Lecture Notes on
A Functional Language

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 5
September 9, 2003

We now introduce MinML, a small fragment of ML that serves to illus-
trates key points in its design and key techniques for verifying its prop-
erties. The treatment here is somewhat cursory; see [Ch. 8] for additional
material. Roughly speaking, MinML arises from the arithmetic expression
language by adding booleans, functions, and recursion. Functions are (al-
most) first-class in the sense that they can occur anywhere in an expres-
sion, rather than just at the top-level as in other languages such as C. This
has profound consequences for the required implementation techniques (to
which we will return later), but it does not affect typing in an essential way.

First, we give the grammar for the higher-order abstract syntax. For the
concrete syntax, please refer to Assignment 2.

Types T ::= int |bool |arrow (r,72)
Integers n o= ...|-=1|0]1]...
Primops o ::= plus |minus |times | negate

| equals |lessthan

Expressions e ::= num(n)|o(ei,...,en)
| true |false |if (e,e1,e2)
| let (e1,x.e2)
| fn (7,z.e) | apply (e1,e2)
| rec (1,z.e)
| =z

Our typing judgment that sorts out the well-formed expressions has the
form I' - e : 7, where a context I' has the form -, z1:7, ..., 2,:7,. Itis a hy-

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

L5.2 A Functional Language

pothetical judgment as explained in the previous lecture. Our assumption
that all variables z; declared in a context must be distinct is still in force,
which means that the rule

T el

Tra:r OV

is unambiguous since there can be at most one declaration for z in I'.

We have already discussed arithmetic expressions; booleans constitute
a similar basic type. Unlike languages such as C, integers and booleans
are strictly separate types, avoiding some common confusions and errors.
Below are the typing rules related to booleans.

FFelzint Pl—CQIint
I' - equals (ep,ez) : bool

EqualsTyp

TrueTyp FalseTyp

I' - true : bool T false : bool

I'te:bool T'kFe:7 T'key:T
- I
CHif (e e e2): 7 fTyp

Perhaps the only noteworthy point here is that the two branches of a con-
ditional must have the same type. This is because we cannot know at type-
checking time which branch will be taken at run-time. We are therefore
conservative, asserting only that the result of the conditional will definitely
have type 7 if each branch has type 7. Later in this class, we will see a
type system that can be more accurately analyze conditionals so that, for
example, if true then 1 else false could be given a type (which
is impossible here).

A more important extension from our first language of arithmetic ex-
pressions is the addition of functions. In mathematics we are used to de-
scribe functions in the form f(z) = e, for example f(z) = 22 + 1. In a func-
tional language we want a notation for the function f itself. The abstract
(mathematical) notation for this concept is A-abstraction, written f = Ax.e.
The above example would be written as f = Az.x? + 1.

In the concrete syntax of MinML we express Az:7.e as fn xit => e ;
in our abstract syntax it is written as fn (7,z.e). This is an illustration of
the unfortunate situation that we generally have to deal with at least three
ways of expressing the same concepts. One is the mathematical notation,
one is the concrete syntax, and one is the abstract syntax. In research pa-
pers, one mostly uses mathematical notation or pseudo-concrete syntax

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

A Functional Language L5.3

that really stands for abstract syntax but is easier to read. Inevitably, we
will also start sliding between levels of discourse which is acceptable as
long as we always know what we really mean.

Returning to functions, the typing rules are rather straightforward.

TembFe:n
' (1,z.e):arrow (7, 7)

FnTyp

I'kep:arrow (r2,7) T'hey:m
'+ apply (ej,e2):7

AppTyp

Keep in mind that in the rule FnTyp, the variable x must not already be de-
clared in I'. We can always rename z in fn (7, z.e) to satisfy this condition,
because we treat abstract syntax as a-equivalence classes, that is, modulo
variable renaming.

Functions defined with the language given so far are rather limited. For
example, there is no way to define the exponential function from multipli-
cation and addition, because there is no way to express recursion implicit
in the definition

20 =1
2" = 2x2"1 forn > 0.

In order to express this, we introduce a general recursion constructrec (7,z.e).
The function above would be expressed as

rec (arrow (int ,int),p.fn (int ,n.
if (equals (n,num(0)),
num(1),
times (num(2),apply (p, minus (z,num(1))))).

or in concrete syntax as

rec pint -> int => fn niint =>
if n=20
then 1
else 2 *p (x - 1)

In general, an expression rec (7, z.e) should be unfolded by substituting the
whole expression for z in ¢, {rec (7, z.e)/x}e. You should convince your-
self on the example above that this yields the correct behavior—if you have

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

L5.4 A Functional Language

difficulties, you may need to consult the formal operational semantics de-
fined later in this lecture. As for the typing rule: the whole expression must
have the same type as z, so that the substitution {rec (r,z.e)/z} makes
sense. The same type 7 must also be the type of e, because the value of e is
returned as the value of the recursive expression.

Fxrhke:r
C'krec (r,z.€): T

RecTyp

In MinML, most useful recursions have the form
rec (arrow (11, 72), f.fn (11, z.€)),

because most other recursive expressions will not terminate (try, for ex-
ample, rec (int ,z.z)). We therefore introduce a new form of concrete
syntax, fun f(x: 7): ™ => e, as “syntactic sugar”. During parsing it
is expanded into rec (arrow (7, 72), f.fn (71, z.€)). This means that a fun -
expression does not have first-class status. For example, we do not give
any typing or evaluation rules since we type-check and evaluate the result
of the syntactic expansion, not the original form.

Below is a summary of the typing rules for the language. We show only
the case of one operator—the others are analogous.

xvr el
rel NumT
F'tz:71 VarTyp I'F num(n) :int P
I'Fep:int I'kes:int EqualsTyp

I' - equals (ep,ez) : bool

TrueTyp FalseTyp

I' - true : bool '+ false : bool

I'e:bool T'kFe:7 They:T
I
LHif (eyer,e9): 7 fTyp

I'Fer:m T,z b es
T let (6171‘.62) I To

-T2 LetTyp

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

A Functional Language L5.5

TembFe:n
C'Efn (1,z.e) : arrow (71, 72)

FnTyp

I'kep:arrow (12,7) T'hFeg:m
'+ apply (ej,e2):7

AppTyp

Ferhke:r
I'rec (r,z.€): 7

RecTyp

We specify the operational semantics as a structured operational semantics
also called a small-step semantics. The reason for this style of specification
is that the evaluation semantics (also called big-step semantics) we used so
far makes it difficult to talk about non-termination and the individual steps
during evaluation, because it is slightly too abstract.

So we define two basic judgments

(i) e — €' which expresses that e steps to €/, and
(ii) e value which expresses that e is a value (written v)

The idea is that, given a closed, well-typed expression e;, computation pro-
ceeds step-by-step until it reaches a value:

Sl R)

where v value. We will eventually prove the following three important
properties, which guide us in the design of the rules

1. (Progress) If - - e : 7 then either

(i) e+ € for some ¢, or

(ii) e value
2. (Preservation) If -+Fe:7ande— e then-Fe¢e' : 7
3. (Determinism) If - -e:7and e — ¢ and e — ¢€” then ¢/ = ¢”.

Note that for all three properties we are only interested in closed, well-
typed expressions.
When presenting the operational semantics, we proceed type by type.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

L5.6 A Functional Language

Integers This is straightforward. First, integers themselves are values.

num(k) value

Second, we evaluate the arguments to a primitive operation from left to
right, and apply the operation once all arguments have been evaluated.

e1 — €] vy value e+ €}
equals (e1,ez) — equals (e, e2) equals (v1,e2) — equals (v1,€h)

(k1 = ko)
equals (num(k;),num(ks)) — true

(k1 # k2)

equals (num(ki),num(kz)) — false

We refer to the first two as search rules, since they traverse the expression
to “search” for the subterm where the actual computation step takes place.
The latter two are reduction rules.

Booleans First, true and false are values.
true value false value

For if-then-else we have only one search rule for the condition, since we
never evaluate in the branches before we know which one to take.

e e
if (e,e1,es) —if (€ e1,e2)

if (true ,ej,e2) — e if (false ,ej,e2)— e

Definitions We proceed as in the expression language with the substitu-
tion semantics. There are no new values, and only one search rule.

e1 +— €}

let (e1,z.e2) —let (e}, x.e2)

v1 value
let (vy,x.e2) — {v1/x}es

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

A Functional Language L5.7

Functions Itis often claimed that functions are “first-class”, but this is not
quite true, since we cannot observe the structure of functions in the same
way we can observe booleans or integers. Therefore, there is no need to
evaluate the body of a function, and in fact we could not since it is not
closed and we would get stuck when encountering the function parameter.
So, any function by itself is a value.

fn (7, x.e) value

Applications are evaluated from left-to-right, until both the function and its
argument are values. This means the language is a call-by-value language
with a left-to-right evaluation order.

e1 — €} vy value eg — €

apply (e1,e2) — apply (ej,e2) apply (vi,e2) — apply (vi,e5)

vy value

apply (fn (12, z.€),v9) — {va/x}e

Recursion A recursive expression is evaluated simply by unfolding it.

rec (t,x.e) — {rec (r,z.e)/z}e
A recursive expression is never a value, but in a typical use of the form
rec (arrow (11,72), f.-fn (11, 2.€))

we can make only one step before reaching a value, because unfolding the
rec exposes an fn -abstraction which is always a value. In [Ch. 8], the
recursive expression fun (7,7, f.z.e) which corresponds to the above is
directly a value. This is appropriate in the case of MinML, but would lead
to difficulties in a more general setting later in the course where we study
recursively defined lists, trees, and other data structures.

As an alternative to the above semantics, let us also consider a judg-
ment that directly relates an expression to its value (if it has one). We use
substitution instead of environments for simplicity, so the judgment has the
form e || v where we assume that - ¢ : 7.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

L5.8 A Functional Language

Integers This is quite simple and as for arithmetic expressions; we only
show the rules for the primitive equality operator.

num(k) | num(k)

el U, num(kl) (D) lL num(k:g) (kl = kz)
equals (e, e9) | true

e1 U, num(k:l) () U num(kzg) (k‘l 7'5 k‘z)
equals (ej,eq) | false

Booleans Here, the decision on which branch of a conditional to evaluate
is based on the return value of the condition.

true | true false | false

elltrue e un e | false es 1 vo
if (e,er,e2) | v if (e,er,e2) | vy

Definitions This remains unchanged from the arithmetic expression lan-

guage.
er v {vi/xtes I vo

let (e, z.e2) |} vo

Functions Here we need to remember that (a) fn -expressions are values
and (b) our language is call-by-value. The left-to-right strategy of evalua-
tion is not directly visible in this formulation.

fn (r,z.e) | fn (1, 2.€)

er L fn (mo,z.€]) eave {va/a}te] v
apply (e1,e2) 4 v

Recursion Finally, for recursion, we just unfold the recursion one step
and continue with evaluation.

{rec (r,xz.e)/z}e | v

rec (r,z.e) | v

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

A Functional Language L5.9

Which of the theorems regarding an operational semantics still make
sense in this setting? First, progress is difficult to formulation because we
either have a derivation of e |} v or we do not—it is difficult to say what
would constitute a step of evaluation. However, we can state that evalu-
ation should always result in a value. Preservation and determinism still
make sense in the following form. We should also now

1. (Evaluation) If - - e : 7 and e |} v then v value.
2. (Preservation) If -Fe:7ande || v, then-Fwv: 7T

3. (Determinism) If - -e:7and e || v and e || v then v/ = v”.

Lecture 4 Addendum:
Equivalence of Substitution and Environment Semantics

This material was covered in Fall’'02. As a continuation of Lecture 4 we
showed the equivalence of the substitution semantics and environment seman-
tics for the arithmetic expression language. This is an instructive example
of the kind of proof we are doing in this class.

We first recall the environment semantics, presented here as a particular
form of evaluation semantics [Ch. 7.2]. The basic judgment is

zidv, .. zpdo, Fe v,

Recall that this is a hypothetical judgment with assumptions z; | v;. We call
zilvr, ...,z v, an environment and denote an environment by 7. It is im-
portant that all variables z; in an environment are distinct so that the value
of a variable is uniquely determined. Here we assume some primitive op-
erators O (such as plus and times) and their mathematical counterparts
fo- For simplicity, we just write binary operators here.

v €n

e.var e.num
nkFx o

n = num(k) | num(k)

n F el U num(kl) n F €9 lL num(k:Q) (fo(kil, kg) = k) .
nFo(er,e2) § numk)

nte yv nalvr el v
ntlet (er,z.e2) | vo

.0

e.let (z not declared in n)

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

L5.10 A Functional Language

The alternative semantics uses substitution instead of environments.
For this judgment we evaluate only closed terms, so no hypothetical judg-
ment is needed.

No rule for variables x num(k) | num(k) s

el U num(kl) €9 U num(kg) (f0<k1, kQ) = k)
o(e1,e2) § num(k)

er v {vi/z}es | vo

let (e1,z.e2) vo

S.0

s.let

We show each direction of the translation between the two systems sep-
arately. In the first direction we assume - - e || v and we want to show
e || v. A direct proof by induction is suspect, because the environment will
in general not be empty in the derivation of - - e | v. In particular, the
second premise of e.let adds a new assumption, which prevents us from
using the induction hypothesis.

In order to generalize the induction hypothesis, we need to figure out
what corresponds to 1 - e |} v in the substitution semantics. From the def-
inition of the semantics we can see that an environment is a “postponed”
substitution: rather than carrying out the substitution for each variable as
we encounter it, we look up the variable at the end when we see it. Formal-
izing this intuition is the key to the proof. We define the translation from
an environment to a simultaneous substitution [Ch. 5.3]

(r1dvr, ..., xnuvn>* = <U1/$1, s 7vn/xn)
Then we generalize to account for environments.

Lemmal
Ifnk el v then {n*}e || v.

Proof: By rule induction on the given derivation. Recall that values v al-
ways have the form num(k) for some &, so v || v for any value v by rule
s.num.

Case: (Rule e.var) Thene = z.

xlv en Condition of e.var
v/z €n* By definition of n*
{n*lz=v By definition of substitution
viw By definition of v and rule s.num

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

A Functional Language L5.11

Case: (Rule e.num) Then e = num(k) = v.

num(k) { num(k) By rule s.num

Case: (Rule e.0) Thene = 0(ey,e2).

n ke J num(k;) Subderivation
Nk eg I num(ks) Subderivation
folki,k2) =k Given condition
{77*}81 u num(k:1) By i.h.
{n*}ea | num(kq) By i.h.
o({n*}e1,{n*}ea) I num(k) By rule s.o
{n*}o(e1,e2) I num(k) By definition of substitution

Case: (Rule e.let) Thene =let (e, x.e2) and v = vs.

ntedun Subderivation
n,zdlvr = eg J vg Subderivation
{n*ter J v By ih.
(n, zlv1)* = (9%, v1/x) By definition of ()*
{n* vi/ates § v By ih.
{vi/x}({n*}e2) I vo By properties of simultaneous substitution
let ({n*}er,xz.{n*}es) By rule s.let
{n*Het (e1,z.e2) By definition of substitution

|

In the last case we need two properties that connects simultaneous sub-
stitution and the “single” substitution {v;/s}. They are (a) that the order of
the definition of variables in a simultaneous substitution does not matter,
and (b) that

{vi/x1}({v2/z2,. .., on/xn}e) = {v1/x1,v2/22, ... v /xn }e.

These properties hold under the assumption that all the z; are distinct and
that all v1,v9, ..., v, are closed, which is known in our case.

In lecture we proceeded slightly differently. Although the essential idea
we were converging on was the same, we were getting to a lemma which
asserted that n - e |} v then - - {n*}e || v with a derivation of equal length.
The above proof is somewhat more economical.

The other direction is quite a bit tricker to generalize correctly.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

L5.12 A Functional Language

Lemma 2
Ife vande = {n*}e' thennt € | v.

Proof: The proof is by rule induction on the derivation of e | v

Case: (Rule s.num) Then we have to consider two subcases, depending
on whether ¢’ = x for some variable z, or ¢/ = num(k) for some k.

Subcase: (Rule s.num and ¢’ =) Then z{v € nin order for e = {n*}x ||
v and hence =z |} v by rule e.var.

Subcase: (Rule s.num and ¢/ = num(k)) In that case v = num(k), so we
can use rule e.num.

Case: (Rule s.0) Thene =o0(ej,e2) = {n*}e’.

¢/ = o(e}, e) with

e1 = {n*}e} and ex = {n*}e, By definition of substitution
e1 4 num(ky) Subderivation
ez | num(ks) Subderivation
folk1, ko) =k Given condition
nk e} | num(ky) By i.h.
n F eb J num(ks) By i.h.
nko(e),es) | k By rule e.o

Case: (Rule s.let) Thene =let (ej,z.e2) = {n*}e and v = va.

¢ =let (e},x.€)) with
e1 = {n*}e} and es = {n*}e, and

x not defined in n By definition of substitution
er v Subderivation
nke o By i.h.
{vi/z}es I va Subderivation
{v1/x}es = {v1/x}({n*}ey) = {n*, v1/z}€), Property of substitution
{(n,zdv1)*}ey | vy By definition of ()*
n, xdvr F e va By i.h.
nklet (e}, z.€5) | vo By rule e.let

]

Now we can prove our main theorem.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

A Functional Language L5.13

Theorem 3 (Equivalence of Environment and Substitution Semantics)
(i) If-Fel| vthene | v

(ii) Ife |} v then - e |} v.

Proof: Part (i) follows immediately from the first lemma with n = -, the
empty environment.

Part (ii) follows from the second lemma by using the empty environ-
ment for 1 and e for ¢/, which is correct since e = {-}e. [|

SUPPLEMENTARY NOTES SEPTEMBER 9, 2003

