
Assignment 8:
Concurrent Programming with Futures

15-312: Foundations of Programming Languages
Daniel Spoonhower (spoons+@cs.cmu.edu)

Out: Thursday, November 13, 2003
Due: Thursday, December 4, 2003 (11:59:59 pm)

150 points total + possible extra credit

Introduction

In this assignment, you will construct an interpreter for a version of MinML ex-
tended with futures, instrument the interpreter to allow certain measurements
to be taken, and run your interpreter on standard algorithms parallelized in
different ways. You will then analyze the results.

You will rarely, if ever, need to write long or complicated functions to com-
plete this assignment. Therefore, you should strive for elegance. Your solution
will be graded primarily on correctness, but if your code does not correctly
handle one or more cases, we will inspect your code and attempt to give you
some credit for the understanding it reflects. In other words, it is to your ben-
efit to write clean, legible code.

The state of MinML

For the sake of simplicity, we will revert to the style of evaluation found in
Assignment 4; there will be no garbage collection in this assignment. Moreover,
we have also made the following changes.

• Exceptions are no longer supported. The corresponding state k | η � v
has been removed.

• One particular recursive type has been added, a type tree , representing
binary integer trees. This is essentially equivalent to the following SML
datatype of binary trees with records at branch nodes:

datatype tree = Leaf
| Node of int * tree * tree

1

Trees can be created in the way you would expect from using SML

Leaf Node(3, Leaf, Node(2 + 2, Leaf, Leaf))

and so forth. Trees can be taken apart with case , as shown here:

case t of
Leaf => e1

| Node(x, l, r) => e2

The constructor of the exp datatype is Case(e,e1,(x,l,r,e2)) where
x , l , r are bindings.
It will come as no surprise (at least to Lisp and Scheme hackers) that
this type does double duty as a list type, since one can represent a list
containing x1, x2, . . . , xn by a severely unbalanced (“rightist”) tree:

x1
/ \

x2
/ \

.
.

.
\
xn

/ \

Lists (again, unbalanced trees) may also be written using a form of syn-
tactic sugar found in SML. For example, the following two examples are
equivalent.

[1, 3] Node(1, Leaf, Node(3, Leaf, Leaf))

• Programs can take input in the following sense, typing

Top.apply_eval "foo.mml" e

where e has type DBMinML.exp and foo.mml is a file containing a MinML
program of the form

fn x : t => b;

will cause e (which should represent MinML expression of type t) to be
evaluated and substituted for x in b. This comes in handy for the last part
of this assignment. There is also an analogous function, Top.apply_step .

• We have added a new state to the E machine, represented by the SML
datatype constructor Done(v), to explicitly denote machines that have
finished computation. This new state appears in only one rule, shown
below.

• | η < v 7→e = v

2

Semantics of futures

The assignment hinges on an extension of the E machine formalism and inter-
preter (Assignment 4) to support futures.

Static semantics

A nice property of futures is that they do not complicate the type system. If e
has type τ , future (e) also has type τ . The typing rule is shown below.

Γ ` e : τ
Γ ` future (e) : τ

FutureTyp

Informal dynamic semantics

As discussed in lecture, the expression future(e) returns immediately with
a placeholder value, called a promise. Evaluation of e begins immediately, in
parallel, while the original thread continues independently. The promise is a
value, and the original thread will block waiting for the new thread only when
(and if) the promise is touched—that is, only when a (non-promise) value is
actually required. For example, the promise returned by future(3 + 5) in
the expression

future(3 + 5) * 2

will be touched almost immediately, because the primop * needs the actual
values of both arguments to compute the product. Of course, the new thread
may have computed the value of e by that time, in which case the original
thread immediately retrieves the computed value and continues.

As another example, suppose f is a function returning a tree.

let t = future(f(e)) in
case t of Leaf => ...

| Node(x, l, r) => ...
end

Evaluating the above case expression touches the promise returned by
future(f(e)) , since we cannot know which branch of the case to evalu-
ate unless we know what t is.

Keep in mind, however, that promises are values. Thus, despite remaining
in a call-by-value setting, simply passing a promise to a function, constructing
a pair in which one component is a promise, or constructing a Node in which
one or more subtrees are promises, does not touch the promise. In this sense,
futures are similar to the delay construct seen in Assignment 4.

The parallel E machine

To model the various threads spawned by use of futures, we extend the E ma-
chine of Assignment 4 as follows. Instead of a single state s of the form k | η > e

3

or k | η < v where k is a stack and η an environment, we have a set P of threads,
each of which we represent by a thread identifier p (which in turn is represented
by an integer in the implementation) and a state. The general picture is

p1 : k1 | η1 > e1, p2 : k2 | η2 < v2, . . . , pn : kn | ηn > en

(where we could equally well have seen k1 | η1 < v1 for some v1). When an
expression future(e) is evaluated, it should return a promise and spawn a
new thread. This new thread should begin evaluating e in parallel and with
respect to an empty stack.

Task: Semantics of Futures (30 points)
Write a set of transition rules for MinML with futures in the above style. You
need not write rules that are unchanged (except for the addition of the thread
set P) from a language without futures, such as

P, k | η > Int (k) 7→e P, k | η < Int (k)

To represent the state of a thread with stack k and environment η blocking on
a promised value, a value being computed by a spawned thread p′, write

k | η blocked(p′)

This notation is only a suggestion; if you need to maintain more information
in a blocked thread (besides p′), you are welcome to do so. In fact, you may
need to extend the possible states in other ways. Along with the rules, submit
a grammar for states s. Our proposed grammar so far would be written

s ::= k | η > e

| k | η < v

| k | η blocked(p)
| = v

Important: It’s useful to have a correct semantics before you start implementing
it. You are strongly encouraged to complete this question quickly and send me
your proposed semantics. I will read it; if it looks right I will tell you that, if
there are problems I will point them out. If possible, send me your rules by
November 21 (but I can read them at any time). This is provided as a public
service; please take advantage of it!

Your final hand-in should be on paper, or as a text, PostScript, or PDF file
called rules.txt (rules.ps , rules.pdf) in your handin directory.

4

Task: Implementing Futures (60 points)
In this task, you will implement your rules in e-mach.sml . First, however,
you should extend the datatype state so that it corresponds to your grammar
for states.

Second, revise the outer part of the implementation (everything besides
step) so that, instead of a single state, a set of states—along with integer thread
identifiers—is maintained. At this point, of course, you haven’t implemented
evaluation of future(e) ; this is preparation for the next step.

Finally, implement your rules. The relevant MinML abstract syntax con-
structors are Future of exp and Promise of int ; you can change the
latter to something other than int if necessary.

Imagine you have an unlimited number of processors available, so a pro-
cessor can be dedicated to each thread. Scheduling is almost beside the point
with this assumption; you can just go through the list of threads in round-robin
fashion and try to step each one.

One final note, you are not required to maintain the code in stepStream
and evaluateStream . You may find it to be useful to update this code, but
you will not be graded on your implementation. If you choose not to maintain
it, I suggest raising an exception.

Experimenting with Futures

Once you have a working interpreter, you can start experimenting. We’re in-
terested in the performance increase (or decrease!) when a sequential program
is changed to use futures and run on a multi-processor.

Since the interpreter itself is a sequential program, what can we actually
measure? The running time of the interpreter doesn’t tell us much. To get
some interesting (though excessively optimistic) measurements, you need to
instrument your interpreter to collect some statistics. In particular, it should
measure the following:

1. clock ticks: the number of times you looped through the set of threads

2. work: the number of times a step was taken

Just before returning the value that is the result of evaluation, the function
evaluate in e-mach.sml should print the statistics, labeled appropriately.
As mentioned above, you can use Top.apply_eval to pass in a “prefabri-
cated” input to the MinML program you are experimented with.

Task: Experiments (60 points)
First, gather statistics for filter.mml and filterf.mml (a version with
futures added), with the input as the complete and rightist trees returned by
the functions Top.complete and Top.seq . These MinML programs filter
through the nodes of a tree producing a list of integers that satisfy some given
condition. Run complete trees through level 8 (Top.complete 2 through
Top.complete(8)) and rightist trees at all powers of 2 from 22 to 28.

5

Next, implement quicksort in MinML (without futures). Then add futures
in whatever way seems most likely to be effective. Compare them on input

Top.random_seq (17,27) n

for n from 10 to 100.
Finally, implement sets represented as ordered trees in MinML, with insert,

union, and intersection operations. Again, you should implement two ver-
sions: one without futures and one version with futures. You may find it useful
to write an SML version first. Try the union and intersection of:

1. two rightist trees (Top.seq) of the same size, of sizes from 22 to 28 (pow-
ers of 2);

2. two random trees (Top.ordered_random seed n) of size n, for all n
up to 64. Use a different seed for each tree!

Turn in the algorithms you implement as files qsort.mml , qsortf.mml
(with futures), sets.mml , and setsf.mml (with futures) in the handin direc-
tory.

Write a report on your results; graphs are strongly encouraged. Discuss and
explain the results. If you don’t fully understand the behavior, analyze possible
explanations. Turn in your report on paper or as a PostScript (report.ps) or
PDF file (report.pdf).

If your interpreter is too slow to run all the cases in a reasonable amount of
time, just run fewer cases (for example, you could take only every tenth n from
10 to 100).

A note on grading

This task is worth 60 points. Partial credit will be given for any or all of the
following:

• instrumenting your interpreter

• implementing quicksort in MinML

• implementing set functions in MinML

• adding futures to either or both

• measuring and handing in raw numbers without commenting on them
(but of course you can’t get full credit unless you carefully analyze and
discuss your results)

Exceptionally insightful work will lead to extra credit. Collecting statistics not
listed above (for variously shaped trees, or adding futures in more than one
way), and reporting on them, can get extra credit as well.

6

Task: Scheduling (15 points EXTRA CREDIT)

One reason the simulation is unrealistic is that the number of processors is
assumed to be infinite, allowing hundreds of threads to run simultaneously.
For extra credit, revise your interpreter to schedule threads for some number k
(where k is a parameter to the interpreter) of processors. Turn in any additional
files you need to modify for this task.

Hand-in Instructions

Turn in the rules on paper, or as a text, PostScript, or PDF file called rules.txt
(rules.ps , rules.pdf) in the handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/asst8/

by 11:59 pm on the due date. Immediately after the deadline, we will run a
script to sweep through all the handin directories and copy your files else-
where. We will also sweep 24, 48, and 72 hours after the deadline, for anyone
using late days on this assignment.

You should also turn in e-mach.sml , qsort.mml , qsortf.mml ,
sets.mml , and setsf.mml (and any other files you modify, e.g. print.sml)
by copying them to your handin directory. Finally, turn in the report on paper,
or as a PostScript (report.ps) or PDF file (report.pdf) again, in the handin
directory.

If you decide to turn in answers on paper, your solution is due in WeH 5119
by 11:59 pm on the due date. If you are handing the assignment in late, either
submit your solution electronically or bring it to WeH 5119. If I am not in my
office, write the date and time at the top and leave it on my chair or (if the door
is closed) slide it underneath the door.

NOTICE: This is the last assignment, so you’re welcome to use up your
remaining late days. Please look at your grades on Blackboard to make sure
you really do have late days left! You cannot use more late days than you have
left. If you hand in 3 days (more than 72 hours) late, and you had fewer than 3
days left, your assignment will not be graded. Likewise, if you have no days
left, you must hand in on time (11:59 pm, December 4) to receive a grade.

For more information on handing in code, refer to

http://www.cs.cmu.edu/˜fp/courses/312/assignments.html

7

