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After several lectures on extensions to the type system that are indepen-
dent from computational mechanism, we now consider mutable storage as
a computational effect. This is a counterpart to the study of exceptions and
continuations which are control effects [Ch. 14].

We will look at mutable storage from two different points of view: one,
where essentially all of MinML becomes an imperative language (this lec-
ture), and one where we use the type system to isolate effects (next lecture).
The former approach is taken in ML, that latter in Haskell.

To add effects in the style of ML, we add a new type τ ref and three
new expressions to create a mutable cell (ref(e)), to write to the cell (e1 :=
e2), and read the contents of the cell (!e). There is only a small deviation
from the semantics of Standard ML here in that updating a cell returns
its new value instead of the unit element. We also need to introduce cell
labels themselves so we can uniquely identify them. We write l for locations.
Locations are assigned types in a store typing Λ.

Store Typings Λ : := · | Λ, l:τ

Since locations can be mentioned anywhere in a program, we thread the
store typing through the typing judgment which now has the form Λ; Γ `
e : τ . We obtain the following rules, which should be familiar from ML.

Λ; Γ ` e : τ

Λ; Γ ` ref(e) : τ ref

Λ; Γ ` e1 : τ ref Λ; Γ ` e2 : τ

Λ; Γ ` e1 := e2 : τ

Λ; Γ ` e : τ ref

Λ; Γ ` !e : τ
l:τ in Λ

Λ; Γ ` l : τ ref
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L14.2 Mutable Storage

To describe the operational semantics, we need to model the store. We
think of it simply as a mapping from locations to values and we denote it
by M for memory.

Stores M : : = · | M, l=v

Note that in the evaluation of a functional program in a real compiler
there are many other uses of memory (heap and stack, for example), while
the store only contains the mutable cells.

In this approach to modeling mutable storage, the evaluation of any
expression can potentially have an effect. This means we need to change
our basic model of computation to add a store. We replace the ordinary
transition judgment e 7→ e′ by

〈M, e〉 7→ 〈M ′, e′〉

which asserts that expression e in store M steps to expression e′ with store
M ′. First, we have to take care of changing all prior rules to thread through
the store. Fortunately, this is quite systematic. We show only the cases for
functions.

〈M, e1〉 7→ 〈M ′, e′
1〉

〈M, apply (e1, e2)〉 7→ 〈M ′, apply (e′
1, e2)〉

v1 value 〈M, e2〉 7→ 〈M ′, e′
2〉

〈M, apply (v1, e2)〉 7→ 〈M ′, apply (v1, e
′
2)〉

v2 value

〈M, apply (fn (τ2, x.e), v2)〉 7→ 〈M, {v2/x}e〉

For the new operations we have to be careful about the evaluation order,
and also take into account that evaluating, say, the initializer of a new cell
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Mutable Storage L14.3

may actually change the store.

〈M, e〉 7→ 〈M ′, e′〉
〈M, ref(e)〉 7→ 〈M ′, ref(e′)〉

v value
〈M, ref(v)〉 7→ 〈(M, l=v), l〉 l value

〈M, e1〉 7→ 〈M ′, e′
1〉

〈M, e1 := e2〉 7→ 〈M ′, e′
1 := e2〉

v1 value 〈M, e2〉 7→ 〈M ′, e′
2〉

〈M,v1 := e2〉 7→ 〈M ′, v1 := e′
2〉

M = (M1, l=v1,M2) and M ′ = (M1, l=v2,M2)
〈M, l := v2〉 7→ 〈M ′, v2〉

〈M, e〉 7→ 〈M ′, e′〉
〈M, !e〉 7→ 〈M ′, !e′〉

M = (M1, l=v,M2)
〈M, !l〉 7→ 〈M,v〉

In order to state type preservation and progress we need to define well-
formed machine states which in turn requires validity for the memory con-
figuration. For that, we need to check that each cell contains a value of the
type prescribed by the store typing. The value stored in each cell can refer
other cells which can in turn refer back to the first cell. In other words, the
pointer structure can be cyclic. We therefore need to check the contents of
each cell knowing the typing of all locations. The judgment has the form
Λ0; · ` M : Λ, where we intend Λ0 to range over the whole store typing will
we verify on the right-hand side that each cell has the prescribed type.

Λ0; · ` (·) : (·)
Λ0; · ` M : Λ Λ0; · ` v : τ v value

Λ0; · ` (M, l=v) : (Λ, l:τ)

With this defined, we can state appropriate forms of type preservation
and progress theorems. We write Λ′ ≥ Λ if Λ′ is an extension of the store
typing Λ with some additional locations. In this particular case, for a single
step, we need at most one new location.

Theorem 1 (Type Preservation)
If Λ; · ` e : τ and Λ; · ` M : Λ and 〈M, e〉 7→ 〈M ′, e′〉 then for some Λ′ ≥ Λ
and memory M ′ we have Λ′; · ` e′ : τ and Λ′; · ` M ′ : Λ′.

Proof: By induction on the derivation of the computation judgment, ap-
plying inversion on the typing assumptions. �

Theorem 2 (Progress)
If Λ; · ` e : τ and Λ; · ` M : Λ then either
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L14.4 Mutable Storage

(i) e value, or

(ii) 〈M, e〉 7→ 〈M ′, e′〉 for some M ′ and e′.

Proof: By induction on the derivation of the typing judgment, analyzing
all possible cases. �

We assume the reader is already familiar with the usual programming
idioms using references and assignment. As an example that illustrates one
of the difficulties of reasoning about programs with possibly hidden effect,
consider the following ML code.

signature COUNTER =
sig

type c
val new : int -> c (* create a counter *)
val inc : c -> int (* inc and return new value *)

end;
structure C :> COUNTER =
struct

type c = int ref
fun new(n):c = ref(n)
fun inc(r) = (r := !r+1; !r)

end;
val c = C.new(0);
val 1 = C.inc(c);
val 2 = C.inc(c);

Here the two calls to C.inc(c) are identical but yield different re-
sults. This is the intended behavior, but clearly not exposed in the type
of the expressions involved. There are many pitfalls in programming with
ephemeral data structures that most programmers are too familiar with.
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