
Supplementary Notes on
Environments

15-312: Foundations of Programming Languages
Jonathan Aldrich

(portions due to Frank Pfenning and Daniel Spoonhower)

Lecture 9
September 23, 2003

In this lecture, we examine slightly lower-level issues regarding the im-
plementation of functional languages.

This first observation about our semantic specifications is that most of
them rely on substitution as a primitive operation. From the point of view
of implementation, this is impractical, because a program would be copied
many times. So we seek an alternative semantics in which substitutions are
not carried out explicitly, but an association between variables and their
values is maintained. Such a data structure is called an environment. Care
has to be taken to ensure that the intended meaning of the program (as
given by the specification with substitution) is not changed.

Because we are in a call-by-value language, environment η typically
binds variables to values.

Environments η : : = · | η, x=v

The basic intuition regarding typing is that if Γ ` e : τ , then e should
be evaluated in an environment which supplies bindings of appropriate
type for all the variables declared in Γ. We therefere formalize this as a
judgment, writing η : Γ if the bindings of variables to values in η match
the context Γ. We make the general assumption that a variable x is bound
only once in an environment, which corresponds to the assumption that a
variable x is declared only once in a context. If necessary, we can rename
bound variables in order to maintain this invariant.

· : ·
η : Γ · ` v : τ v value

(η, x=v) : (Γ, x:τ)

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

L9.2 Environments

Note that the values v bound in an environment are closed, that is, they
contain no free variables. This means that expressions are evaluated in an
environment, but the resulting values must be closed. This creates a dif-
ficulty when we come to the evaluation of function expressions. Relaxing
this restriction, however, causes even more serious problems.1

In this lecture, we extend the C machine to keep track of the current
environment mapping variables to values, resulting in the E machine. The
states of the machine can be defined as follows:

States s : : = k | η > e evaluate e under k with η
| k | η < v return v to k with η

Stacks k : : = • empty stack
| k . f stack k with top f
| k . η stack k with environment η

Frames f : : = o(�, e2) | o(v1,�) primops
| pair (�, e2) | pair (v1,�) pairs
| fst (�) | snd (�) projections
| apply (�, e2) | apply (v1,�) applications
| if (�, e1, e2) conditional

We have extended the states of the C machine to include the current
environment η in addition to the stack k and expression e or value v. In
addition to frames for evaluating inside function applications, pairs, etc.,
a frame can be used to store an environment that may need to be restored
later.

We can proceed to give an operational semantics for the E machine.
The rules are similar to those for the C machine, but instead of carrying out
substitutions, we add bindings to the environment and look them up when
necessary. We focus on pairs and (non-recursive) functions; the rules for
integers and booleans are a straightforward extension of the rules in the C
machine, and we will look at adding recursion later. The two function rules
given below are actually incorrect, as we explain shortly.

1This is known in the Lisp community as the upward funarg problem.

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

Environments L9.3

k | η > pair (e1, e2) 7→e k . pair (�, e2) | η > e1

k . pair (�, e2) | η < v1 7→e k . pair (v1,�) | η > e2

k . pair (v1,�) | η < v2 7→e k | η < pair (v1, v2)

k | η > fst (e) 7→e k . fst (�) | η > e
k . fst (�) | η < pair (v1, v2) 7→e k | η < v1

k | η > snd (e) 7→e k . snd (�) | η > e
k . snd (�) | η < pair (v1, v2) 7→e k | η < v2

k | η > x 7→e k | η < v
(η = (η1, x = v, η2))

k | η > apply (e1, e2) 7→e k . apply (�, e2) | η > e1

k . apply (�, e2) | η < v1 7→e k . apply (v1,�) | η > e2

k | η > fn (τ, x.e) 7→e k | η < fn (τ, x.e)
k . apply (fn (τ, x.e),�) | η < v2 7→e k . η | η, x = v2 > e

k . η | η′ < v 7→e k | η < v

The rules for evaluating pairs states that the first and second arguments
of the pair are evaluated in the same environment as the pair itself. Similar
rules are defined for fst and snd. Since we do not substitute values for
variables in expressions, we have an evaluation rule for variables. This
rule simply looks up the value of the variable in the current environment
and returns that value to the surrounding stack.

The search rules for function application are similar to the pair rules.
A function evaluates to itself. The rule for function application stores the
old environment to the stack, where it can be restored later after execution
of the function. A new environment is built which is the old environment
with an added binding of the variable x to the value v2. When the function
returns a value, the function’s environment η′ is discarded and the old en-
vironment η is restored for further evaluation of the body of the previous
function on the stack.

Typing. In order to prove type soundness for the E machine, we need typ-
ing rules for machine configurations. We can define the well-formedness of
machine states using the following rules:

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

L9.4 Environments

η : Γ Γ ` k : τ stack Γ ` e : τ
k | η > e ok

η : Γ Γ ` k : τ stack · ` v : τ v value

k | η < v ok

The first rule states that the environment η assigns values to variables
according to the typing environment Γ. We use this Γ to check the type of
the expression e, because emay have free variables that are bound to values
in η. Finally, the stack k must be capable of accepting a value of type τ in
the current hole �. The rule for returning a value is similar, except that the
expression returned must be a value and it must be closed. We define stack
typing with the following rules:

Γ ` • : τ stack

Γ ` k : τ ′ stack Γ ` f : τ -> τ ′ frame

Γ ` k . f : τ stack

η′ : Γ′ Γ′ ` k : τ stack
Γ ` k . η′ : τ stack

The rule for the empty stack states that it can take a value of any type in
its hole. The rule for a stack with a frame on top states that if the rest of the
stack can accept a value of type τ ′, then the frame had better accept a value
of some type τ and pass it on to the rest of the stack as a value of type τ ′.
The overall stack type is then τ . Finally, the rule for an environment frame
simply allows the remaining stack to be typed in an environment Γ′ based
on the bindings in η′ rather than the original environment Γ. We define
frame typing with rules like the following:

Γ ` e2 : τ2

Γ ` apply (�, e2) : (τ2 -> τ) -> τ frame

· ` v1 : τ2 -> τ

Γ ` apply (v1,�) : τ2 -> τ frame

For example, the first rule states that if expression e2 has type τ2, then
the frame can accept a value of type τ2 -> τ and return a value of type
τ to the enclosing frame. If we now try to prove type preservation in the
following form

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

Environments L9.5

If s ok and s 7→e s
′ then s′ ok

we find that it is violated in the rule that transforms a function expression
into a function value. The value fn (τ, x.e) may have free variables referring
to η, but the typing rule for returning a value states that values must be
closed. If we relax this rule to allow values to refer to variables bound in the
local environment, then the rule for returning a value to a previous stack
frame will violate preservation. So the rules we have thus far are unsound.

Closures. In order to restore soundness, we need to pair up a value with
its environment forming a closure. This means we have a new form of value,
only used in the operational semantics, but not in the source expression.

Expressions e : : = . . . | 〈〈η; fn (τ, x.e)〉〉

There are no evaluation rules for closures (they are values), and the typ-
ing rules have to “guess” an context that matches the environment. Note
that we always type values in the empty environment.

〈〈η; fn (τ, x.e)〉〉 value

η : Γ Γ ` fn (τ, x.e) : τ
· ` 〈〈η; fn (τ, x.e)〉〉 : τ

Note that function expressions like fn (τ, x.e) are no longer values–only
function closures are values. We now modify the incorrect rules by building
and destructing closures instead.

k | η > fn (τ, x.e) 7→e k | η < 〈〈η′; fn (τ, x.e)〉〉
(η′ = {y = η(y) | y in FV (x.e)})

k . apply (〈〈η′; fn (τ, x.e)〉〉,�) | η < v2 7→e k . η | η′, x = v2 > e

The first rule builds a closure which captures the bindings of the free
variables of x.e in the current environment. The second rule evaluates the
function body with the environment stored in the closure (augmented with
x = v2) rather than with the calling environment.

Now it is easy to prove type preservation.

Theorem 1 (Type preservation in the E machine)
If s ok and s 7→e s

′ then s′ ok.

Proof: By induction on the derivation of s 7→e s
′. �

We can also state a progress theorem.

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

L9.6 Environments

Theorem 2 (Progress in the E machine)
If s ok then either s = • | · < v and v value, or there exists s′ such that
s 7→e s

′.

Proof: By induction on the derivation of s ok. �

Recursion. Adding recursion to the E machine requires some care. The
obvious rule to use would be the analog of the C machine rule:

k | η > rec (τ, x.e) 7→e k . η | η, x = rec (τ, x.e) > e

This rule has a couple of problems, however. First, we are binding an
expression, not a value, to x. This is a different kind of binding than we
have been using before, and it makes sense to distinguish it from other
bindings. For example, our existing rule for replacing variables with values
won’t work, because now we’re going to potentially replace a variable with
an expression that needs to be further evaluated.

The second problem is that the expression rec (τ, x.e) is not closed; e
could have free variables that are bound in η. This will create soundness
problems in the same way that function values were unsound until we con-
verted functions into closures. Thus, we need to use the same solution here:
instead of binding x to the expression rec (τ, x.e), we will bind it to a sus-
pension that pairs the expression with its bound variables. The rules are as
follows:

k | η > rec (τ, x.e) 7→e k . η | η, x ∗= 〈〈η′; rec (τ, x.e)〉〉 > e

(η′ = {y [∗]
= η(y) | y in FV (x.e)})

k | η > x 7→e k . η | η′ > e

(η = (η1, x
∗= 〈〈η′; e〉〉, η2))

The suspended computation binding x ∗= 〈〈η′; e〉〉 is quite general. For
example, if we add lazy expressions to the language, we can package up
the lazy computation in a suspension that keeps track of its free variables.
Later, when the program demands evaluation of the suspended lazy ex-
pression, we can extract the original environment from the suspension and
proceed with evaluating the expression.

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

Environments L9.7

Closure conversion. There is a compile-time analogue to the closures that
are generated in our operational semantics at run-time. This is the so-called
closure conversion. To see the need for that, consider the simple program
(shown in SML syntax)

let val x = 1
val y = 2

in fn w => x + w + 1 end

How do we compile the function fn w => x + w + 1 ? The difficulty
here is the reference to variable x defined in the ambient environment.

The solution is to close the code by abstracting over an environment,
and pairing it up with the environment. This way we obtain

let val x = 1
val y = 2

in (fn env => fn w => (#x env) + w + 1, {x = x }) end

If this transformation is carried out systematically, all functions are closed
and can be compiled to a piece of each. Each of them expect and envi-
ronment as an additional argument. This environment contains only the
bindings of variables that actually occur free in the body of the function.
An application of the function now also applies the function to the envi-
ronment. For example,

let val x = 1
val y = 2
val f = fn w => x + w + 1

in f 3 end

is translated to

let val x = 1
val y = 2
val f = (fn env => fn w => (#x env) + w + 1,

{x = x })
in (#1 f) (#2 f) 3 end

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

L9.8 Environments

The problem with this transformation is that its target is generally not
well typed. This is because functions with different sets of free variables
will sometimes have different type. For example, the code

let val x = 1
in if true then fn w => w + x

else fn w => w + 2
end : int -> int

becomes

let val x = 1
in if true

then (fn env => fn w => w + (#x env), {x = x })
else (fn env => fn w => w + 2, {})

end

which is not well-typed because the two branches of the conditional have
different type: the first has type ({x:int } -> int -> int) * {x:int }
and the second has type ({} -> int -> int) * {}.

There are a number of possible solutions to this problem. We could give
up typing in the compiled code, but it turns out that preserving typing is
very useful for checking that the compiler operates properly (as well as en-
suring that the compiled program is well behaved!) We could use a list
instead of a record to represent closures, so that the type of a closure does
not include the list of free variables, but this is more inefficient for look-
ing up bindings and interferes with garbage collection (more on this later).
The best solution uses existential types, which will be described in a future
lecture.

SUPPLEMENTARY NOTES SEPTEMBER 23, 2003

