
Lecture Notes on
Type Checking

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 17
October 23, 2003

At the beginning of this class we were quite careful to guarantee that
every well-typed expression has a unique type. We relaxed our vigilance a
bit when we came to constructs such as universal types, existential types,
and recursive types, essentially because the question of unique typing be-
came less obvious. In this lecture we first consider how to systematically
design the language so that every expression has a unique type, and how
this statement has to be modified when we consider subtyping. This kind
of language will turn out to be impractical, so we consider a more relaxed
notion of type checking, which is nonetheless quite a bit removed from the
type inference offered by ML (which is left for another lecture).

It is convenient to think of type checking as the process of bottom-up
construction of a typing derivation. In that way, we can interpret a set
of typing rules as describing an algorithm, although some restriction on
the rules will be necessary (not every set of rules naturally describes an
algorithm). This harkens back to an earlier lecture where we considered
parsing as the bottom-up construction of a derivation. The requirement we
put on the rules is that they be mode correct. We do not fully formalize this
notion here, but only give a detailed description.

The idea behind modes is to label the constituents of a judgment as
either input or output. For example, the typing judgment Γ ` e : τ should
be such that Γ and e are input and τ is output (if it exists). We then have to
check each rule to see if the annotations as input and output are consistent
with a bottom-up reading of the rule. This proceeds as follows, assuming at
first a single-premise inference rule. We refer to constituents of a judgment
as either known or free during a particular stage of proof construction.

LECTURE NOTES OCTOBER 23, 2003



L17.2 Type Checking

1. Assume each input constituent of the conclusion is known.

2. Show that each input constituent of the premise is known, and each
output constituent of the premise is still free (unknown).

3. Assume that each output constituent of the premise is known.

4. Show that each output constituent of the conclusion is known.

Given the intuitive interpretation of an algorithm as proceeding by bottom-
up proof construction, this method of checking should make some sense
intuitively. As an example, consider the rule for functions.

Γ, x:τ1 ` e : τ2

Γ ` fn (τ1, x.e) : τ1 → τ2
FnTyp

with the mode
Γ+ ` e+ : τ−

where we have marked inputs with + and outputs with - .

1. We assume that Γ, τ1, and x.e are known.

2. We show that Γ, x:τ1 and e are known and τ2 is free, all of which
follow from assumptions made in step 1.

3. We assume that τ2 is also known.

4. We show that τ1 and τ2 are known, which follows from the assump-
tions made in steps 1 and 3.

Consequently our rule for function types is mode correct with respect
to the given mode. If we had omitted the type τ1 in the syntax for function
abstraction, then the rule would not be mode correct: we would fail in step
2 because Γ, x:τ1 is not known because τ1 is not known.

For inference rules with multiple premises we analyze the premises
from left to right. For each premise we first show that all inputs are known
and outputs are free, then assume all outputs are known before checking
the next premise. After the last premise has been checked we still have
to show that the outputs of the conclusion are all known by now. As an
example, consider the rule for function application.

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

Applying our technique, checking actually fails:

LECTURE NOTES OCTOBER 23, 2003



Type Checking L17.3

1. We assume that Γ, e1 and e2 are known.

2. We show that Γ and e1 are known and τ2 and τ are free, all which
holds.

3. We assume that τ2 and τ are known.

4. We show that Γ and e2 are known and τ2 is free. This latter check
fails, because τ2 is known at this point.

Consequently have to rewrite the rule slightly. This rewrite should be
obvious if you have implemented this rule in ML: we actually first generate
a type τ ′2 for e2 and then compare it to the domain type τ2 of e1.

Γ ` e1 : τ2 → τ Γ ` e2 : τ ′2 τ ′2 = τ2

Γ ` apply (e1, e2) : τ
AppTyp

We consider all constitutents of the equality check to be input (τ+ = σ+).
This now checks correctly as follows:

1. We assume that Γ, e1 and e2 are known.

2. We show that Γ and e1 are known and τ2 and τ is free, all which holds.

3. We assume that τ2 and τ are known.

4. We show that Γ and e2 are known and τ ′2 is free, all which holds.

5. We assume that τ ′2 is known.

6. We show that τ2 and τ ′2 are known, which is true.

7. We assume the outputs of the equality to be known, but there are no
output so there are no new assumption.

8. We show that τ (output in the conclusion) is known, which is true.

If we want to be pedantic, we can define the type equality judgment
τ = σ by a single rule of reflexivity.

τ = τ Refl

This is clearly mode correct for the mode τ+ = σ+.
Now we can examine other language constructs and typing rules from

the same perspective to arrive at a bottom-up inference system for type

LECTURE NOTES OCTOBER 23, 2003



L17.4 Type Checking

checking. To be more precise, we refer to the mode Γ+ ` e+ : τ− as type
synthesis, because a given expression in a given context generates a type (if
it has one). The stronger property we want to enforce (for now) is that of
unique type synthesis, that is, each well-typed expression has a unique type.
The proof of uniqueness if left as an exercise.

We now show a few rules, where each expression construct is annotated
with enough types to guarantee mode correctness, but no more.

Γ ` e1 : τ1

Γ ` inl (τ2, e1) : τ1 + τ2

Γ ` e2 : τ2

Γ ` inr (τ1, e2) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x1:τ1 ` e1 : σ Γ, x2:τ2 ` e2 : σ′ σ = σ′

Γ ` case (e, x1.e1, x2.e2) : σ

Note that we check that both branches of a case -expression synthesize
the same type, and how the left and right injection need to include precisely
the information that is not available from the expression we inject.

One can see from the sum types, that guaranteeing unique type syn-
thesis could lead to quite verbose programs. The trickiest cases have to do
with constructs that bind types. We consider existential types, but related
observations apply to universal and recursive types. Recall the constructor
rule from an earlier lecture on data abstraction:

Γ ` σ type Γ ` e : {σ/t}τ
Γ ` pack (σ, e) : ∃t.τ

We apply our mode checking algorithm to see if we can read this rule
as part of an algorithm. For this we assign the mode Γ+ ` σ+ type to the
verification that types are well-formed.

1. Assume that Γ, e and σ are known.

2. Show that Γ and σ are known, which is true.

3. Show that Γ and e are known, and {σ/t}τ is free. The former holds,
but the latter does not.

So we rewrite the rule:

Γ ` σ type Γ ` e : τ ′ τ ′ = {σ/t}τ
Γ ` pack (σ, e) : ∃t.τ

Now we can proceed one step further, but we still don’t know τ , and we
cannot determine it from the constraints given here. For example pack (int, 3) :

LECTURE NOTES OCTOBER 23, 2003



Type Checking L17.5

∃t.t but also pack (int, 3) : ∃t.int. Concretely, t.τ is unknown when we reach
the equality test.

In the end this means we need to put not only σ but also t.τ into the
syntax of a pack expression.

Γ ` σ type Γ ` e : τ ′ τ ′ = {σ/t}τ
Γ ` pack (σ, t.τ, e) : ∃t.τ

At this point everything is well-moded, because t.τ and σ determine {σ/t}τ .
But it has become quite verbose because t.τ can be large. If we have nested
existentials of the form ∃t.∃t′.τ , this is particularly troublesome because τ
must be repeated twice: once in the type of outer pack expression, then in
the inner pack expression.

Before describing a general solution to this problem, we consider how
to add subtyping. Assume we have int ≤ float, reflexivity, transitivity, and
the usual co- and contravariant rules for type constructors. Recall also the
rule of subsumption:

Γ ` e : τ τ ≤ σ
Γ ` e : σ

It should be immediately clear that an expression cannot possibly synthe-
size a unique type, because 3 : int but also 3 : float. Instead, we have to
design a system where an expression e in a context Γ synthesizes a principal
type.

Principal Type. We say τ is the principal type of e in context Γ if
Γ ` e : τ and for every type σ such that Γ ` e : σ we have τ ≤ σ.

The important property of a principal type τ of an expression e is that
we can recover all other types of e as supertypes of τ .

Some languages have the property that they satisfy this principle: every
expression does indeed have a principal type. If that is the case, the goal is
to find a formulation of the typing rules such that every expression synthe-
sizes its principal type, or fails if no type exists. If we have, in addition, a
means for checking the subtype relation τ ≤ σ, then we can effectively test
if Γ ` e : σ for any given Γ, e and σ: we compute the principal type τ for
e in Γ and then check if τ ≤ σ. An alternative will be discussed in a future
lecture.

Let us first tackle the problem of deciding of τ ≤ σ, assuming both τ
and σ are inputs. Unfortunately, the rule of transitivity

τ ≤ σ σ ≤ ρ
τ ≤ ρ Trans

LECTURE NOTES OCTOBER 23, 2003



L17.6 Type Checking

is not well-moded: σ is an input in the premise, but unknown. So we have
to design a set of rules that get by without the rule of transitivity. We write
this new judgment as τ v σ. The idea is to eliminate transitivity and reflex-
ivity and just have decomposition rules except for the primitive coercion
from int to float. We will not write the coercions explicitly here for the sake
of brevity.

int v float

int v int float v float bool v bool

σ1 v τ1 τ2 v σ2

τ1 → τ2 v σ1 → σ2

τ1 v σ1 τ2 v σ2

τ1 × τ2 v σ1 × σ2 1 v 1

τ1 v σ1 τ2 v σ2

τ1 + τ2 v σ1 + σ2 0 v 0

Note that these are well-moded with τ+ v σ+. We have ignored here uni-
versal, existential and recursive types: adding them requires some poten-
tially difficult choices that we would like to avoid for now.

Now we need to show that the algorithmic formulation of subtyping
(τ v σ) coincides with the original specification of subtyping (τ ≤ σ). We
do this in several steps.

Lemma 1 (Soundness of algorithmic subtyping)
If τ v σ then τ ≤ σ.

Proof: By straightforward induction on the structure of the given deriva-
tion. �

Next we need two properties of algorithmic subtyping. Note that these
arise from the attempt to prove the completeness of algorithmic subtyping,
but must nonetheless be presented first.

Lemma 2 (Reflexivity and transitivity of algorithmic subtyping)
(i) τ v τ for any τ .

(ii) If τ v σ and σ v ρ then τ v ρ.

LECTURE NOTES OCTOBER 23, 2003



Type Checking L17.7

Proof: For (i), by induction on the structure of τ .
For (ii), by simultaneous induction on the structure of the two given

derivations D of τ v σ and E of σ v ρ. We show one representative cases;
all others are similar or simpler.

Case: D =
σ1 v τ1 τ2 v σ2

τ1 → τ2 v σ1 → σ2
and E =

ρ1 v σ1 σ2 v ρ2

σ1 → σ2 v ρ1 → ρ2
. Then

ρ1 v τ1 By i.h.
τ2 v ρ2 By i.h.
τ1 → τ2 v ρ1 → ρ2 By rule

�

Now we are ready to prove the completeness of algorithmic subtyping.

Lemma 3 (Completeness of algorithmic subtyping)
If τ ≤ σ then τ v σ.

Proof: By straightforward induction over the derivation of τ ≤ σ. For
reflexivity, we apply Lemma 2, part (i). For transitivity we appeal to the
induction hypothesis and apply Lemma 2, part (ii). In all other cases we
just apply the induction hypothesis and then the corresponding algorith-
mic subtyping rule. �

Summarizing the results above we obtain:

Theorem 4 (Correctness of algorithmic subtyping)
τ ≤ σ if and only if τ v σ.

Now we can write out the rules that synthesize principal types. We
write this new judgment as Γ ` e ↑ τ with mode Γ+ ` e+ ↑ τ−. The idea
is to eliminate the rule of subsumption entirely. To compensate, we replace
uses of the equality judgment τ = σ by appropriate uses of algorithmic
subtyping. It is not obvious at this point that this should work, but we will
see in Theorem 7 that it does. We only show a selection of the rules here.

LECTURE NOTES OCTOBER 23, 2003



L17.8 Type Checking

x:τ in Γ
Γ ` x ↑ τ

Var

Γ, x:τ1 ` e ↑ τ2

Γ ` fn (τ1, x.e) ↑ τ1 → τ2
FnTyp

Γ ` e1 ↑ τ2 → τ Γ ` e2 ↑ τ ′2 τ ′2 v τ2

Γ ` apply (e1, e2) ↑ τ
AppTyp

Γ ` e1 ↑ τ1 Γ ` e2 ↑ τ2

Γ ` pair (e1, e2) ↑ τ1 × τ2

Γ ` e ↑ τ1 × τ2

Γ ` fst (e) ↑ τ1

Γ ` e ↑ τ1 × τ2

Γ ` snd (e) ↑ τ2

For sums, we have no problem with the injections, because they carry
some type information.

Γ ` e1 ↑ τ1

Γ ` inl (τ2, e1) ↑ τ1 + τ2

Γ ` e2 ↑ τ2

Γ ` inr (τ1, e2) ↑ τ1 + τ2

However, the case constructs creates a problem, because the two branches
may synthesize principal types σ1 and σ2, but they may not be the same or
even comparable (neither σ1 ≤ σ2 or σ2 ≤ σ1 may hold).

Γ ` e ↑ τ1 + τ2 Γ, x1:τ1 ` e1 ↑ σ1 Γ, x2:τ2 ` e2 ↑ σ2

Γ ` case (e, x1.e1, x2.e2) ↑ σ
?

So the question is how to compute σ from σ1 or σ2 or fail. What we need
is the smallest upper bound of σ1 and σ2. In other words, we need a type σ
such that σ1 ≤ σ, σ2 ≤ σ, and for any other ρ such such σ1 ≤ ρ and σ2 ≤ ρ
we have ρ ≤ σ.

Fortunately, this is not difficult in our particular system. In real lan-
guages, however, this can be a real problem. For example, verification al-
gorithms for Java bytecode have to deal with this problem, with a some-
what ad hoc solution.1 The general solution is to introduce intersection
types, something we may discuss in a future lecture.

1If I remember this correctly.

LECTURE NOTES OCTOBER 23, 2003



Type Checking L17.9

We define the computation of the least upper bound as a 3-place judg-
ment, σ1 t σ2 ⇒ σ. It is defined by the following rules, which have mode
σ+

1 t σ+
2 ⇒ σ−. Unfortunately, the contra-variance of the function type

requires us to also define the greatest lower bound of two types, written
σ1 u σ2 ⇒ σ, with mode σ+

1 u σ+
2 ⇒ σ−.

int t int ⇒ int int t float ⇒ float float t int ⇒ float float t float ⇒ float

bool t bool ⇒ bool 1 t 1 ⇒ 1 0 t 0 ⇒ 0

τ1 u σ1 ⇒ ρ1 τ2 t σ2 ⇒ ρ2

τ1 → τ2 t σ1 → σ2 ⇒ ρ1 → ρ2

τ1 t σ1 ⇒ ρ1 τ2 t σ2 ⇒ ρ2

τ1 × τ2 t σ1 × σ2 ⇒ ρ1 × ρ2

τ1 t σ1 ⇒ ρ1 τ2 t σ2 ⇒ ρ2

τ1 + τ2 t σ1 + σ2 ⇒ ρ1 + ρ2

int u int ⇒ int int u float ⇒ int float u int ⇒ int float u float ⇒ float

bool u bool ⇒ bool 1 u 1 ⇒ 1 0 u 0 ⇒ 0

τ1 t σ1 ⇒ ρ1 τ2 u σ2 ⇒ ρ2

τ1 → τ2 u σ1 → σ2 ⇒ ρ1 → ρ2

τ1 u σ1 ⇒ ρ1 τ2 u σ2 ⇒ ρ2

τ1 × τ2 u σ1 × σ2 ⇒ ρ1 × ρ2

τ1 u σ1 ⇒ ρ1 τ2 u σ2 ⇒ ρ2

τ1 + τ2 u σ1 + σ2 ⇒ ρ1 + ρ2

It is straightforward, but tedious to verify that these judgments do in-
deed define the least upper bound and greatest lower bound of two types
and fail if no bound exists. Then the rule for case -expressions becomes:

Γ ` e ↑ τ1 + τ2 Γ, x1:τ1 ` e1 ↑ σ1 Γ, x2:τ2 ` e2 ↑ σ2 σ1 t σ2 ⇒ σ

Γ ` case (e, x1.e1, x2.e2) ↑ σ

LECTURE NOTES OCTOBER 23, 2003



L17.10 Type Checking

Now we can formulate the soundness and completeness theorem for
the synthesis of principal types.

Lemma 5 (Soundess of principal type synthesis)
If Γ ` e ↑ τ then Γ ` e : τ

Proof: By straightforward induction on the given derivation, using the
soundness of algorithmic subtyping and the fact that if σ1 u σ2 ⇒ σ then
σ1 ≤ σ and σ2 ≤ σ. �

The completeness is more difficult to prove.

Lemma 6 (Completeness of principal type synthesis)
If Γ ` e : τ then there exists a σ such that σ v τ and Γ ` e ↑ σ.

Proof: By induction on the derivation of Γ ` e : τ , using previous lemmas
and inversion on algorithmic subtyping. We show only three cases.

Case:
Γ ` e : τ ′ τ ′ ≤ τ

Γ ` e : τ
.

Γ ` e ↑ σ′ and σ′ v τ ′ for some σ′ By i.h.
τ ′ v τ By completeness of v (Lemma 3)
σ′ v τ By transitivity of v (Lemma 2(ii))

Case:
Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
.

Γ ` e1 ↑ σ1 and σ1 v τ2 → τ for some σ1 By i.h.
σ1 = σ′

2 → σ for some σ′
2 and σ where τ2 ≤ σ′

2 and σ ≤ τ By inversion
Γ ` e1 ↑ σ′

2 → σ By equality
Γ ` e2 ↑ σ2 and σ2 v τ2 By i.h.
σ2 v σ′

2 By transitivity of v (Lemma 2(ii))
Γ ` apply (e1, e2) ↑ σ By rule
σ ≤ τ Copied from above

Case:
Γ, x:τ1 ` e1 : τ2

Γ ` fn (τ1, x.e2) : τ1 → τ2
.

Γ, x:τ1 ` e1 ↑ σ2 and σ2 v τ2 for some σ2 By i.h.
Γ ` fn (τ1, x.e2) ↑ τ1 → σ2 By rule
τ1 v τ1 By reflexivity of v (Lemma 2(i))
τ1 → σ2 v τ1 → τ2 By rule

LECTURE NOTES OCTOBER 23, 2003



Type Checking L17.11

�

Now we can put theses together into a correctness theorem for principal
type synthesis.

Theorem 7 (Correctness of principal type synthesis)
(i) If Γ ` e ↑ τ then Γ ` e : τ .

(ii) If Γ ` e : τ then Γ ` e ↑ σ for some σ with σ ≤ τ .

Proof: From the previous two lemmas, using soundess of algorithmic sub-
typing in part (ii). �

LECTURE NOTES OCTOBER 23, 2003


