
Assignment 6:
Storage Management

15-312: Foundations of Programming Languages
Daniel Spoonhower (spoons@cs.cmu.edu)

Out: Friday, October 24, 2003
Due: Thursday, November 6, 2003 (11:59 pm)

100 points total + 15 points extra credit

Revised October 29, 2003

1 Introduction

In this assignment, you will implement two versions of a garbage collector for an abstract machine.
Your garbage collector will automatically manage the memory used to store pairs and closures.
Before you begin, you may want to review Harper’s chapter on storage management (Chapter
31). In the assignment directory, you’ll find several files with support code; you will only need to
fill in the missing code in eval.sml and gc.sml .

You will rarely, if ever, need to write long or complicated functions to complete this assign-
ment. Therefore, you should strive for elegance. Your solution will be graded primarily on cor-
rectness, but if your code does not correctly handle one or more cases, we will inspect your code
and attempt to give you some credit for the understanding it reflects. You may also have the op-
portunity to reuse part your solution to this assignment in a future assignment. In each of the
latter situations, it is to your benefit to write clean, legible code.

We will be considering exactly the same language we used in Assignment 4, MinML with pairs
and exceptions, but some of the details of the implementation have changed significantly. Before
you begin, you may wish to read the provided code (especially the signatures) to gain an under-
standing of the setup. All of the necessary SML files are listed in the sources.cm file, and you
can build the project in SML/NJ by typing CM.make() .

2 Background

One of the goals of garbage collection is to make memory management opaque to the program-
mer; consequently, we won’t be adding any new typing rules. We will be changing the behavior
of machine, however, and so we will have some new transition rules. We will also add a new com-
ponent to our abstract machine, a heap H . Our evaluation judgments will now look something
like:

H | k | η > e

1

We might read this judgment as “we are currently evaluating expression e in environment η with
stack k and heap H .”

Our extended abstract machine semantics will share some features with the structures we used
to reason about references and mutable storage, and in particular, the heap will map locations l
to values. It is important to understand that, unlike our description of references, the heap is not
mutable: there is no way for the program to “update” the value associated with a reference. In
fact, programs will not, in general, even be aware of the heap.

One of our goals in designing the E machine was to build a realistic model of how programs
are executed on real hardware. While we carefully described the interactions of the stack and the
environment, we neglected to note that the physical memory used to maintain these structures
can not store data of arbitrary structure or size. For example, the machine registers mostly likely
used to store elements of the current environment are limited to 32 (or 64) bits, far too small to
hold a nested pair structure. So even without adding references to our language, we have a need
to perform memory management.

Like any good hardware (or pseudo-hardware) the E machine has done its job, but now it’s
time to go out and get one of the latest models,

The A machine

The A machine will provide the necessary extensions to support our implementation of an auto-
matic memory manager or garbage collector. In particular, it will distinguish between small values
(those suitable to live in the environment or on the stack) and large values, as shown below. (As
in our previous discussions, neither exception values nor locations will be expressed by the pro-
grammer in the source language.)

(small values) v ::= i | true | false | unitel | exn (k) | l
(large values) V ::= 〈〈η; e〉〉 | pair (v1, v2)

Following our comments above, the A machine will also define a heap, a finite map from loca-
tions to large values.

(heaps) H ::= · | H[l = V]

Given a heap, the problem of garbage collection may then be phrased as, “when it is safe to
removing a mapping from the heap?” Most garbage collectors will answer this question using a
technique known as tracing. These collectors determine what is and is not garbage by following
the reachability graph of the current state of the machine. Presently, we will be considering one
instance of a tracing collection algorithm: semi-space copying collection.

Lastly, but before we begin, you should note that we have made two other changes to the
abstract machine with which you became familiar a few weeks ago. We have made the form of
each variable binding explicit: each binding is given by an instance of the ML datatype binding

and is either an ordinary binding (BOrd, e.g. x = v) or a recursive binding (BRec, e.g. x ∗= v).
We have also removed the VSuspend value, as recursive expressions are now bound explicitly as
such.

3 Evaluation

To become familiar with our new abstract machine, you will first complete the implementation of
its transition rules. Most of the rules carry over from the E machine, with the addition of the heap

2

to each state. Many rules have already been implemented; you will be responsible for the cases
involving pairs, functions and recursive expressions.

As it turns out, it was no accident that we asked you to think about building more efficient
closures in Assignment 4: it will be a key to good performance in the A machine.

Task 1: A machine Evaluation (10 points)
Modify eval.sml to complete the implementation of evaluation for the A machine. In particular,
you should implement those rules that appear below. (The rule for recursive binding lookup has
already been implemented for you.) Note that even though we have not begun our implementa-
tion the garbage collector, you will still use the functions alloc and defer , as defined in the GC
signature, to allocate space for large values and to lookup those values once they have been stored
in the heap. Finally, you should use the provided function DBUtils.trim to ensure that your
machine builds the smallest possible closures.

H | k . pair (v1,�) | η < v2 7→a H[l = pair (v1, v2)] | k | η < l

H = (H1, l = pair (v1, v2),H2)
H | k . fst (�) | η < l 7→a H | k | η < v1

H = (H1, l = pair (v1, v2),H2)
H | k . snd (�) | η < l 7→a H | k | η < v2

H | k | η > fn (τ, x.e) 7→a H[l = 〈〈η; fn (τ, x.e)〉〉] | k | η < l

H = (H1, l = 〈〈η′; fn (τ, x.e)〉〉,H2)
H | k . apply (l,�) | η < v2 7→a H | k . η | η′, x = v2 > e

H | k | η > rec (τ, x.e) 7→a H[l = 〈〈η; rec (τ, x.e)〉〉] | k . η | η, x ∗= l > e

Evaluation is invoked in a manner that differs slightly from previous assignments. You must
now initialize the evaluator with the size of the heap, for example by typing either

Top.loop_eval heapSize; or Top.file_eval heapSize "test_file.mml";

at the SML/NJ prompt. If you set the heap size to a large enough value, you should be able
to test your implementation by running any MinML program from either of the previous two
programming assignments.

4 Stop-the-World Collection

We will model the behavior of a semi-space collector by tracking two sets of location mappings.
In this part of the problem you will use the machine model described the AMach structure and
modify the garbage collector defined by StopTheWorldGC .

A semi-space collector (perhaps unsurprisingly) divides memory into two halves, and offers
exactly one half to the user’s program to be used as storage.1 When that half is consumed, the col-
lector begins to trace through memory, for example from one pair to another. Each time it reaches

1What we have been calling “user program” is often referred to as “the mutator,” and we will sometimes use that
terminology as well (despite the fact that, in our language, no mutation can occur).

3

a value for the first time, it copies that value to the reserved half of memory. When all reachable
values have been found and copied, we present the (formerly) reserved space to the mutator and
continue as before. Any values that were not copied were not reachable and, therefore, could not
be part of any future evaluation.

In order to perform this tracing, the collector must be able to discover which parts of pairs,
for example, contain locations that point elsewhere in the heap and which are simply integers or
booleans. In order to do so, we will define a set of related functions that determine the free locations
of values, environments, and the stack.

In this case, the collector will only begin work when no free memory remains. At that point
in time, it will complete a full collection cycle, reclaiming as much memory as possible before
returning control to the mutator. This style of collection is often known as stop-the-world collection.

Task 2: Determining Free Locations (5 points)
In the file gc.sml , you will find several stubbed out functions; we are currently interested in
FLSV, FLE, FLLV, and FLS, functions that will determine the free locations of small values, envi-
ronments, large values, and the stack. Give a definition to these functions and implement them in
gc.sml . (You need not turn in the definitions separately.)

The G machine

Following the description given in Harper’s book you will implement a garbage collector based
on a set of transition rules called the G machine. Following our informal description of semi-
space collectors above, we will have two sub-heaps Hf , Ht, often known as the from- and to-spaces
respectively, along with a scan set S, a set of locations that we are currently processing. The state
of the G machine is then given by the tuple

(Hf , S,Ht)

As you will be implementing a graph traversal algorithm, you can think of the scan set as the
frontier of that traversal. The transition rules for the G machine are given below.

(Hf [l = V], S ∪ {l},Ht) 7→g (Hf , S ∪ FLLV(V),Ht[l = V])
Copy

(Hf , S ∪ {l},Ht[l = V]) 7→g (Hf , S,Ht[l = V]) Discard

The first rule Copy tells us what to do the first time a location appears in the scan set: we copy
the location and its value into the to-space, and modify the scan set by replacing l with the free
locations of V . If we have already scanned a value (as in the case of a cyclic data structure), then
Discard says that we can simply remove l from the scan set and continue.

Task 3: G machine Transitions (15 points)
In StopTheWorldGC , implement the G machine transitions in the function step . This function
should make exactly one transition each time it is applied. If neither rule above applies and there is
at least one free cell in the to-space, then collection is complete and step should raise the exception
Done. If neither rules applies and there are no free cells in the to-space then the collection was
unsuccessful and the collector should raise the exception Memory.

4

Putting them together

Now we simply need to connect our two machine models to get a fully functioning implementa-
tion of MinML. The following rules state how the collector may be invoked.2

(H,FLS(k) ∪ FLE(η), ∅) 7→∗g (H ′′, ∅,H ′)
H | k | η > e 7→a H

′ | k | η > e

(H,FLS(k) ∪ FLE(η) ∪ FLSV(v), ∅) 7→∗g (H ′′, ∅,H ′)
H | k | η < v 7→a H

′ | k | η < v

Notice how these rules allow the A machine to invoke the G machine at any time. The implemen-
tation of the step’ function in eval.sml reflects this: any time the Collect exception is raised,
we immediately invoke the collector.

Task 4: Invoking Collection (10 points)
Finally, implement the function collect , the function that allows transitions from the A machine
to the G machine. collect should invoke StopTheWorldGC.multiStep (which has already
been implemented for you). You may use the function Memory.init to create a new (empty)
to-space at the start of collection.

Congratulations! Once you have completed this last task, you will have a implemented a
complete garbage collector. To be sure that you implementation is correct, try running some pro-
grams with a heap size that is smaller than the total number of large values allocated, but as great
as the largest number of reachable values at any time. For example, the program contained in
space.mml will run with a heap of size 4, but not with a heap of size 3. Verify this behavior in
your collector.

Task 5: Constrained Resources (5 points)
Give a well-formed program in our current version of MinML, but without using pairs, that will ter-
minate normally when run with some heap of size n, but that will abort execution with a Memory
exception when run with a heap of size n − 1 (for some reasonably small n > 1). Include your
program in a file called constrained.mml with the rest of your implementation.

5 Incremental Collection

So far we have defined collection in a way that is independent of our abstract machine. That is,
the collector’s internal structure has no effect on the structure of the A machine. While this has
some advantages, it means that we must perform an entire collection before returning control to
the mutator. A more desirable collector might instead carry out its duties one increment at a time,
interleaving its work with that of the mutator. In this part of the assignment, you will implement
exactly such a collector in the structure IncrementalGC .

In order to account for the details of our new strategy, we will need to make some changes
to our abstract machine. You will now be using the AGMachmachine representation; we will
elaborate in a moment. In the meantime, all you need to do is uncomment two lines in top.sml ,
lines 26 and 27.

Like the A machine, the AG machine will also include a heap as part of its structure, but we
must now expose some of the internal details of our collector as well. In addition, we need to
account for the fact that sometimes the mutator will be running by itself, while at other times it

2As revised in the first correction to the assignment.

5

will be sharing time with the collector. When the collector is running, states of the AG machine
will look something like

Hf , S,Ht | k | η > e

That is, we must maintain the internal state of the collector explicitly.
In order to simplify the implementation of the evaluator, we will give a single type that de-

scribes the state of the collector, regardless of whether it is on or off.

type heap = lvalue memory * loc list * lvalue memory * bool

That is, the heap will be composed of a from-space, a scan set, a to-space, and a boolean that indicates
whether or not the collector is running. When the collector is off, we will allocate from the from-
space by convention.

Due to its complexity, we will describe our incremental collector in a more algorithmic nature,
but you should note that the core details of the implementation are consistent with the transition
rules for the G machine: we are still implementing a semi-space copying collector.

In the course of execution, we would like to maintain the following invariants.

• When the collector is off, allocation will be performed in the from-space exactly as before but
with the following exception: we may begin collection even if there is enough free space to
satisfy the current request.

• When the collector is off, we check to see if we should be begin collection by inspecting the
from-space Hf during allocation. If the from-space is more than half full, then we signal a new
collection by raising the Collect exception.

• When the collector is on, we perform allocation in both semi-spaces with the same location.
This ensures that the new large value lives through to the end of the current collection and
that we are not re-using a memory cell in the to-space that will be required for some other
value (yet to be copied).

• When the collector is invoked for the first time (after running in the “off” mode) it should
initialize the scan set, just as in our first collector. In this case it does not need to perform any
further work (presumably the initialization itself forms an “increment”).

• Otherwise, when the collector is invoked, it should do the work corresponding to one step
of the G machine with the following exception.3

l 6∈ dom(Ht)
(Hf [l = V], S ∪ {l},Ht) 7→g (Hf [l = V], S ∪ FLLV(V),Ht[l = V])

Copy′

Task 6: Allocation (10 points)
Implement allocation in the function alloc in IncrementalGC according the invariants above.

Task 7: Single-step Collection (25 points)
Implement a single step of garbage collection in the function step maintaining the invariants

3As revised in the second correction to the assignment.

6

above. [Hint: Part of your implementation will look very similar to your original implementa-
tion of the G machine transition rules.]

Task 8: Invoking Incremental Collection (10 points)
Just as before, tie the knot by completing the implementation of the collect function, again,
maintaining the invariants above. Note that there is no analog of multiStep in an incremental
collector, so you should invoke step directly.

At this point, you’ve completed a second garbage collector, though (as is common in many
incremental collectors) your implementation may require larger heaps for a given program than
the stop-the-world collector above. This is part of the trade-off of incremental collectors, we may
pay a higher price for garbage collection, but we pay it in smaller increments.

Additional invariants

One of the more difficult aspects of implementing an incremental collector is ensuring that the
two semi-spaces are maintained a consistent manner. This is particularly problematic in language
where the mutator can actually update values in the heap. One strategy for dealing with this
problem is to force the mutator to operate only on values in the to-space.4 Then, if the mutator
updates any data structures during collection, we know that the version in the to-space reflects all
of these changes.

Even though our current version of MinML is a pure language, we will make the appropriate
changes to implement this invariant. In order to do so, we will implement a read-barrier. That
is, when the collector is on, we will perform a check at each dereference operation ensuring that
a copy of the desire value lives in the to-space (though an identical copy may also reside in the
from-space).

Task 9: Read Barrier (10 points)
Change the implementation (but not the type!) of deref in IncrementalGC to enforce that, if
the collector is on, any value returned to the mutator lives in the to-space.

6 Optimization

One form of optimization you should already be familiar with is tail-call elimination. While we will
not be able to eliminate tail-calls as we might in an imperative language, the explicit stack of the E
and A machines will allow us to improve the performance of our interpreter by recognizing these
calls and treating them in a manner different than ordinary function application.

Task 10: Tail-Call Optimization (EXTRA CREDIT, 15 points)
For full credit, complete each of the following subtasks:

• Give a program that includes at least one function application in tail-call position and one
that is not. For both cases, give an (abbreviated) description of the machine state just before
the application is carried out (i.e. the top stack frame should be of the form apply (v1,�)).
You only need to write the relevant parts of the heap, stack, and environment.

4This is known a to-space invariant.

7

• Modify or extend the transition rules for the A machine to recognize tail-calls and perform
the optimization eluded to above. Hand in your rules electronically as tail-call.txt or
tail-call.ps or submit them in written form. Make a duplicate tail-call-eval.sml
of eval.sml and implement your rules in the copy.

• Explain how this optimization will improve the performance of the garbage collector. Give
an example of a well-formed MinML program that will terminate normally with the opti-
mized transition rules, but will raise a Memory exception with the original rules (with the
same heap size in both cases). Include your program (and the size of an appropriate heap)
in a file tail-call.mml .

7 Test Cases

Since we have not changed the definition of our language, any test cases from previous assign-
ments should still have the same behavior. We have included two files, space.mml and copies.mml
that exhibit interesting behavior from a memory usage standpoint, but the results of their respec-
tive executions should be obvious.

You are encouraged to submit other test cases to us. We will test each submission against a
subset of the submitted test cases, in addition to our own. So, even though you will not receive any
points specifically for handing in test cases (beyond those points received in Task 5), it is in your
interest to send us tests that your code handles correctly. See below for submission instructions.

8 Hand-in Instructions

Turn in the files eval.sml , gc.sml , and constrained.mml along with any other extra credit
and test files by copying them to your handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/asst6/

by 11:59 pm on the due date. Immediately after the deadline, we will run a script to sweep through
all the handin directories and copy your files elsewhere. We will also sweep 24, 48, and 72 hours
after the deadline, for anyone using late days on this assignment.

Turn in non-programming questions as text or postscript files in the handin directory. Or, if
you wish, you may turn in answers on paper, due in WeH 5119 by 11:59 pm on the due date. If
you are handing the assignment in late, either submit your solution electronically or bring it to
5119 Wean. If I am not in my office, write the date and time at the top and leave it on my chair or
(if the door is closed) slide it underneath the door.

Also, please turn in any test cases you’d like us to use by copying them to your handin direc-
tory. To ensure that we notice the files, make sure they have the suffix .mml . You should include
a comment in the file that indicates how large the heap should be in order for the program to run
correctly.

For more information on handing in code, refer to

http://www.cs.cmu.edu/˜fp/courses/312/assignments.html

8

