
Lecture Notes on
Recursive Types

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 13
October 7, 2003

In the last two lectures we have seen two critical concepts of program-
ming languages: parametric polymorphism (modeled by universal types)
and data abstraction (modeled by existential types). These provide quan-
tification over types, but they do not allow us to define types recursively.
Clearly, this is needed in a practical language. Common data structures
such as lists or trees are defined inductively, which is a restricted case of
general recursion in the definition of types [Ch. 19.3].

So far, we have considered how to add a particular recursive type, namely
lists, to our language as a primitive by giving constructors (nil and cons),
a discriminating destructor (listcase). For a realistic language, this ap-
proach is unsatisfactory because we would have to extend the language
itself every time we needed a new data type. Instead we would like to
have a uniform construct to define new recursive types as we need them.
In ML, this is accomplished with the datatype construct. Here we use
a somewhat lower-level primitive—we return to the question how this is
related to ML at the end of this lecture.

As a first, simple non-recursive example, consider how we might imple-
ment a three-element type.

datatype Color = Red | Green | Blue;

LECTURE NOTES OCTOBER 7, 2003

L13.2 Recursive Types

Using the singleton type 1 (unit , in ML), we can define

Color = 1 + (1 + 1)
Red : Color = inl ()
Green : Color = inr(inl ())
Blue : Color = inr(inr ())
ccase : ∀s.Color → (1 → s) → (1 → s) → (1 → s) → s

= Λs.λc.λy1.λy2.λy3.
case c

of inl(c1) ⇒ y1 c1

| inr(c2) ⇒ case c2

of inl(z2) ⇒ y2 z2

| inr(z3) ⇒ y3 z3

Recall the notation λx.e for a non-recursive function and Λt.e for a type
abstraction. The ccase constructs invokes one of its arguments y1, y2, or y3,
depending on whether the argument c represents red, green, or blue.

If we try to apply the technique, for example, to represent natural num-
bers as they would be given in ML by

datatype Nat = Zero | Succ of Nat;

we would have
Nat = 1 + (1 + (1 + · · ·))

where
n : Nat = inr(. . . (inr(︸ ︷︷ ︸

n times

inl ())))

In order to make this definition recursive instead of infinitary we would
write

Nat ' 1 + Nat

where we leave the mathematical status of ' purposely vague, but one
should read τ ' σ as “τ is isomorphic to σ”. Just as with the recursion at the
level of expressions, it is more convenient to write this out as an explicit
definition using a recursion operator.

Nat = µt.1 + t

We can unwind a recursive type µt.σ to {µt.σ/t}σ to obtain an isomorphic
type.

Nat = µt.1 + t ' {µt.1 + t/t}1 + t = 1 + µt.1 + t = 1 + Nat

LECTURE NOTES OCTOBER 7, 2003

Recursive Types L13.3

In order to obtain a reasonable system for type-checking, we have con-
structors and destructors for recursive types. They can be considered “wit-
nesses” for the unrolling of a recursive type.

Γ ` e : {µt.τ/t}τ Γ ` µt.τ type

Γ ` roll(e) : µt.τ

Γ ` e : µt.τ

Γ ` unroll(e) : {µt.τ/t}τ

The operational semantics and values are straightforward; the difficulty
of recursive types lies entirely in the complexity of the substitution that
takes place during the unrolling of a recursive type.

e 7→ e′

roll(e) 7→ roll(e′)
v value

roll(v) value

e 7→ e′

unroll(e) 7→ unroll(e′)
v value

unroll(roll(v)) 7→ v

Now we can go back to the definition of specific recursive types, using
natural numbers built from zero and successor as the first example.

Nat = µt.1 + t
Zero : Nat = roll(inl ())
Succ : Nat → Nat = λx.roll(inr x)
ncase : ∀s.Nat → (1 → s) → (nat → s) → s

= Λs.λn.λy1.λy2.
case unroll(n)

of inl(z1) ⇒ y1 z1

| inr(z2) ⇒ y2 z2

In the definition of ncase we see that z1 : 1 and z2 : Nat , so that y2 is really
applies to the predecessor of n, while y1 is just applied to the unit element.

Polymorphic recursive types can be defined in a similar manner. As an
example, we consider lists with elements of type r.

r List = µt.1 + r × t
Nil : ∀r.r List

= Λr.roll(inl ())
Cons : ∀r.r × r List → r List

= Λs.λp.roll(inr p)
lcase : ∀s.∀r.r List → (1 → s) → (r × r List → s) → s

= Λs.Λr.λl.λy1.λy2.
case unroll(l)

of inl(z1) ⇒ y1 z1

| inr(z2) ⇒ y2 z2

LECTURE NOTES OCTOBER 7, 2003

L13.4 Recursive Types

If we go back to the first example, it is easy to see that representation of
data types does not quite match their use in ML. This is because we can see
the complete implementation of the type, for example, Color = 1 + (1 + 1).
This leads to a loss of data abstraction and confusion between different data
types. Consider another ML data type

Answer = Yes | No | Maybe;

This would also be represented by

Answer = 1 + (1 + 1)

which is the same as Color . Perhaps this does not seem problematic until
we realize that Yes = Red! This is obviously meaningless and creates in-
compatibilities, for example, if we decide to change the order of definition
of the elements of the data types.

Fortunately, we already have the tool of data abstraction to avoid this
kind of confusion. We therefore combine recursive types with existential types
to model the datatype construct of ML. Using the first example,

datatype Color = Red | Green | Blue;

we would represent this

∃c.c× c× c× ∀s.c → (1 → s) → (1 → s) → (1 → s) → s

The implementation will have the form

pack (1 + (1 + 1), pair (inl (), pair (inr(inl ()), . . .)))

Upon opening an implementation of this type we can give its components
the usual names. With this strategy, Color and Answer can no longer be
confused.

We close this section with a curiosity regarding recursive types. We
can use them to type a simple, non-terminating expression that does not
employ recursive functions! The pure λ-calculus version of this function is
(λx.x x) (λx.x x). Our example is just slight more complicated because of
the need to roll and unroll recursive types.

LECTURE NOTES OCTOBER 7, 2003

Recursive Types L13.5

We define

ω = µt.t → t
x:ω ` unroll(x) : ω → ω
x:ω ` unroll(x) x : ω
· ` λx.unroll(x) x : ω → ω
· ` roll(λx.unroll(x) x) : ω
· ` (λx.unroll(x) x) roll(λx.unroll(x) x) : ω

When we execute this term we obtain

(λx.unroll(x) x) roll(λx.unroll(x) x)
7→ unroll(roll(λx.unroll(x) x)) (roll(λx.unroll(x) x))
7→ (λx.unroll(x) x) (roll(λx.unroll(x) x))

so it reduces to itself in two steps.
While we will probably not prove this in this course, recursive types are

necessary for such an example. For any other (pure) type construct we have
introduced so far, all functions are terminating if we do not use recursion
at the level of expressions.

LECTURE NOTES OCTOBER 7, 2003

