe a collection algorithm that determines which values
are reachable by moving those values that are reachable into the to-space H;
and then discarding any values that remain behind in the from-space H;.

1. Initialize Hy = H, S = FLS(k) UFLE(n), and Hy = (.

2. While S is not empty, repeat:

2.1 Remove some location [from S.

2.2 If | € dom(H;) then continue,

LECTURE NOTES OCTOBER 28, 2003

Storage Management L18.5

2.3 Otherwise, remove the mapping [= V from Hy,
Let Ht = Ht[l = V],
and S = SUFLLV(V)

3. Let H = Ht.
Where by FLLV, we mean the free locations of a large value:

FLLV(pair (vi,v9)) = FLSV(v1)UFLSV(v3)
FLLV({(n;€))) = FLE(n)

Where FLSV(v) and FLE(n) are defined in the obvious way. Because this
method of copying divides the heap into two halves, it is known as semi-
space copying collection.

In order to get a better feel for the decisions that go into the imple-
mentation of a garbage collector, we might consider a machine model that
captures the sizes of large values, their representation in the heap, and the
adjacency of one heap location to another. Doing so will help us to under-
stand the cost of statements such as “Let H; = H[l = V].” Specifically, we
will be required to understand how this distinction between H; and H; is
made. A model of this level of sophistication, however, is beyond the scope
of these notes.

2.1 The G Machine

So that we are better equipped to reason about our copying algorithm, we
will introduce yet another model of computation, the G machine. This ma-
chine will model the step-by-step execution of the garbage collector. Since
it will model a semi-space copying collector, we will the following syntax
to describe its state.

(Hf7S7 Ht)

On the left we have the from-space, in the center the scan set and on the right,
the to-space. We can then rewrite the algorithm above using the following
inference rules describing the transitions of the G machine.

(H I = V1, S Ui}, Hy) = (H;, S UFLLV(V), Hijl = V]) <Y

Discard

(Hp, SU{l}, Hi[l = V) =g (Hy, S, Hi[l = V)

LECTURE NOTES OCTOBER 28, 2003

L18.6 Storage Management

Notice that these rules correspond to two cases in the body of the loop
above. Finally, we can show how to invoke the G machine, and give a
more precise definition to Collect, as it appears below.

(H, FLS(K) U FLE(n), 0) — (H",0, ')
H|k|n>e—,H |k|n>e

Collect

Given our definition of a garbage collector, we might then prove not only
that the algorithm terminates, but that it is safe, and it preserves the mean-
ing of programs according to our previous definitions of MinML. The first
proof is relatively straightforward; the latter two follow in a manner sim-
ilar to our proofs for the E machine (with the addition of typing rules for
the heap H).

LECTURE NOTES OCTOBER 28, 2003

