Assignment 3:
The Meaning of Laziness

15-312: Foundations of Programming Languages
Daniel Spoonhower (spoons+@cs.cmu.edu)

Revised: Tuesday, September 23, 2003
Due: Thursday, September 25, 2003 (1:30 pm)

50 points total

In this assignment, we’ll alter MinML to use call-by-name evaluation
instead of call-by-value, and add lazy pairs and lazy lists (i.e. streams).

Call-by-name MIinML + lazy pairs + streams

We start by adding two new types, a lazy pair type and a stream type, to
the language defined in Assignment 2. Note that pairs as defined in this
assignment differ from those defined in lecture. The concrete and abstract
syntax for these new constructs is found below.

Construct

Type of lazy pairs
Lazy pairs

Left projection
Right projection
Type of streams
Empty stream
Cons

Case on streams

Concrete Syntax

1% T

(e1, e2)

fst e

snd e

T stream

nil : 7stream
e1:. €9

case e of nil =>

e1] xzi s=>e9

Abstract Syntax

cross (71,72)

pair (ej,e2)
fst (e)
snd (e)
stream (7)

nil (1)
cons (eq, e2)
case (e, ey, x.s.€2)

We will use abstract syntax for expressions in rest of the assignment,
but continue to use concrete syntax for types (for the sake of readability).

The intended lazy interpretation of the new constructs is captured in
the following extension of the notion of value.

pair (e, ez) value

nil (7) value

cons (eg, ez) value

We must also add some typing rules. The complete set of typing rules
is given in Figure 1.

Consider the following two example programs. The first returns an
infinite stream 0::1::2::3::

(rec from : int -> int stream => fn x : int =>
x::(from (x+1))
) O

The second program defines a function that takes a stream and returns
its length if it is finite; otherwise, it fails to terminate. (Remember that fun
is syntactic sugar for rec and fn .)

let length = fun length (s : int stream) : int =>

(case s of
nil => 0
| x:8* => 1 + length S)
in
length (1::2::3::nil : int stream)
end

Extending the dynamic semantics is your job. You must:

1. Rewrite the transition rules so that function application is done “by
name;” that is, the argument to a function is not reduced to a value
before substitution occurs. Let bindings should also be lazy.

2. Add transition rules for each new construct. Pairs and streams should
be lazy, as the definition of the value judgment at the top of the page
indicates.

NumTyp

VarTyp

M,z ok 1 I'F num(n) :int

TrueTyp FalseTyp

T F true : bool T false :bool

I'kFe:bool T'Fe:7 T'heg:T
LEif (e,er,e2) 7

IfTyp

ezrhke:r
I'Frec (1,z.€): T

RecTyp

TyzmbFe:n

FnTh
L (r,ze):1 — 7 P

I'Feg:m—7 TI'Fea:m
'+ apply (ej,e2):7

AppTyp

I'Fer:mo1 ... T'hey:Ton
C'Fo(er, ... en) 7o

OpTyp

I'ker:mm Dyomber:m
' let (61,.%.62) I To

LetTyp

I'tFer:mm They:my
'k pair (ej,e2): 71 %7

PairTyp

I'kFe:mxm

I'Fe:mxm
I'Fsnd(e) : 7

FstT;
FHfst (e):m SHYP

SndTyp

I'tFep:7m T'Fey:7stream
I' - cons (e, e2) : 7 stream

NilTi ConsTh
I'Fnil (7):7stream wp P
I'Fe:mstream T'ke:7 I'xz:7m,s:7Stream Fey: 7

'+ case (e, eq,x.8.€9) : T

CaseTyp

Figure 1: Static semantics for MinML

Question 1 (10 points). Write down a dynamic semantics for MinML with
call-by-name evaluation, lazy pairs, and streams (lazy lists). For those rules
which remain unchanged from Assignment 2, you may include them by
reference. Make sure your semantics is deterministic: a given expression
should either be a value, or it may step, but never both. Also, if an expres-
sion can make a step, this step should be uniquely determined. You are
welcome to prove these properties, but don’t turn in the proof.

Question 2 (30 points). Prove the Preservation and Progress theorems with
respect to your semantics. Please carefully state your induction hypothesis
and any lemmas that you use. Show only those proof cases in your the-
orems and lemmas related to the pair , snd, fst , nil , cons, and case

constructs. If you need them, you may assume the weakening and expression
substitution properties for your system without proof.

(i) (Weakening) IfT";, Ty €' : 7/ the 'y, z:7, T €' : 7.
(ii) (Expression Substitution)

Iy, 2z, o€ 7' and - Fe:7thenTy, Iy F {e/x}e : 7.

An Alternate Formulation

We have made the type of the elements in a stream explicit in the type of
the stream. Consider the following alternative typing rules for cons and
nil where that is not the case.

T'Fnil :stream NilTyp

I'Fey:7m T'Fey:stream
I' - cons (ey, e2) : stream

ConsTyp’

Question 3 (10 points). Give counterexamples to preservation and/or progress.
Briefly identify where and how your safety proof from Question 2 would
break down if you were to use these alternate rules.

Question 4 (EXTRA CREDIT, 20 points). Give counterexamples to equiv-
alence between call-by-value and call-by-name semantics for function ap-
plication in the following sense:

¢ Give a program where one semantics diverges while the other termi-
nates.

¢ Give a program that terminates under both call-by-value and call-by-
name but returns different results (modulo a-conversion, as usual).

Discuss in what sense call-by-value and call-by-name might nonethe-
less be considered equivalent.

