
Assignment 5:
A Monad for I/O

15-312: Foundations of Programming Languages
Daniel Spoonhower (spoons@cs.cmu.edu )

Out: Thursday, October 16, 2003
Due: Thursday, October 23, 2003 (1:30 pm)

50 points total

In this assignment, we add simple input and output to the generic frame-
work of monads. Both input and output are represented as potentially in-
finite streams of integers n1 · n2 · · · · , where ε is the empty stream.

The worlds of the monadic framework are therefore pairs (SI , SO) of
potentially infinite streams of integers, where SI represents the input stream,
and SO is the output stream which is initially empty. We have the following
new monadic (that is, effectful) expressions.

• read ÷ int which reads and thereby consumes an integer from the
input stream. It returns 0 if the input stream is empty.

• eof ÷ bool which returns true if the input stream is empty and
false otherwise.

• write (e) ÷ 1 which writes the value of e (which must be an integer)
to the output stream.

1. Typing rules (5 pts)

Give the rules for typing the new expressions (read , eof , write ). You do
not need to repeat the generic rules for the monad.

1



2. Operational semantics (10 pts)

Present the new transition rules for the structured operational semantics.
According to the monadic framework, the transitions should have one of
the two forms

〈(SI , SO),m〉 7→ 〈(S′I , S′O),m′〉
e 7→ e′

3. Stating the progress theorem (5 pts)

Carefully formulate the progress theorem which is appropriate for the set-
ting above. You may assume the input and output streams are well-formed.

4. Proving the progress theorem (15 pts)

Prove the progress theorem. Show all the cases concerned with the monadic
constructs: val , let val , read , eof and write . If you need a value in-
version property (also known as the canonical forms property), please state
it explicitly, but you don’t need to prove it. If you need to generalize the
progress theorem from question 3, please explicitly state the generalization.

5. Non-recursive programming (5 pts)

Define copyOne : ©1 which reads one integer from the input stream and
writes it to the output stream. Be sure that your program typechecks ac-
cording to the generic rules for the monad and your typing rules above.

6. Recursive programming (10 pts)

Recall that our recursive binding construct rec (τ, x.e) allows us to write
recursive expressions of arbitrary type τ . Using this construct, define

copy : ©1

which reads the entire input stream and copies it to the output stream.
(Again, we recommend that you verify that your program is well-typed.)

2


