Lecture Notes on Inductive Definitions

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 2
August 28, 2003

These supplementary notes review the notion of an inductive definition
and give some examples of rule induction. References to Robert Harper’s
draft book on Programming Languages: Theory and Practice are given in square
brackets, by chapter or section.

Given our general goal to define and reason about programming lan-
guages, we will have to deal with a variety of description tasks. The first is
to describe the grammar of a language. The second is to describe its static
semantics, usually via some typing rules. The third is to describe its dy-
namic semantics, often via transitions of an abstract machine. On the sur-
face, these appear like very different formalisms (grammars, typing rules,
abstract machines) but it turns out that they can all be viewed as special
cases of inductive definitions [Ch. 1]. Following standard practice, inductive
definitions will be presented via judgments and inference rules providing
evidence for judgments.

The first observation is that context-free grammars can be rewritten in
the form of inference rules [Ch. 4.1]. The basic judgment has the form

s A

where s is a string and A is a non-terminal. This should be read as the
judgment that s is a string of syntactic category A.

As a simple example we consider the language of properly matched
parentheses over the alphabet ¥ = {(,) }. This language can be defined by
the grammar

M::=e¢|MM]|(M)

with the only non-terminal M. Recall that ¢ stands for the empty string.
Rewritten as inference rules we have:

LECTURE NOTES AUGUST 28, 2003

L2.2 Inductive Definitions

eM ()
S1 M S92 M
 os1ss M 2)
s M
(s) M (3)

Our interpretation of these inference rules as an inductive definition of
the judgment s M for a string s means:

s M holds if and only if there is a deduction of s M using rules (1),
(2), and (3).

Based on this interpretation we can prove properties of strings in the syn-
tactic category M by rule induction. Here is a very simple example.

Theorem 1 (Counting Parentheses)
If s M then s has the same number of left and right parentheses.

Proof: By rule induction. We consider each case in turn.

(Rule1) Then s =-¢e.

s has 0 left and 0 right parens Since s = ¢

(Rule2) Then s = s7 s9.

s1 M Subderivation
so M Subderivation
s1 has nq left and right parens for some n; By i.h.
s2 has ny left and right parens for some 7y By i.h.
s has ny + ng left and right parens Since s = s1 52

LECTURE NOTES AUGUST 28, 2003

Inductive Definitions L2.3

(Rule3) Thens = ().

s M Subderivation
s' has n' left and right parens for some n’ By i.h.
s has n’ 4 1 left and right parens Since s = (¢')

|

The grammar we gave, unfortunately, is ambiguous [Ch. 4.2]. For ex-
ample, there are infinitely many derivations that ¢ M, because

E=¢geE=¢ceEe="""

In the particular example of this grammar we would be able to avoid rewrit-
ing it if we can show that the abstract syntax tree [Ch. 5.1] we construct will
be the same, independently of the derivation of a particular judgment.

An alternative is to rewrite the grammar so that it defines the same
language of strings, but the derivation of any particular string is uniquely
determined. In order to illustrate the concept of simultaneous inductive
definition, we use two non-terminals L and N, where the category L corre-
sponds to M, while NV is an auxiliary non-terminal.

L ::= ¢|NL
N ::= (L)

One can think of L as a list of parenthesized expressions, while N is a
single, non-empty parenthesized expression. This is readily translated into
an inductive definition via inference rules.

elL 4)
s1 N so L
5189 L 5)
s L
(s) N (6)

Note that the definitions of s L and s IV depend on each other. This is
an example of a simultaneous inductive definition.

Now there are two important questions to ask: (1) is the new grammar
really equivalent to the old one in the sense that it generates the same set of

LECTURE NOTES AUGUST 28, 2003

L2.4 Inductive Definitions

strings, and (2) is the new grammar really unambiguous. The latter is left
as a (non-trivial!) exercise; the first one we discuss here.

At a high level we want to show that for any string s, s M iff s L. We
break this down into two lemmas. This is because “if-and-only-if” state-
ment can rarely be proven by a single induction, but require different con-
siderations for the two directions.

We first consider the direction where we assume s M and try to show
s L. When writing out the cases we notice we need an additional lemma.
As is often the case, the presentation of the proof is therefore different from
its order of discovery. To read this proof in a more natural order, skip ahead
to Lemma 3 and pay particular attention to the last step in the case of rule
(2). That step motivates the following lemma.

Lemma 2 (Concatenation)
IfSl L and 592 L then S1 52 L.

Proof: By induction on the derivation of s; L. Note that induction on the
derivation on sy L will not work in this case!

(Rule4) Then s; =e.

s9 L Assumption
s189 L Since s1 89 = £ 89 = S9

(Rule 5) Then 81 = S11 S12.

s11 N Subderivation
s19 L Subderivation
s L Assumption
512 82 L By i.h.
511 812 S2 L By rule (5)

[|

Now we are ready to prove the left-to-right implication.

Lemma 3
If s M then s L.

Proof: By induction on the derivation of s M.

LECTURE NOTES AUGUST 28, 2003

Inductive Definitions L2.5

(Rule1) Thens=-¢e.

sL By rule (4) since s = ¢

(Rule 2) Then s = s7 s9.

s1 M Subderivation
so M Subderivation
s1 L By i.h.
so L By i.h.
s189 L By concatenation (Lemma 2)

(Rule3) Thens=(s).

s M Subderivation
s'L By i.h.
(s) N By rule (6)
elL By rule (4)
(s") L By rule (5) and (') € = (&)

|

The right-to-left direction presents a slightly different problem, namely
that the statement “If s L then s M” does not speak about s N, even though
L and N depend on each other. In such a situation we typically have to
generalize the induction hypothesis to also assert an appropriate property
of the auxiliary judgments (s IV, in this case). This is the first alternative
proof below. The second alternative proof uses a proof principle called
inversion, closely related to induction. We present both proofs to illustrate
both techniques.

Lemma 4 (First Alternative, Using Generalization)
1. If s L thens M.

2. If s N then s M.

Proof: By simultaneous induction on the given derivations. There are two
cases to consider for part 1 and one case for part 2.

(Rule 4) Then s =-«.

s M By rule (1) since s = ¢

LECTURE NOTES AUGUST 28, 2003

L2.6 Inductive Definitions

(Rule 5) Then s = 57 s9.

s1 N Subderivation
sy L Subderivation
st M By i.h.(2)
so M By i.h.(1)
s189 M By rule (2)

(Rule 6) Thens=(s').

s' L Subderivation
s M By i.h.(1)
(s') M By rule (3)

|

For this particular lemma, we could have avoided the generalization
and instead proven (1) directly by using a new form of argument called
inversion. It is called inversion because it allows us to reason from the con-
clusion of an inference rule to its premises, while normally an inference
rule works from the premises to the conclusion. This is confusing (and of-
ten applied incorrectly), so make sure you understand why and when this
is legal by carefully examining the following proof.

Lemma 4 (Second Alternative, Using Inversion)
If s L then s M

Proof: By induction on the given derivation. Note the there are only two
cases to consider here instead of three, because there are only two rules
whose conclusion has the form s L.

(Rule 4) Then s =-«.

s M By rule (1) since s = ¢

(Rule 5) Then s = 51 s9.

s1 N Subderivation
s1 = (s})) and s} L for some s By inversion
sy M By i.h.
(sh) M By rule (3)
so L Subderivation

LECTURE NOTES AUGUST 28, 2003

Inductive Definitions L2.7

592 M By i.h.
(s}) sa M By rule (2)
sM Since s = s1 52 = (8]) s2

In this last case, the first line reminds us that we have a subderivation of
s1 N. By examining all inference rules we can see that there is exactly one
rule that has a conclusion of this form, namely rule (6). Therefore s; N must
have been inferred with that rule, and s; must be equal to (s}) for some
s} such that s L. Moreover, the derivation of s} L is a subderivation of the
one we started with and we can therefore apply the induction hypothesis
to it. The rest of the proof is routine. n

Now we can combine the preceding lemmas into the theorem we were
aiming for.

Theorem 5
s M if and only if s L.

Proof: Immediate from Lemmas 3 and 4. |

Some advice on inductive proofs. Most of the proofs that we will carry
out in the class are by induction. This is simply due to the nature of the
objects we study, which are generally defined inductively. Therefore, when
presented with a conjecture that does not follow immediately from some
lemmas, we first try to prove it by induction as given. This might involve a
choice among several different given objects or derivations over which we
may apply induction. If one of them works we are, of course, done. If not,
we try to analyse the failure in order to decide if (a) we need to seperate out
a lemma to be proven first, (b) we need to generalize the induction hypothesis,
or (c) our conjecture might be false and we should look for a counterexample.

Finding a lemma is usually not too difficult, because it can be suggested
by the gap in the proof attempt you find it impossible to fill. For example, in
the proof of Lemma 3, case (Rule 2), we obtain s; L and sy L by induction
hypothesis and have to prove s sy L. Since there are no inference rules
that would allow such a step, but it seems true nonetheless, we prove it as
Lemma 2.

Generalizing the induction hypothesis can be a very tricky balancing
act. The problem is that in an inductive proof, the property we are trying
to establish occurs twice: once as an inductive assumption and once as
a conclusion we are trying to prove. If we strengthen the property, the

LECTURE NOTES AUGUST 28, 2003

L2.8 Inductive Definitions

induction hypothesis gives us more information, but conclusion becomes
harder to prove. If we weaken the property, the induction hypothesis gives
us less information, but the conclusion is easier to prove. Fortunately, there
are easy cases such as the first alternative of Lemma 4 in which the nature
of the mutually recursive judgments suggested a generalization.

Finding a counterexample greatly varies in difficulty. Mostly, in this
course, counterexamples only arise if there are glaring deficiencies in the
inductive definitions, or rather obvious failure of properties such as type
safety. In other cases it might require a very deep insight into the nature
of a particular inductive definition and cannot be gleaned directly from a
failed proof attempt. An example of a difficult counterexample is given by
the extra credit Question 2.2 in Assignment 1 of this course. The conjecture
might be that every tautology is a theorem. However, there is very little in
the statement of this theorem or in the definition of tautology and theorem
which would suggest means to either prove or refute it.

Three pitfalls to avoid. The difficulty with inductive proofs is that one
is often blinded by the fact that the proposed conjecture is true. Similarly,
if set up correctly, it will be true that in each case the induction hypothesis
does in fact imply the desired conclusion, but the induction hypothesis may
not be strong enough to prove it. So you must avoid the temptation to
declare something as “clearly true” and prove it instead.

The second kind of mistake in an inductive proof that one often encoun-
ters is a confusion about the direction of an inference rule. If you reason
backwards from what you are trying to prove, you are thinking about the
rules bottom up: “If I only could prove J; then I could conclude J,, because I
have an inference rule with premise J; and conclusion J,.” Nonetheless, when
you write down the proof in the end you must use the rule in the proper
direction. If you reason forward from your assumptions using the infer-
ence rules top-down then no confusion can arise. The only exception is the
proof principle of inversion, which you can only employ if (a) you have
established that a derivation of a given judgment J exists, and (b) you con-
sider all possible inference rules whose conclusion matches .J. In no other
case can you use an inference rule “backwards”.

The third mistake to avoid is to apply the induction hypothesis to a
derivation that is not a subderivation of the one you are given. Such rea-
soning is circular and unsound. You must always verify that when you
claim something follows by induction hypothesis, it is in fact legal to apply
it!

LECTURE NOTES AUGUST 28, 2003

Inductive Definitions L2.9

How much to write down. Finally, a word on the level of detail in the
proofs we give and the proofs we expect you to provide in the homework
assignments. The proofs in this handout are quite pedantic, but we ask
you to be just as pedantic unless otherwise specified. In particular, you
must show any lemmas you are using, and you must show the generalized
induction hypothesis in an inductive proof (if you need a generalization).
You also must consider all the cases and justify each line carefully. As we
gain a certain facility with such proofs, we may relax these requirements
once we are certain you know how to fill in the steps that one might omit,
for example, in a research paper.

LECTURE NOTES AUGUST 28, 2003

L2.10 Inductive Definitions

Lecture 2 Addendum: A Parser in Judgment Form

During lecture, we also discussed that it is possible to write down a parser
for the language of matching parentheses in the form of ajudgment. The in-
formal idea of the parsing process for matching parentheses is quite straight-
forward: we keep an integer counter, initialized to zero, and increment it
when we see an opening parenthesis and decrement it when we see a clos-
ing parenthesis. We need to check two conditions: (a) the counter never be-
comes negative (otherwise there would be too many closing parentheses)
and (b) the counter is zero at the end (otherwise there would be unmatched
open parentheses).

Instead of an integer counter, our parser maintains a stack of open paren-
theses, where the stack is represented just as a string. The process of pars-
ing corresponds to the bottom-construction of a derivation for a judgment

k> s

which means that s is a valid string with respect to stack k. The symbol
> has no special meaning here—it is simply used to separate the stack k
from the string s. We now develop the rules for this two-place (binary)
judgment.

First, if the string s is empty then we accept if the stack is also empty.
This corresponds to condition (b) mentioned above.

epe !

Second, if the string s starts with an opening parenthesis, we push it on
the stack. A less operational reading is: if s is a valid string in stack k(,
then (s is a valid string in stack k.

k(> s
k(s 2

Finally, if we see a closing parenthesis at the beginning of the string, we
pop the corresponding opening parenthesis from the stack and continue. A
less operational reading is: if s is a valid string in stack & then) s is a valid
string in stack k(.

k> s

Ho)s 8

Since these are all the rules, the bottom-up construction of a derivation
will get stuck if the string s begins with a closing parentheses but the stack

LECTURE NOTES AUGUST 28, 2003

Inductive Definitions L2.11

k is empty. That is, there is no rule with which we could infer ¢ >) s,
no matter what s is. This corresponds to condition (a) mentioned at the
beginning of this discussion.

It is easy to see that this parser is inherently unambiguous. That is,
when we start to construct a derivation of ¢ > s in order to parse s, then
there is at most one rule that can be applied, depending on whether s is
empty (rule >1), starts with an opening parenthesis (rule >3), or starts with
a closing parenthesis (rule >3). Therefore, we can think of the judgment
as describing a deterministic algorithm for parsing a string. This judgment
can be related to a push-down automaton. As an aside, it turns out that ev-
ery context-free grammar can be accepted by a (possibly non-deterministic)
pushdown automaton, although the general construction of a pushdown
automaton from a context-free grammar is more complex than in this par-
ticular example.

But does the judgment above really accept the language of properly bal-
anced parentheses? We would like to prove that s M if and only if € > 5. As
usual, we break this up into two separate lemmas, one for each direction.

For the first direction, we need one further lemma! that captures the
essence of the left-to-right processing of the input string and the use of k as
a stack.

Lemma 6 (Stack)
Ifk‘l > s and]{72 > So then /{72 k‘l > 8189

Proof: By rule induction on the derivation of k; > s;.

(Rule Dl) Then ki=s1=¢

ko > S9 Assumption
ko k1 > s1 82 Since ki1 =51 =¢.

(Rule >3) Then s; = (5.

ki(>) Subderivation
ko > s9 Assumption
ko k‘l(> 5,1 S92 By i.h.
ko k1 > (8,1 S9 By rule (I>2)

!'suggested by a student during lecture

LECTURE NOTES AUGUST 28, 2003

L2.12 Inductive Definitions

(Rule >3) Then k; = k{(and 51 =)).

K > s} Subderivation
ko > 89 Assumption
ko k] > s} s2 By i.h.
ko kll(>) Sll S92 By rule (>>3)

|

Now we can prove the first direction of the correctness theorem for the
parser.

Lemma 7
If s M thene > s.

Proof: By rule induction on the derivation of s M.

(Rule1) Then s =c¢.

ED € By rule (>>1)

(Rule 2) Then s = s7 s9.

s1 M Subderivation
el s By i.h.
So M Subderivation
€ > 89 By i.h.
€ > 8189 By Lemma 6

(Rule3) Thens=(s).

s’ M Subderivation
e s By i.h.
e>e By rule (1)
(>) By rule (>>3)
(> By Lemma 6
e (§) By rule (>2)

|

In order to prove the other direction (if € > s then s M) we first gener-
alize to: If k > s then ks M. This proof (which is left to the reader) requires
another lemma, this time about the M judgment.

LECTURE NOTES AUGUST 28, 2003

Inductive Definitions L2.13

Finally, putting the two directions together proves the correctness of
our parser.

LECTURE NOTES AUGUST 28, 2003

