Supplementary Notes on
Exceptions and Continuations

15-312: Foundations of Programming Languages
Frank Pfenning
Modified by Jonathan Aldrich

Lecture 10
September 25, 2003

In this lecture we discuss advanced control constructs, formalizing ex-
ceptions and continuations in the C-machine. We begin with exceptions by
introducing a new machine state

k <« raise v

which signals that we are propagation an exception upwards in the con-
trol stack k, looking for a handler or stopping at the empty stack. This
“uncaught exception” is a particularly common form of implementing run-
time errors. The value v has some type 7,5, and carries some information
about what caused the exception. For more other variations of exceptions,
see [Ch. 13] and Assignment 4.

We have two new forms of expressions raise (7, e) (with concrete syn-
taxraise [r]e)landtry (ei,=.e2) (with concrete syntaxtry ejcatch z =>
e2). Informally, try (e;,x.e2) evaluates e; and returns its value. If an excep-
tionraise v israised during the evaluation of e;, then we evaluate {v/z}es
instead and returns its value (or propagate ifs exception). These rules are
formalized in the C-machine as follows.

!The type is written here in order to preserve the property that every well-typed expres-
sion has a unique type.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

L10.2 Exceptions and Continuations

k>try (e1,z.e3) e kotry (O,z.e2) > e1

Extry (O,z.e2) < vy e k<vp

k > raise (7,e) —c k>raise (r,0) >e

k>raise (r,0) <wv —c k<raise wv

k> f < raise v —c k< raise v for f #try (O, _..)

ketry (O,z.e0) <raise v +—¢ k> {v/x}ey

In order to verify that these rules are sensible, we should prove appro-
priate progress and preservation theorems. In order to do this, we need to
introduce some typing judgments for machine states and the new forms of
expressions. First, expressions:

I'ke: Tern I'tep:m T :Tegnbea:T
I'kraise (r,e):7 C'Htry (er,z.€e1):7

In these rules, the exception value must be of some specified type 7cy,.
The rule for typing try, therefore, checks that e; has the same type as e;
assuming that z has the exception type.

We have several choices for the exception type. 7ez, could be int , in
which case the exception value acts like a error code returned by a C library
function. If we make 7., a string type, then an error message can be in-
cluded in the exception. The advantage of binding the exception value to a
variable z is that the exception handler can react to the exception in a more
flexible way than would be possible without this information.

The ML language allows users to declare their own exception types
which can carry exception-specific information. A catch clause can choose
to handle all exceptions, or only a particular exception type. Java takes
this a step further by organizing exceptions into a hierarchy; a clause that
catches exception class E will also catch any of the subclasses of E. In As-
signment 4, you will implement an exception mechanism that allows the
user to catch exceptions of a particular user-declared type.

As with environments, typing exceptions will depend on specifying
typing rules for C-machine states. We can add a judgement for the excep-
tion raising state to our rules from last lecture:

k : 7 stack
k <« raise v OK

We can now state (without proof) the preservation and progress prop-
erties. The proofs follow previous patterns (see [Ch. 13]) and Lecture 5 on

Type Safety.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

Exceptions and Continuations L10.3

1. (Preservation) If s OK and s — s’ then s’ OK.

2. (Progress) If s OK then either

(i) s +— & for some s, or

(ii) s = @ < v with v value, or

(iii) s = e < raise .

The manner in which the C-machine operates with respect to exceptions
may seem a bit unrealistic, since the stack is unwound frame by frame.
However, in languages like Java this is not an unusual implementation
method. In ML, there is more frequently a second stack containing only
handlers for exceptions. The handler at the top of the stack is innermost
and a raise expression can jump to it directly.

Overall, this machine should be equivalent to the specification of ex-
ceptions above, but potentially more efficient. Often, we want to describe
several aspects of execution behavior of a language constructs in several
different machines, keeping the first as high-level as possible.

In our simple language, the handler stack contains only frames catch (k, x.e2)
while the control stack contains the usual frames, and try (J) (the “catch”
clause has moved to the handler stack). All the usual rules are augmented
to carry a control stack and a handler stack, and leave the handler un-

changed.

(h k) > apply (e1,e2) —c (h.k>apply (U e2)) > e

(h k) > try (e1,x.e2) —c (h>catch (k,z.e2),k>try (O)) > e
(h>catch (K, z.ex),k>try (O) <vi —c (hk) <wn

(h,k) > raise (7,e) —c (h,k>raise (r,0)) > e

(h,k>raise (r,0)) <wv —e (h, k) <raise v

(h>catch (K, x.e2),k) < raise v e (hE) > {v/x}es

Note that we do not unwind the control stack explicilty, but jump di-
rectly to the handler when an exception is raised. This handler must store
a copy of the control stack in effect at the time the try expression was exe-
cuted. Fortunately, this can be implemented without the apparent copying
of the stack in the rule for try , because we can just keep a pointer to the
right frame in the control stack [Ch. 13].

Note also in case of a regular return for the subject of a try expression,
we need to pop the corresponding handler off the handler stack.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

L10.4 Exceptions and Continuations

Exception Scope In ML, exceptions are declared explicitly in the source
text, and can be referred to anywhere in the scope of the declaration. For
example, one can declare an exception with the syntax:

exception E1

We can raise an exception using the syntax:

raise E1

Finally, we can handle exceptions using pattern matching, either using
a particular exception type in the match or a wildcard:

el handle E => el
| - =>e2

Consider what happens in the following code:

fun f x =
let exception E in
raise E;
x+1
end
(f 5 handle E => 0

At the point where the exception handler occurs, E is out of scope, so E
acts as a wildcard. The program will catch the exception and return 0. In
fact, there is no way to catch just exception E when E is out of scope—either
you catch all exceptions or you can’t catch E.

Having exceptions propagate outside the scope where they are declared
is misguided at best-it means that users of a library may be confronted with
internal exception types that are not declared in the library’s public inter-
face, for example. One solution to this problem is to require the interface
of a function to declare the exceptions it may throw, and use a type sys-
tem to guarantee that no “invisible” exceptions are thrown. This solution,
used by Java, has the advantage that the type of a function documents what
happens in the error case as well as in the normal case. The disadvantage
is that signatures become larger and more unwieldy. However, it is easy
to infer exception declarations, so that the programmer only has to specify
exceptions at module boundaries.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

Exceptions and Continuations L10.5

Continuations

In this section we introduce continuations, an advanced control construct
available in some functional languages [Ch. 12]. Most notably, they are
part of the definition of Scheme and are implemented as a library in Stan-
dard ML of New Jersey, even though they are not part of the definition
of Standard ML. Continuations have been described as the goto of func-
tional languages, since they allow non-local transfer of control. While they
are powerful, programs that exploit continuations can difficult to reason
about and their gratuitous use should therefore be avoided.

There are two basic constructs, given here with concrete and abstract
syntax. We ignore issues of type-checking in the concrete syntax.

letcc xin eend letcc (7,z.e)
throw ejto ey throw (7,e1,e2)

In brief, letcc xin eend captures the stack (= continuation) £ in effect
at the time the letcc is executed and substitutes cont (k) for z in e. we can
later transfer control to k by throwing a value v to k£ withthrow vto cont (k).
Note that the stack £ we capture can be returned passed point in which it
was in effect. As a result, throw can effect a kind of “time travel”. While
this can lead to programs that are very difficult to understand, it has multi-
ple legitimate uses. One pattern of usage is an an alternative to exceptions,
another is to implement co-routines or thread. Another use is to affect back-
tracking.

As a starting example we consider simple arithmetic expressions.

(a) 1 + letcc x in 2 + (throw 3 to x) end = 4

(b) 1 + letcc x in 2 end —E 3

(¢) 1 + letcc x in if (throw 2 to x) then 3 else 4 fi end
—23

Example (a) shows an upward use of continuations similar to excep-
tions, where the addition of 2 + [is bypassed and discarded when we
throw to .

Example (b) illustrates that captured continuations need not be used in
which case the normal control flow remains in effect.

Example (¢) demonstrates that a throw expression can occur anywhere;
its type does not need to be tied to the type of the surrounding expres-
sion. This is because a throw expression never returns normally—it al-
ways passes control to its continuation argument.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

L10.6 Exceptions and Continuations

With this intuition we can describe the operational semantics, followed
by the typing rules.

k> letcc (7,z.e) —c k> {cont (k)/z}e
k > throw (T, e1,e2) —e k>throw (7,0,e2) > €3
k>throw (7,0,e2) < vy —c k>throw (7,v1,0) > es

kw>throw (7,v1,0) < cont (kg) +c ko <
k > cont (k) —c k< cont (k)
The typing rules can be derived from the need to make sure both preser-

vation and progress to hold. First, the constructs that can appear in the
source.

I'z:tcontke: T
I'tletcc (r,xz.e):71

I'tbei:mm T'keg:m cont
't throw (7,e1,e2) : 7

Finally, the rules for continuation values that can only arise during com-
putation. They are needed to check the machine state, even though they are
not needed to type-check the input.

k : 7 stack
I'Fcont (k) : 7 cont

As a more advanced example, consider the problem of composing a
function with a continuation. This can also be viewed as explicitly pushing
a frame onto a stack, represented by a continuation. Even though we have
not yet discussed polymorphism, we will phrase it as a generic problem:

Write a function

compose : (a -> 'b) -> 'b cont -> 'a cont

so that compose F K returns a continuation K;. Throwing
a value v to K; should first compute F'v and then throw the
resulting value v’ to K.

To understand the solution, we analyze the intended behavior of Kj.
When given a value v, it first applies F' to v. So

K| = Kyvapply (F,0)

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

Exceptions and Continuations L10.7

for some K. Then, it needs to throw the result to K. So
Ky = Kz»>throw (.0, K)
and therefore
K, = Ksr>throw (_,0,K)r>apply (F,0)

for some K3.
How can we create such a continuation? The expression

throw (F ..) to K

will create a continuation of the form above. This continuation will be the
stack precisely when the hole “...” is reached. So we need to capture it
there:

throw (F (letcc k1 in ...end) to K

The next conundrum is how to return k1 as the result of the compose func-
tion, now that we have captured it. Certainly, we can not just replace . .. by
k1, because the F' would be applied (which is not only wrong, but also not
type-correct). Instead we have to throw k1 out of the local context! In or-
der to throw it to the right place, we have to name the continuation in effect
when the compose is called.

letcc r
in

throw (F (letcc k1 in throw k1 to r end)) to K
end

Now it only remains to abstract over F' and K, where we take the liberty of
writing a curried function directly in our language.

fun compose (f'a -> 'b) (kb cont) : 'a cont is
letcc r
in
throw (f (letcc k1 in throw k1 to r end)) to k
end
end

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

L10.8 Exceptions and Continuations

In order to verify the correctness of this function, we can just calculate,
using the operational semantics, what happens when compose is applied
to two values F' and K under some stack K. This is a very useful exercise,
because the correctness of many opaque functions can be verified in this
way (and many incorrect functions discovered).

Ky > apply (apply (compose, F'), K)
—s Ko >letcc (_,rthrow (_,apply (F,letcc (., k;i.throw (., k1,7))),K))
—c Ko >throw (_,apply (F,letcc (-, ki.throw (., ki, cont (Ky)))), K)
—c Ko>throw (,0,K) > apply (F,letcc (_, k;.throw (_, k1,cont (Kjp))))
—i Ko>throw (,,0,K)>apply (F,0) > letcc (., ki.throw (_, ki, cont (Kjp)))

At this point, we define
K, = Ko>throw (0, K)>apply (F,0)
and continue

—c K >throw (., Kp,cont (Kj))
—e Ko < Ky

By looking at K; we can see hat it exactly satisfies our specification.
Interestingly, K3 from our earlier motivation turns out to be K, the con-
tinuation in effect at the evaluation of compose. Note that if F' terminates
normally, then that part of the continuation is discarded because K is in-
stalled instead as specified. However, if F raises an exception, control is
returned back to the point where the compose was called, rather than to
the place where the resulting continuation was invoked (at least in our se-
mantics). This is an example of the rather unpleasant interactions that can
take place between exceptions and continuations.

See the code? for a rendering of this in Standard ML of New Jersey,
where we have slightly different primitives. The translations are as given
below. Note that, in particular, the arguments to throw are reversed which
may be significant in some circumstances because of the left-to-right eval-
uation order.

Concrete MinML Abstract MinML SML of NJ

letcc zin eend letcc (7,z.e) callcc (fn x => e)
throw ejto eq throw (7,e1,e2) throw e2 el

For a simpler and quite practical example for the use of continuation
refer to the implementation of threads given in the textbook [Ch. 12.3]. A
runnable version of this code can be found at the same location as the ex-
ample above.

http://www.cs.cmu.edu/ fp/courses/312/code/10-continuations/

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

Exceptions and Continuations L10.9

Lecture 10 Addendum:
Implementation of the C-machine

This material was included in Fall ‘02. We show how to implement the
C-machine for the fragment containing integers, booleans, and functions
using higher-order functions.

The implementation of the C-machine is to represent the stack as a con-
tinuation that encapsulates the rest of the computation to be performed.?

First, in our implementation, both expressions and value have type exp .
We nonetheless use different names to track our intuition, even though the
type system of ML does not help use verify the correctness of this intuition.

type value = exp
e . exp
v : value

Next, the stack k is represented by an ML function

k : value -> value

Applying this function to a value v will carry out the rest of the compu-
tation of the machine, returning the final answer. Finally, we have two
functions

eval : exp -> (value -> value) -> value
return : value -> (value -> value) -> value

satisfying the specification:
(i)eval e k | aiffk >e—le<a
(ii) return v k | aiffk<v—=le<a

In order to implement stacks as ML functions, it is useful to introduce
some new auxiliary functions to represent the frames. We give in the table
below the association between forms of the stack and the corresponding
ML function. We omit only the case for primops which requires a simple
treatment of lists.

We give some code excerpts here; the full code can be found at
http://www.cs.cmu.edu/ fp/courses/312/code/10-exceptions/

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

L10.10 Exceptions and Continuations

E>if (O,e2,e3) (fn vl => ifFrame (v1, e2, e3) k)

k>apply (O,e2) (fn vl => applyFramel (v1, e2) k)
k>apply (vi,0) (fn v2 => applyFrame2 (v1, v2) k)
k>let (O,z.e2) (fn vl => letFrame (v1, ((), €2)) k)
. (fn v =>v)

The case of the empty stack corresponds to the initial continuation,
which simply returns the value passed to it as the result of the overal com-
putation

Now we can piece together the whole code elegantly, as advertised. We
have elided only the case for primitive operations, which can be found with
the complete code at the address given above.

fun eval (v as Int) k = return v k
(* elided primops *)
| eval (v as Bool) k = return v k

| eval (If(el, e2, e3)) k =
eval el (fn vl => ifFrame (vl, e2, e3) k)
| eval (v as Fun) k = return v k
| eval (Apply(el, e2)) k =
eval el (fn vl => applyFramel (v1, e2) k)
| eval (Let(el, ((), e2))) k =
eval el (fn vl => letFrame (v1, ((), e2)) k)
(* eval (Var) k impossible by MinML typing *)
and ifFrame (Bool(true), e2, e3) k = eval e2 k
| ifFrame (Bool(false), e2, e3) k = eval e3 k
(* other expressions impossible by MinML typing *)
and applyFramel (v1, e2) k =
eval e2 (fn v2 => applyFrame2 (v1, v2) k)
and applyFrame2 (v1 as Fun(., _, (0, O, el)), v2) k =
eval (Subst.subst (v1, 2, Subst.subst (v2, 1, el’))) k
(* other expressions impossible by MinML typing *)
and letFrame (v1, ((), e2)) k = eval (Subst.subst (v1, 1, e2)) k
and return v k = k v

The overall evaluation just starts with the initial continuation which
corresponds to the empty stack.

fun evaluate e = eval e (fn v => v)
This style of writing an interpreter is also refered to as continuation-

passing style. It is quite flexible and elegant.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2003

