
Lecture Notes on
Monads

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 15
October 14, 2003

The way we have extended MinML with mutable storage has several
drawbacks. The principal difficulty with programming with effects is that
the type system does not track them properly. So when we examine the
type of a function τ1 → τ2 we cannot tell if the function simply returns a
value of type τ2 or if it could also have an effect. This complicates reasoning
about programs and their correctness tremendously.

An alternative is to try to express in the type system that certain func-
tions may have effects, while others do not have effects. This is the purpose
of monads that are quite popular in the Haskell community. Haskell is a
lazy1 functional language in which all effects are isolated in a monad. We
will see that monadic programming has its own drawbacks. The last word
in the debate on how to integrate imperative and pure functional program-
ming has not yet been spoken.

We introduce monads in two steps. The first step is the generic frame-
work, which can be instantiated to different kinds of effects. In this lecture
we introduce mutable storage as an effect, just as we did in the previous
lecture on mutable storage in ML. In Assignment 5 you are asked to in-
stantiate the monadic framework instead by defining a simple semantics of
input and output.

In the generic framework, we extend MinML by adding a new syntactic
category of monadic expressions, denoted by m. Correspondingly, there is a
new typing judgment

Γ ` m ÷ τ

1Lazy here means call-by-name with memoization of the suspension.

LECTURE NOTES OCTOBER 14, 2003



L15.2 Monads

expressing that the monadic expression m has type τ in context Γ. We think
of a monadic expression as one whose evaluation returns not only a value
of type τ , but also has an effect. We introduce this separate category so that
the ordinary expressions we have used so far can remain pure, that is, free
of effects.

Any particular use of the monadic framework will add particular new
monadic expressions, and also possibly new pure expressions. But first
the constructs that are independent of the kind of effect we want to con-
sider. The first principle is that a pure expression e can be considered as a
monadic expression [e] which happens to have no effect.

Γ ` e : τ
Γ ` [e] ÷ τ

The notation [e] should not be confused with the concrete syntax for lists in
ML.

The second idea is that we can quote a monadic expression and thereby
turn it into a pure expression. It has no effects because the monadic expres-
sion will not be executed. We write the quotation operator as val(m).

Γ ` m ÷ τ
Γ ` val(m) : ©τ val(m) value

Finally, we must be able to unwrap and thereby actually execute a quoted
monadic expression. However, we cannot do this anywhere in a pure ex-
pression, because evaluating such a supposedly pure expression would
then have an effect. Instead, we can only do this if we are within an ex-
plicit sequence of monadic expressions! This yields the following construct

Γ ` e : ©τ Γ, x:τ ` m ÷ σ

Γ ` let valx = e inm end ÷ σ

Note that m and let valx = e inm end are monadic expressions (and there-
fore may have an effect), while e is a pure expression of monadic type. We
think of the effects are being staged as follows:

(1) We evaluate e which should yield a value val(m′).

(2) We execute the monadic expression m′, which will have some effects
but also return a value in the form [v].

(3) Substitute v for x in m and then execute the resulting monadic expres-
sion.

LECTURE NOTES OCTOBER 14, 2003



Monads L15.3

In order to specify this properly we need to be able to describe the effect
that may be engendered by executing a monadic expression. For this we
introduce the concept of worlds w that encapsulate all state that may be
changed by an effect. In the case of the storage monads, this will be the
memory M . In the case of the I/O monad, this will be input and output
streams.

The judgment for executing monadic expressions then has the form

〈w,m〉 7→ 〈w′,m′〉

where the world changes from w to w′ and the expression steps from m to
m′. According to the considerations above, we obtain the following rules.

e 7→ e′

〈w, [e]〉 7→ 〈w, [e′]〉

We can see that the transition judgment on ordinary expressions looks the
same as before and that it can have no effect. Contrast this with the sit-
uation in ML from the previous lecture where we needed to change every
transition rule to account for possible effects.

The next sequence of three rules implement items (1), (2), and (3) above.

e 7→ e′

〈w, let valx = e inm end〉 7→ 〈w, let valx = e′ inm end〉

〈w,m1〉 7→ 〈w′,m′
1〉

〈w, let valx = val(m1) inm end〉 7→ 〈w′, let valx = val(m′
1) inm end〉

〈w, let valx = val([v]) inm end〉 7→ 〈w, {v/x}m〉

Note that the substitution in the last rule is appropriate. The substitution
principle for pure values into monadic expressions is straightforward pre-
cisely because v is cannot have effects.

We will not state here the generic forms of the preservation and progress
theorems. They are somewhat trivialized because our language, while de-
signed with effects in mind, does not yet have any actual effects.

In order to define the monad for mutable storage we introduce a new
form of type, τ ref and three new forms of monadic expressions, namely
ref(e), e1 := e2 and !e. In addition we need one new form of pure expres-
sion, namely locations l which are declared in a store typing Λ with their
type. Recall the form of store typings.

Store Typings Λ : := · | Λ, l:τ

LECTURE NOTES OCTOBER 14, 2003



L15.4 Monads

Locations can be pure because creating, assigning, or dereferencing them
is an effect, and the types prevent any other operations on them. The store
typing must now be taking into account when checking expressions that
are created a runtime. They are, however, not needed for compile-time
checking because the program itself, before it is started, cannot directly
refer to locations. We just uniformly add “Λ;” to all the typing judgments—
they are simply additional hypotheses of a slightly different form than what
is recorded in Γ.

Λ; Γ ` e : τ

Λ; Γ ` ref(e) ÷ τ ref

Λ; Γ ` e1 : τ ref Λ; Γ ` e2 : τ

Λ; Γ ` e1 := e2 ÷ τ

Λ; Γ ` e : τ ref

Λ; Γ ` !e ÷ τ
l:τ in Λ

Λ; Γ ` l : τ ref

Note that the constituents of the new monadic expressions are pure ex-
pressions. This guarantees that they cannot have effects: all effects must be
explicitly sequenced using the letval form.

In order to describe the operational semantics we need to make the
worlds explicit. In this case a world consists simply of the current mem-
ory M . Recall the form of stores.

Stores M : : = · | M, l=v

Now the additional rules for new expressions are analogous to those from
the previous lecture.

e 7→ e′

〈M, ref(e)〉 7→ 〈M, ref(e′)〉
v value

〈M, ref(v)〉 7→ 〈(M, l=v), [l]〉 l value

e1 7→ e′1
〈M, e1 := e2〉 7→ 〈M, e′1 := e2〉

v1 value e2 7→ e′2
〈M,v1 := e2〉 7→ 〈M,v1 := e′2〉

M = (M1, l=v1,M2) and M ′ = (M1, l=v2,M2)
〈M, l := v2〉 7→ 〈M ′, [v2]〉

e 7→ e′

〈M, !e〉 7→ 〈M, !e′〉
M = (M1, l=v,M2)
〈M, !l〉 7→ 〈M, [v]〉

The progress and type preservation theorems now need to be extended
to cover both pure and monadic expressions. We also seen to verify that a
store satisfies a store typing. Recall the rules for the judgment Λ0; · ` M : Λ.

Λ0; · ` (·) : (·)
Λ0; · ` M : Λ Λ0; · ` v : τ v value

Λ0; · ` (M, l=v) : (Λ, l:τ)

LECTURE NOTES OCTOBER 14, 2003



Monads L15.5

We can now formulate the appropriate generalizations of type preservation
and progress. We write Λ′ ≥ Λ if Λ′ is an extension of the store typing Λ
with some additional locations. In this particular case, for a single step, we
need at most one new location.

Theorem 1 (Type Preservation)
(1) If Λ; · ` e : τ and e 7→ e′ then Λ; · ` e′ : τ .

(2) If Λ; · ` m ÷ τ and Λ; · ` M : Λ and 〈M,m〉 7→ 〈M ′,m′〉 then for some
Λ′ ≥ Λ and memory M ′ we have Λ′; · ` m′ ÷ τ and Λ′; · ` M ′ : Λ′.

Proof: By induction on the derivation of the computation judgment, ap-
plying inversion on the typing assumptions. �

Theorem 2 (Progress)
(1) If Λ; · ` e : τ then either

(i) e value, or

(ii) e 7→ e′ for some e′.

(2) If Λ; · ` m ÷ τ and Λ; · ` M : Λ then either

(i) m = [v] for some v value, or

(ii) 〈M,m〉 7→ 〈M ′,m′〉 for some M ′ and m′.

Proof: By induction on the derivation of the typing judgment, analyzing
all possible cases. �

As an example consider a function inc : int ref → ©int which takes a
location as an argument, increments it, and returns the incremented value.
The return type has to be protected by the monadic type, since the function
has an effect.

inc : int ref → ©int
= λr.val(let val(x1) = val(!r) in

let val(x2) = val(r := x1 + 1) in
[x2]end end)

Several things to note about this definition. When inc is called on a loca-
tion, it returns an effectful computation, but it does not carry it out (val(m)
quotes m). Secondly, the first let expression is necessary, because r := !r + 1

LECTURE NOTES OCTOBER 14, 2003



L15.6 Monads

incorrectly uses the monadic expression !r in a place where a pure expres-
sion is expected. The uses of val(m) on the right-hand side of the lets can
be avoid by introducing appropriate definitions such as

new : ∀t.t → ©(t ref)
= Λt.λx.val(ref(x))

get : ∀t.t ref → ©t
= Λt.λr.val(!r)

set : ∀t.t ref → t → ©t
= Λt.λr.λx.val(r := x)

Furthermore, the Haskell language creates some syntactic sugar that makes
it easier to write a sequence of let val forms in a row.

In order to create a cell, initialize it with 0, increment it once and return
the cell’s contents we can write the following monadic expression at the top
level.

let val(x1) = new(0) in
let val(x2) = inc(x1) in
let val(x3) = get(x1) in
[x3] end end end
÷int

When started in the empty memory, the above monadic expression ex-
ecutes and evaluates to 〈(l=1), 1〉. It is worth writing out this computa-
tion step by step to see exactly how computation proceeds and effects and
effect-free computations may be interleaved.

LECTURE NOTES OCTOBER 14, 2003


