Assignment 7:
Subtyping and Objects

15-312: Foundations of Programming Languages
Daniel Spoonhower (spoons@cs.cmu.edu)

Out: Thursday, November 6, 2003
Due: Thursday, November 13, 2003 (1:30 pm)

50 points total

1 Subtyping products (10 points)

In this problem we explore subtyping for products. We assume we have
a subtyping judgment with reflexivity, transitivity, and the primitive coer-
cion itof : int < float. As discussed in lecture, subtyping for products 71 x 7
is co-variant in both 7 and 7.

Extending the subtyping for products any further is fraught with dif-
ficulties. One attempt is based on the observation that wherever a value
of type 7| is expected we can supply instead of value of 71 x 7. Simi-
larly, wherever a value of type 7 is expected we can supply a value of type
71 X T2. The corresponding coercions would be the first and second projec-
tions. That is, we would have

proj, proj,

Axfst(z) i1 x 0 <7y Az.snd(x) : 1 X 1o < T

1. (5 pts) Show with a concrete counterexample that the system with the
two rules above is not coherent. You should exhibit two types 7 and o
and two different coercions f : 7 < ocandg:7 < 0.

2. (5 pts) Suppose that in reaction to the problem with coherence from
part (1) we reject the second subtyping rule (proj,), allowing only the
first (proj,). Unfortunately, this does not solve the problem. Exhibit a
counterexample to coherence in using only rule proj, (and the usual

rules of subtyping).

2 Subtyping records (15 points)

Another approach to aggregate values that can be used instead of products
is records. For that, we extend the type system by record types that we de-
note by p; we use [to denote record labels (not to be confused with memory
locations).

Types 7 == ...|{p}
Record Types p == -|l7,p
We extend expressions to allow the formation of records, denoted by r,

and also the selection of a field from a record, written as e.l for a record
label I.

Expressions e == ...|{r}|e.l
Records r == -|l=e,r

We assume that any label occurs at most once within a record or record
type. We sometimes use parentheses to enclose record types or record so
the scope of the *,” is more clearly visible. Such parentheses are not properly
part of the syntax of the language. We have a new typing judgment r : p,
used in the following rules.

Fl‘?“:p Fl_e{p} p:plal:TalOQ
L'E{r}:{p} 'Hel:7

I'te:7 T'Fr:p
L'=():() L'k (I=e,r): (I:1,p)

Note that the field selection operation e.l will always yield a unique
answer on well-typed records. This is because labels in a record must be
unique.

In this notation, the empty record expression corresponds to the unit
type. Note that there is a minor ambiguity in that the empty record and its
type are both denoted by ‘-, thatis, - {-} : {-}. As usual, we omit a leading
‘in a record.

We do not give the formal operational semantics, but the elements of a
record should be evaluated from left to right, eventually yielding a record
all of whose fields are values. On values, the order of the fields in a record
are not significant, so we consider {l;:71, lo:m2} = {lo:m2, l1:71 }.

In the remainder of the this problem you will be asked to design subtyp-
ing rules for records validating certain principles. Your rules do not need
to show coercions; we are only interested in pure subtyping.

2

1. (5 pts) Depth subtyping expresses that subtyping is co-variant in all the
tields of a record. Formalize depth subtyping with one or more rules.

2. (5 pts) Width subtyping expresses that we can forget extraneous fields.
Formalize width subtyping with one of more rules.

3. (5 pts) A pair pair(ey, e2) can represented by the record {1=e;, 2=es}.
Then the first and second projection are defined by fst(e) = e.1 and
snd(e) = e.2, respectively. This is the approach taking in Standard
ML, using the notation #I(e) instead of e.l. Relate depth and width
subtyping to the subtyping rules for pairs from Problem 1 and explain
why coherence is not violated here.

3 Casts in EML (10 points)

Consider the following declarations:

class B of ...
class C extends B of ...
fun foo : C -> int;

The EML language does not have a primitive cast operation. However,
in practice many object-oriented programs need a way to find out if an
object of static type class B is really an instance of class C, so that they can
call functions like foo that are only defined on C.

Note: for the question below, it may be helpful to assume that function
cases in EML can accept arbitrary patterns, not just a tuple of the form (x;
as Ci,...,.xp as Cp).

1. (10 pts) Write a function called ifC in EML that has type
B -> (C -> int) -> int option . If the first argument is really
an instance of class C, ifC should call the function passed in as the
second argument with the first argument as a parameter and return
SOME(i) where i is the result of the function call; otherwise ifC
should return NONE

4 Multiple Inheritance (15 points)

Assume we extend the EML language so that it provides multiple inher-
itance. Function declarations and function cases are unchanged, as is the

3

semantics for function case lookup. Class declarations now take a list of
classes in the extends clause:

classdecl = [abstract]class C [extends C*]
of {I:7}

Assume that some program has a structure of the form:

structure Shapes = struct
class Rectangle
of { upperLeft:Point, lowerRight:Point }
class BorderedRectangle extends Rectangle
of { border:Color }
class FilledRectangle extends Rectangle
of { fill:Color }
end

Now assume that two programmers, working independently, create the
following structures and add them to the program:

structure Draw = struct

fun draw : Shapes.Shape -> unit;

extend fun draw (x as Rectangle) = ...

extend fun draw (x as BorderedRectangle) = ...

extend fun draw (x as FilledRectangle) = ...
end
structure ExtendedShapes = struct

class BorderedFilledRectangle

extends BorderedRectangle,FilledRectangle

of { }

end

The intuitive semantics of multiple inheritance is that
BorderedFilledRectangle will inherit fields from both of its super-
classes, and a function case that applies to a superclass will also apply to
BorderedFilledRectangle

1. (5 pts) Consider the global typechecking algorithm discussed in class,
as well as the modular version of the EML typechecking algorithm.

Do each of these algorithms give the right answer in the case of mul-
tiple inheritance? What errors, if any, will each of these algorithms
report when run on the code above?

. (5 pts) C++ provides two semantics for multiple inheritance: virtual
and non-virtual. In non-virtual inheritance,

BorderedFilledRectangle would have two copies each of the
upperLeft and lowerRight fields—one inherited from Rectangle
through BorderedRectangle , and one inherited from Rectangle
through FilledRectangle . In virtual inheritance,
BorderedFilledRectangle would have only one such copy.

The distinction between virtual and non-virtual inheritance applies
only to the case when fields are inherited from the same superclass
along different inheritance paths; in all other cases the semantics of
virtual and non-virtual inheritance are identical.

Which is the most reasonable semantics in the example above: non-
virtual or virtual inheritance? Explain your answer.

. (5 pts) Is the semantics (virtual or non-virtual) you chose above al-
ways the right one, or are there reasonable examples where you need
the other semantics? If there is a reasonable example, show one. If
not, argue why there are no such reasonable examples. [Hint: think
”is a” vs. “has a”]

