
Assignment 2:
Implementing MinML

15-312: Foundations of Programming Languages
Daniel Spoonhower (spoons+@cs.cmu.edu)

Revised: September 16, 2003
Due: Thursday, September 18, 2003 (11:59 pm)

100 points total

1 MinML

For this assignment you will implement a typechecker and evaluator for MinML. This document,
along with an archive including your starting code and some examples, can be found both on the
web and via AFS.

http://www.cs.cmu.edu/˜fp/courses/312/assignments/asst2/
/afs/andrew/scs/cs/15-312/assignments/asst2/

In the archive, you will find several files with support code; you will only need to fill in the
missing code in translate.sml , typing.sml , and eval.sml .

You will rarely, if ever, need to write long or complicated functions to complete this assign-
ment. Therefore, you should strive for elegance. Your solution will be graded primarily on cor-
rectness, but if your code does not correctly handle one or more cases, we will inspect your code
and attempt to give you some credit for the understanding it reflects. You will also have the op-
portunity to reuse your solution to this assignment in future assignments. In each of the latter
situations, it is to your benefit to write clean, legible code.

Before you begin, you may wish to read through the provided code (especially the signatures)
to gain an understanding of the setup. All of the necessary SML files are listed in the sources.cm
file, and you can build the project in SML/NJ by typing CM.make() .

1.1 Parser and Concrete Syntax

The file parse.sml contains a parser for MinML. The parse function turns a Lex.token
Stream.stream into a MinML.exp Stream.stream by consuming programs (which are ex-
pressions followed by a semicolon). For simplicity, we don’t do any error recovery; when the
parser encounters an error it just raises the exception Parse.Error with a (somewhat) informa-
tive message.

While we have written the parser for you and the code you write will deal only with abstract
syntax, you still need to know the concrete syntax to write test programs. A grammar is given
in Figure 1. The grammar refers to tokens such as INT and BOOL. The tokens are defined in

1

lexer.sml ; we have also provided a lexer that takes a raw character stream and returns a stream
of tokens.

This syntax should be mostly self-explanatory. Application of a function e1 to an argument e2

is written by juxtaposition (e1 e2). Primitive operations are infix, with the usual precedence levels
(negation has the highest precedence, followed by juxtaposition (for function application), then
multiplication, then addition and subtraction, and finally equality). All primitive operations are
left-associative.1 The type constructor ‘-> ’ is infix and right-associative, just as in SML.

We have deviated from the MinML syntax given in Harper’s notes at one significant point.
Harper uses an expression of the form fun f(x:t1):t2 is e end to define all functions,
whether they are recursive or not. Instead, we have separated the notion of a function from that
of a recursive structure: we use fn x : t => e to describe functions (written λx : τ.e in the
simply-typed λ-calculus) and rec x : t => e to define a recursive term (sometimes seen as
µx : τ.e). For now, the only (useful) recursive constructs in MinML are recursive functions, but
later assignments will offer additional examples.

In order to make MinML programs easier to write and to read, we have introduced a bit of
syntactic sugar to emulate Harper’s fun . By syntactic sugar, we mean a feature that is added only
to the concrete syntax of a language and has no bearing on the abstract syntax. In order to give
meaning to this new syntax, we define a translation into another, existing form of concrete syntax.

fun f(x:t1):t2 => e ←→ rec f:t1 -> t2 => fn x:t1 => e

Syntactic sugar allows us to make the language more user-friendly without complicating the
implementation or our attempts to reason about the language. Since your portion of the imple-
mentation will deal only with abstract syntax, you won’t need to worry about fun or any other
syntactic sugar (again, except when you write test code).2

Figure 2 gives some examples of concrete syntax along with their translation into MinML ab-
stract syntax (SML expressions of type MinML.exp). Note that while the concrete syntax found
in each of the last two rows is distinct, the abstract syntax is identical. Also, note that the ab-
stract syntax groups binders together with their scope in the style of higher-order abstract syntax.
Variables are represented via their name as a string.

To play around with the parser and become familiar with MinML, at the SML/NJ prompt
type Top.loop_print_noDB (); or Top.file_print_noDB "test_file.mml"; . These
will print the program (with some redundant parentheses) in the named-variable form.

Task: Translation to deBruijn form (20 points)
In the file translate.sml , complete the implementation of function Translate.translate .
When completed, it should translate a stream of closed MinML expressions in the named variable
representation (type MinML.exp) to a stream of closed expressions in the deBruijn representation
(type DBMinML.exp). (Hint: Use the function Stream.map .)

To get started, read Section 5.4 of Harper’s notes, then think about how to translate the ab-
stract syntax. Most cases are very straightforward; variables, let , rec , and fn will require more
thought. In the translator, you will need to maintain an environment of variable names. Use the
simplest representation possible; don’t worry about efficiency.

1The grammar is actually right-associative (since that’s easier to implement in a recursive-descent style) so we had
to do some work in the parser to produce the correct abstract syntax. If you’re interested, look at the parse exp ,
parse exp’ , parse term , parse factor , parse factora and build primop functions in parse.sml .

2It should be further noted that the fun in the MinML of Harper’s notes and the one described here both differ from
the SML fun construct. In both instances of MinML, fun denotes only a value and not a declaration, as it does in SML.
Our fn is, however, very similar to the SML expression with the same name.

2

BaseType ::= INT | BOOL | LPAREN Type RPAREN
Type ::= BaseType | BaseType ARROW Type

ExpSeq ::= Exp | Exp COMMA ExpSeq

Var ::= VAR(s)

AddOp ::= PLUS | MINUS
MulOp ::= TIMES
RelOp ::= EQUALS | LESSTHAN
UnaryOp ::= NEGATE

FactorA ::= LPAREN Exp RPAREN
| NUMBER(n)
| Var
| TRUE
| FALSE
| IF Exp THEN Exp ELSE Exp FI
| LET Var EQUALS Exp IN Exp END
| FN Var COLON Type DARROW Exp
| REC Var COLON Type DARROW Exp
| FUN Var LPAREN Var COLON Type RPAREN COLON Type DARROW Exp
| UnaryOp Factor

Factor ::= FactorA
| Factor Exp

Term ::= Factor
| Factor MulOp Term

Exp’ ::= Term
| Term AddOp Exp

Exp ::= Exp’
| Exp’ RelOp Exp

Program ::= Exp SEMICOLON

Figure 1: MinML concrete syntax.

3

Concrete Syntax Lexer Tokens Abstract Syntax
true TRUE Bool(true)

1 NUMBER(1) Int(1)

1 + 2 NUMBER(1) PLUS
NUMBER(2)

Primop(Plus, [Int(1),
Int(2)])

if true then 4
else 5 fi

IF TRUE THEN NUMBER(4)
ELSE NUMBER(5) FI

If(Bool(true), Int(4),
Int(5))

f 3 VAR("f") NUMBER(3) Apply(Var("f"),
Int(3))

fn g : int =>
true

FN VAR("g") COLON INT
DARROW TRUE

Fn("g", INT,
Bool(true))

rec f : int ->
bool => fn g :
int => true

REC VAR("f") COLON
INT ARROW BOOL DARROW
FN VAR("g") COLON INT
DARROW TRUE

Rec("f",
ARROW(INT,BOOL),
Fn("g", INT,
Bool(true)))

fun f (g : int)
: bool => true

FUN VAR("f") LPAREN
VAR("g") COLON INT
RPAREN COLON BOOL
DARROW TRUE

Rec("f",
ARROW(INT,BOOL),
Fn("g", INT,
Bool(true)))

Figure 2: Examples of MinML syntax.

Γ1, x:τ,Γ2 ` x : τ
VarTyp

Γ ` num(n) : int
NumTyp

Γ ` true : bool
TrueTyp

Γ ` false : bool
FalseTyp

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ
Γ ` if (e, e1, e2) : τ

IfTyp
Γ, x:τ ` e : τ

Γ ` rec (τ, x.e) : τ
RecTyp

Γ, x:τ1 ` e : τ2

Γ ` fn (τ1, x.e) : τ1 → τ2
FnTyp Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

Γ ` e1 : τo1 ... Γ ` en : τon
Γ ` o(e1, . . . , en) : τo

OpTyp
Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let (e1, x.e2) : τ2
LetTyp

Figure 3: Static semantics for MinML.

4

1.2 Typechecker

Next, you will implement a typechecker for MinML. The static semantics for MinML, given in
Figure 3, assures that every expression has at most one type. Therefore, your typechecker will
return the unique type for an expression if it is well-typed or raise the exception Typing.Error
otherwise.

Recall that the specification of MinML uses a typing judgment to classify MinML expressions as
ill- or well-typed. The typing judgment is defined inductively by a set of inference rules. It follows
that, in order to decide whether a given expression has a type, we need to search for a derivation
using the typing rules. A moment of thought reveals that if we could classify an expression as
ill- or well-typed through a typing judgment, then we could also retrieve its type easily, because
the derivation itself would us tell exactly how to determine the type of the expression. So, in fact,
deciding the type of an expression is no harder than deciding if the expression is ill- or well-typed.

In general, we cannot assume that an expression matches only one typing rule, thus the search
strategy for a derivation can be non-deterministic. Fortunately, the search strategy for MinML is
syntax directed: the form of expression we are typing determines uniquely which rule to apply.
Therefore, if the typechecker finds that no rule can be applied to an expression, it knows that the
expression is ill-typed and can raise an exception immediately without backtracking. Your code
will probably have one function clause for each constructor of the datatype DBMinML.exp .

We provide a function MinML.typeOfPrimop that returns the domain and range types for
a primitive operation. Your typechecker should use this function, but should not rely on the fact
that all primitive operations currently have a maximum of two arguments; it should be possible
to add new operations to MinML without modifying your type checker.

Task: Typechecker (35 points)
Complete the code in typing.sml to produce a structure Typing :> TYPING which imple-
ments the behavior specified. You should not modify any other files. Remember that the expres-
sion to be typechecked will be in deBruijn form. This file contains some code to get you started;
we recommend using it. We also recommend that you write a function called typing , with type
(typ env) * exp -> typ and specification as follows:

Given a type environment Γ and an expression e, typing returns τ , the type of e
under Γ, if τ exists. If e is ill-typed in Γ then typing raises the exception Typing.Error .

You can test your typechecker before you complete the evaluator. Run Top.loop_type ();
or Top.file_type "test_file.mml"; .

1.3 Evaluator

Finally, you’ll implement the MinML dynamic semantics in the file eval.sml . The dynamic
semantics is given in Figure 4 as a relation “7→” for single-step evaluation. There are many more
efficient ways of evaluating MinML programs (as we’ll see later in the class), but we require that
you strictly follow the specified semantics for this assignment.

The evaluation algorithm is straightforward. First it will use the “search rules” OpArg, IfCond,
AppFun, AppArg, and LetArg to recursively scan the input expression for the proper subexpression
to modify. Once the proper subexpression has been located, one of the “instruction rules” OpVals,
IfTrue, IfFalse, CallFun, UnfoldRec, Let can be applied. If no rule applies (as might happen if the
expression is already fully evaluated, or is ill-typed), the evaluator will raise an exception.

5

ei 7→ e′i
o(v1, . . . , ei, . . . , en) 7→ o(v1, . . . , e

′
i, . . . , en)

OpArg
(by primop o)

o(v1, . . . , vn) 7→ v
OpVals

e 7→ e′

if (e, e1, e2) 7→ if (e′, e1, e2)
IfCond

if (true , e1, e2) 7→ e1
IfTrue

if (false , e1, e2) 7→ e2
IfFalse

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

AppFun
e2 7→ e′2

apply (v1, e2) 7→ apply (v1, e
′
2)

AppArg

apply (fn (τ, x.e), v2) 7→ {v2/x}e
CallFn

rec (τ, x.e) 7→ {rec (τ, x.e)/x}e
UnfoldRec

e1 7→ e′1
let (e1, x.e2) 7→ let (e′1, x.e2)

LetArg
let (v1, x.e2) 7→ {v1/x}e2

Let

Figure 4: Dynamic semantics for MinML (v, vi, etc. denote expressions that are values).

For example, on the expression e1 e2, the evaluator will try to apply an evaluation step to the
function expression e1. If it is already a value, the evaluator will try to apply a step to the argument
expression e2. If it is already a value as well, the evaluator will try to use the instruction rule for
application, CallFun.

Since the CallFun, UnfoldRec, and Let rules involve substitutions, you will also need to properly
implement substitutions. This isn’t hard, but as usual, think before you code.

Task: Evaluator (45 points)
In eval.sml , fill in the structure Eval :> EVAL to implement the behavior specified. You
should not modify any other files. Most of the work that you do will be in the function step ,
which has type exp -> exp and the specification:

Given an expression e in deBruijn form, step returns the unique e′ such that e 7→ e′.
If no such e′ exists, step raises the exception Eval.Stuck .

Test Cases

We have provided a small number of test cases. Once your evaluator is complete, these may be
run by typing Top.file_eval "test_file.mml"; . These test cases are described in the table
below.

6

Filename Expected Result Description
if.mml 3 : int Simple test of if

fun.mml fn : int => DB[1] :
(int) -> (int)

Simple test of fun

factorial.mml 120 : int The factorial function

self.mml ill-typed Ill-typed function

hof.mml 7 : int Simulates pairs using
functions

These test files are (obviously) not exhaustive, so you should develop your own in order to
test your program thoroughly. You are encouraged to submit test cases to us. We will test each
solution against a subset of the submitted test cases, in addition to our own. So, even though you
will not receive any points for handing in test cases, it is in your interest to send us tests that your
code handles correctly: it will tend to improve your grade. See below for submission instructions.

2 Hand-in Instructions

Turn in the three files translate.sml , typing.sml , and eval.sml by copying them to your
handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/asst2/

by 11:59 PM on the due date. Immediately after the deadline, we will run a script to sweep through
all the handin directories and copy your files elsewhere. We will also sweep 24, 48, and 72 hours
after the deadline, for anyone using late days on this assignment.

Also, please turn in any test cases you’d like us to use by copying them to your handin direc-
tory. To ensure that our scripts notice these files, make sure they have the suffix .mml .

For more information on handing in code, refer to

http://www.cs.cmu.edu/˜fp/courses/312/assignments.html

7

