
Assignment 1:
Grammars and Induction

15-312: Foundations of Programming Languages
Daniel Spoonhower (spoons+@cs.cmu.edu)

Out: Thursday, August 28, 2003
Due: Thursday, September 4, 2003 (1:30 pm)

50 points total

Welcome to 15-312! This assignment focuses on context-free grammars
and inductive proofs. It is due September 4

���
at the start of lecture. You are

encouraged, but not required, to typeset your answers; if you write them
out by hand, write legibly. If I can’t read it, I can’t give credit for it.

Please make sure you understand the policy on collaboration; refer to

http://www.cs.cmu.edu/˜fp/courses/312/assignments.html

1 Grammars (35 points)

Consider the grammar
�

over the alphabet ����� int 	 list 	 -> 	 ( 	 ) 

with nonterminals tycon and type:

tycon ���
� int � tycon list � ( type)
type ���
� tycon � type -> type

Question 1.1 (5 points).

The first production for tycon can be written in rule notation as

int tycon

Write grammar
�

in rule notation.
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Grammar
�

is flawed: it does not pin down the associativity of -> . For
example, there are two different derivations of the string int->int->int.
We can fix the ambiguity by changing the second production of type from

type ���
� type -> type

to

type ���
� tycon -> type

Making this change results in the grammar
���

below. To avoid confu-
sion, we rename tycon to tycon

�
and type to type

�
.

tycon
� ���
� int � tycon

�
list � ( type

�
)

type
� ���
� tycon

� � tycon
�
-> type

�

Question 1.2 (5 points).

Write grammar
� �

in rule notation.

Note, however, that we have not shown that this new grammar
���

is
equivalent to

�
, that is, that the languages of type and type

�
are the same:���

type ��� ��� type
� � . This can be proved in two steps: first prove

���
type

� ������
type � , then prove

���
type ��� ��� type

� � .
Question 1.3 (10 points).

Prove
���

type
� ��� ��� type � by proving

If � type
�
then � type

by induction. If you need to generalize the induction hypothe-
sis, be sure to clearly state your generalized induction hypoth-
esis. If you need any lemmas, state them explicitly and prove
them.

Question 1.4 (15 points).

Prove
���

type ��� ��� type
� � by proving

If � type then � type
�

As in the previous question, clearly state any generalized in-
duction hypothesis and prove any lemmas you need.
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2 Propositional logic (15 points)

In this question we will look at a subset of Propositional Logic. Our universe
of terms consists of an infinite number of nullary operators ����	��! "	$#$#$#%	��'&
(“propositional variables”) and the binary operator ( (“implication”). We
define the sets prop and thm over this universe:

�*) prop Var

+
prop , prop+ ( � ,-( + � thm

.

+
prop , prop+ (/, prop

Imp
+

prop , prop 0 prop� + ( � ,1(203�4�5( � + (6,7�5( � + (803� thm
9

+ (/, thm
+

thm
, thm

+!:;:

Truth Value. If we have assignments (to true or false) for all of the propo-
sitional variables in a proposition, its truth value (either true or false)
can be computed recursively using the following familiar truth table for ( :

Proposition Truth Value
false ( false true
false ( true true
true ( false false
true ( true true

Tautology. A proposition is a tautology iff for every assignment of truth
values (true, false) to the propositional variables �!�<	$#$#$#'	��*& , the truth
value of the proposition is true.

Question 2.1 (15 points).

Prove, using rule induction, that if
+

thm then
+

is a tautology.

Question 2.2 (EXTRA CREDIT).

Find a proposition
+

that is a tautology, but not a theorem (that
is, the judgment

+
thm cannot be derived). You do not need to

prove that it is not a theorem!
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