x86-64 Machine-Level Programming*

Randal E. Bryant
David R. O'Hallaron

September 9, 2005

Intel’s 1A32 instruction set architecture (ISA), colloquially known as “x86”, is the dominant instruction
format for the world’s computers. 1A32 is the platform of choice for most Windows and Linux machines.
The ISA we use today was defined in 1985 with the introduction of the i386 microprocessor, extending the
16-bit instruction set defined by the original 8086 to 32 bits. Even though subsequent processor generations
have introduced new instruction types and formats, many compilers, including Gcc, have avoided using
these features in the interest of maintaining backward compatibility.

A shift is underway to a 64-bit version of the Intel instruction set. Originally developed by Advanced Micro
Devices (AMD) and named x86-64, it is now supported by high end processors from AMD (who now call it
AMDG64) and by Intel, who refer to it as EM64T. Most people still refer to it as “x86-64,” and we follow this
convention. Newer versions of Linux and Gcc support this extension. In making this switch, the developers
of Gcc saw an opportunity to also make use of some of the instruction-set features that had been added in
more recent generations of 1A32 processors.

This combination of new hardware and revised compiler makes x86-64 code substantially different in form
and in performance than 1A32 code. In creating the 64-bit extension, the AMD engineers also adopted some
of the features found in reduced-instruction set computers (RISC) [7] that made them the favored targets for
optimizing compilers. For example, there are now 16 general-purpose registers, rather than the performance-
limiting eight of the original 8086. The developers of Gcc were able to exploit these features, as well as
those of more recent generations of the IA32 architecture, to obtain substantial performance improvements.
For example, procedure parameters are now passed via registers rather than on the stack, greatly reducing
the number of memory read and write operations.

This document serves as a supplement to Chapter 3 of Computer Systems: A Programmer’s Perspective
(CS:APP), describing some of the differences. We start with a brief history of how AMD and Intel arrived
at x86-64, followed by a summary of the main features that distinguish x86-64 code from 1A32 code, and
then work our way through the individual features.

*Copyright © 2005, R. E. Bryant, D. R. O'Hallaron. All rights reserved.

1 History and Motivation for x86-64

Over the twenty years since the introduction of the 1386, the capabilities of microprocessors have changed
dramatically. In 1985, a fully configured, high-end personal computer had around 1 megabyte of random-
access memory (RAM) and 50 megabytes of disk storage. Microprocessor-based *“workstation” systems
were just becoming the machines of choice for computing and engineering professionals. A typical micro-
processor had a 5-megahertz clock and ran around one million instructions per second. Nowadays, a typical
high-end system has 1 gigabyte of RAM, 500 gigabytes of disk storage, and a 4-gigahertz clock, running
around 5 billion instructions per second. Microprocessor-based systems have become pervasive. Even to-
day’s supercomputers are based on harnessing the power of many microprocessors computing in parallel.
Given these large quantitative improvements, it is remarkable that the world’s computing base mostly runs
code that is binary compatible with machines that existed 20 years ago.

The 32-bit word size of the IA32 has become a major limitation in growing the capacity of microprocessors.
Most significantly, the word size of a machine defines the range of virtual addresses that programs can use,
giving a 4-gigabyte virtual address space in the case of 32 bits. It is now feasible to buy more than this
amount of RAM for a machine, but the system cannot make effective use of it. For applications that involve
manipulating large data sets, such as scientific computing, databases, and data mining, the 32-bit word size
makes life difficult for programmers. They must write code using out-of-core algorithms®, where the data
reside on disk and are explicitly read into memory for processing.

Further progress in computing technology requires a shift to a larger word size. Following the tradition of
growing word sizes by doubling, the next logical step is 64 bits. In fact, 64-bit machines have been available
for some time. Digital Equipment Corporation introduced its Alpha processor in 1992, and it became
a popular choice for high-end computing. Sun Microsystems introduced a 64-bit version of its SPARC
architecture in 1995. At the time, however, Intel was not a serious contender for high-end computers, and
so the company was under less pressure to switch to 64 bits.

Intel’s first foray into 64-bit computers were the Itanium processors, based on the 1A64 instruction set.
Unlike Intel’s historic strategy of maintaining backward compatibility as it introduced each new generation
of microprocessor, 1A64 is based on a radically new approach jointly developed with Hewlett-Packard.
Its Very Large Instruction Word (VLIW) format packs multiple instructions into bundles, allowing higher
degrees of parallel execution. Implementing 1A64 proved to be very difficult, and so the first Itanium chips
did not appear until 2001, and these did not achieve the expected level of performance on real applications.
Although the performance of Itanium-based systems has improved, they have not captured a significant
share of the computer market. Itanium machines can execute 1A32 code in a compatibility mode but not
with very good performance. Most users have preferred to make do with less expensive, and often faster,
1A32-based systems.

Meanwhile, Intel’s archrival, Advanced Micro Devices (AMD) saw an opportunity to exploit Intel’s misstep
with 1A64. For years AMD had lagged just behind Intel in technology, and so they were relegated to
competing with Intel on the basis of price. Typically, Intel would introduce a new microprocessor at a
price premium. AMD would come along 6 to 12 months later and have to undercut Intel significantly to
get any sales—a strategy that worked but yielded very low profits. In 2002, AMD introduced a 64-bit

1The physical memory of a machine is often referred to as core memory, dating to an era when each bit of a random-access
memory was implemented with a magnetized ferrite core.

microprocessor based on its “x86-64" instruction set. As the name implies, x86-64 is an evolution of the
Intel instruction set to 64 bits. It maintains full backward compatibility with 1A32, but it adds new data
formats, as well as other features that enable higher capacity and higher performance. With x86-64, AMD
has sought to capture some of the high-end market that had historically belonged to Intel. AMD’s recent
generations of Opteron and Athlon 64 processors have indeed proved very successful as high performance
machines. Most recently, AMD has renamed this instruction set AMD64, but “x86-64" persists as the
favored name.

Intel realized that its strategy of a complete shift from 1A32 to IA64 was not working, and so began sup-
porting their own variant of x86-64 in 2004 with processors in the Pentium 4 Xeon line. Since they had
already used the name “l1A64” to refer to Itanium, they then faced a difficulty in finding their own name for
this 64-bit extension. In the end, they decided to describe x86-64 as an enhancement to 1A32, and so they
refer to it as 1A32-EM64T for “Enhanced Memory 64-bit Technology.”

The developers of Gcce steadfastly maintained binary compatibility with the i386, even though useful fea-
tures had been added to the 1A32 instruction set. The PentiumPro introduced a set of conditional move
instructions that could greatly improve the performance of code involving conditional operations. More
recent generations of Pentium processors introduced new floating point operations that could replace the
rather awkward and quirky approach dating back to the 8087, the floating point coprocessor that accompa-
nied the 8086 and is now incorporated within the main microprocessors chips. Switching to x86-64 as a
target provided an opportunity for ccc to give up backward compatibility and instead exploit these newer
features.

In this document, we use “1A32” to refer to the combination of hardware and Gcc code found in traditional,
32-bit versions of Linux running on Intel-based machines. We use “x86-64" to refer to the hardware and
code combination running on the newer 64-bit machines from AMD and Intel. In the Linux world, these
two platforms are referred to as “i386” and “x86_64,” respectively.

2 Finding Documentation

Both Intel and AMD provide extensive documentation on their processors. This includes general overviews
of the assembly language programmer’s view of the hardware [2, 4], as well as detailed references about
the individual instructions [3, 5, 6]. The organization amd64 . org has been responsible for defining the
Application Binary Interface (ABI) for x86-64 code running on Linux systems [8]. This interface describes
details for procedure linkages, binary code files, and a number of other features that are required for object
code programs to execute properly.

Warning: Both the Intel and the AMD documentation use the Intel assembly code notation. This differs
from the notation used by the Gnu assembler GAS. Most significantly, it lists operands in the opposite order.

3 An Overview of x86-64

The combination of the new hardware supplied by Intel and AMD, as well as the new version of Gcc
targeting these machines makes x86-64 code substantially different from that generated for 1A32 machines.

Figure 1. Sizes of standard data types with x86-64 Both long integers and pointers require 8 bytes, as

C declaration Intel data type GAS suffix | x86-64 Size (Bytes)
char Byte b 1
short Word w 2
int Double word | 4
unsigned Double word 1 4
long iInt Quad word q 8
unsigned long | Quad word q 8
char * Quad word q 8
float Single precision s 4
double Double precision d 8
long double Extended precision t 16

compared to 4 for IA32.

The main features include:

3.1

Figure 1 shows the sizes of different C data types for x86-64. Comparing these to the 1A32 sizes (CS:APP
Figure 3.1), we see that pointers (shown here as data type char *) require 8 bytes rather than 4. In
principal, this gives programs the ability to access 16 exabytes of memory (around 18.4 x 10'® bytes).
That seems like an astonishing amount of memory, but keep in mind that 4 gigabytes seemed astonishing
when the first 32-bit machines appeared in the late 1970s. In practice, most machines do not really support
the full address range—the current generations of AMD and Intel x86-64 machines support 256 terabytes
(21%) bytes of virtual memory—but allocating this much memory for pointers is a good idea for long term
compatibility.

We also see that the prefix “long” changes integers to 64 bits, allowing a considerably larger range of
values. Whereas a 32-bit unsigned value can range up to 4,294,967,295 (CS:APP Figure 2.8), increasing

Data Types

The set of general-purpose registers is expanded from 8 to 16.

e Pointers and long integers are 64 bits long. Integer arithmetic operations support 8, 16, 32, and 64-bit
data types.

Much of the program state is held in registers rather than on the stack. Integer and pointer procedure
arguments (up to 6) are passed via registers. Some procedures do not need to access the stack at all.

Conditional operations are implemented using conditional move instructions when possible, yielding
better performance than traditional branching code.

Floating-point operations are implemented using a register-oriented instruction set, rather than the
stack-based approach supported by 1A32.

the word size to 64 bits gives a maximum value of 18,446,744,073,709,551,615.

As with 1A32, the Tong prefix also changes a floating point double to use the 80-bit format supported
by 1A32 (CS:APP Section 2.4.6.) These are stored in memory with an allocation of 16 bytes for x86-64,
compared to 12 bytes for 1A32. This improves the performance of memory read and write operations, which
typically fetch 8 or 16 bytes at a time. Whether 12 or 16 bytes are allocated, only the low-order 10 bytes are
actually used.

3.2 Assembly Code Example

Section 3.2.3 of CS:APP illustrated the 1A32 assembly code generated by Gcc for a function simple.
Below is the C code for simple_l, similar to simple, except that it uses long integers:

long int sinple_| (long int *xp, long int y)

{
long int t = *xp + v;
*Xp =t
return t;

}

When Gcc is run on an x86-64 machine with the command line
uni x> gcc -2 -S -nmB2 code. c
it generates code that is compatible with any 1A32 machine:

I A32 version of function sinple_l.
Argunents in stack | ocations 8(%bp) (xp) and 12(%bp) (y)

1 sinmple_I:

2 pushl %ebp Save frame pointer

3 nmovl Y%esp, %ebp Create new frame pointer

4 nmovl 8(%bp), %edx Get xp

5 nmovl (%edx), %Y%eax Retrieve *xp

6 addl 12(%bp), %eax Add y to get t (and return val ue)
7 nmovl %eax, (%edx) Store t at *xp

8 | eave Restore stack and franme pointers
9 ret Return

This code is almost identical to that shown in CS:APP, except that it uses the single leave instruction
(CS:APP Section 3.7.2), rather than the sequence movl %ebp, %esp and popl %ebp to deallocate the
stack frame.

When we instruct GCc to generate x86-64 code
uni x> gcc -2 -S -nmbB4 code. c
(on most machines, the flag -m64 is not required), we get very different code:

x86-64 version of function sinple_|.
Argunents in registers %di (xp) and %si (y)

1 sinmple_I:

2 addq (%wdi), %si Add *xp to y to get t
3 novq % si, % ax Set t as return val ue
4 novq Wsi, (%di) Store t at *xp

5 ret Return

Some of the key differences include

¢ Instead of mov |l and add |l instructions, we see movq and addq. The pointers and variables declared
as long integers are now 64 bits (quad words) rather than 32 bits (long words).

e \We see the 64-bit versions of the registers, e.g., %rsi, %rdi. The procedure returns a value by
storing it in register %rax.

e No stack frame gets generated in the x86-64 version. This eliminates the instructions that set up (lines
2-3) and remove (line 8) the stack frame in the IA32 code.

e Arguments xXp and y are passed in registers %rdi and %rsi, rather than on the stack. These registers
are the 64-bit versions of registers %edi and %esi. This eliminates the need to fetch the arguments
from memory. As a consequence, the two instructions on lines 2 and 3 can retrieve *xp, add it to y,
and set it as the return value, whereas the 1A32 code required three lines of code: 4-6.

The net effect of these changes is that the 1A32 code consists of 8 instructions making 7 memory refer-
ences, while the x86-64 code consists of 4 instructions making 3 memory references. Running on an Intel
Pentium 4 Xeon, our experiments show that the IA32 code requires around 17 clock cycles per call, while
the x86-64 code requires 12 cycles per call. Running on an AMD Opteron, we get 9 and 7 cycles per call,
respectively. Getting a performance increase of 1.3-1.4X on the same machine with the same C code is a
significant achievement. Clearly x86-64 represents a important step forward.

4 Accessing Information

Figure 2 shows the set of general-purpose registers under x86-64. Compared to the registers for 1A32
(CS:APP Figure 3.2), we see a number of differences:

e The number of registers has been doubled to 16. The new registers are numbered 8-15.

e All registers are 64 bits long. The 64-bit extensions of the 1A32 registers are named %rax, %rcx,
%rdx, %rbx, %rsi, %rdi, %rsp, and %rbp. The new registers are named %r8-%r15.

e The low-order 32 bits of each register can be accessed directly. This gives us the familiar registers
from 1A32: %eax, %ecx, %edx, %ebx, %esi, %edi, %esp, and %ebp, as well as eight new 32-bit
registers: %r8d-%ri5d.

e The low-order 16 bits of each register can be accessed directly, as is the case for IA32. The word-size
versions of the new registers are named %r8w—%r15w.

63 31

[
3]

87 0

Y%rax Yeax Y@ax Return value
%rbx %ebx Yax 9! || Callee saved
%Ircx Y%ecx Y%ex 4th argument
%rdx Y%edx Ylx 3rd argument
%rsi Yesi i 2nd argument
%rdi %edi i 1st argument
%rbp %ebp %bp Ypl || Callee saved
%rsp Yesp Y%p Stack pointer
%r8 %8d % 8w | %8b] 5th argument
%ro % 9d % 9w % 9b || 6th argument
%r10 % 10d % 10w % 10b | Callee saved

%ril % 11d % 11w % 11b|| Used for linking

%ril2 % 12d % 12w % 12b| Unused for C

%ril3 % 13d % 13w % 13b| Callee saved

%ri4 % 14d % 14w % 14b| Callee saved

%rl5 % 15d % 15w % 15b | Callee saved

Figure 2: Integer registers. The existing eight registers are extended to 64-bit versions, and eight new
registers are added. Each register can be accessed as either 8 bits (byte), 16 bits (word), 32 bits (double
word), or 64 bits (quad word).

e The low-order 8 bits of each register can be accessed directly. This is true in 1A32 only for the first 4
registers (%al, %cl, %dl, %bl). The byte-size versions of the other 1A32 registers are named %sil,
%dul, %spl, and %bpl. The byte-size versions of the new registers are named %r8b-%ri15b.

e For backward compatibility, the second byte of registers %rax, %rcx, %rdx, and %rbx can be
directly accessed by instructions having single-byte operands.

As with 1A32, most of the registers can be used interchangeably, but there are some special cases. Register
%rsp has special status, in that it holds a pointer to the top stack element. Unlike in 1A32, however, there
is no frame pointer register; register %rbp is available for use as a general-purpose register. Particular
conventions are used for passing procedure arguments via registers and for how registers are to be saved
and restored registers during procedure calls, as is discussed in Section 6. In addition, some arithmetic
instructions make special use of registers %rax and %rdx.

For the most part, the operand specifiers of x86-64 are just the same as those in 1A32 (see CS:APP Fig-
ure 3.3). One minor difference is that some forms of PC-relative operand addressing are supported. With
1A32, this form of addressing is only supported for jump and other control transfer instructions (see CS:APP
Section 3.6.3). This mode is provided to compensate for the fact that the offsets (shown in CS:APP Fig-
ure 3.3 as Imm) are only 32 bits long. By viewing this field as a 32-bit, two’s complement number, instruc-
tions can access data within a window of around £2.15 x 10? relative to the program counter. With x86-64,
the program counter is named %rip.

As an example of PC-relative data addressing, consider the following procedure, which calls the function
call_simple_l examined earlier:

567,
763,

long int gvall
long int gval 2

long int call_sinple_l()

{
long int z = sinple_l (&gval 1, 12L);
return z + gval 2;

}

This code references global variables gvall and gval 2. When this function is compiled, assembled, and
linked, we get the following executable code (as generated by the disassembler ob jdump)

1 0000000000400500 <cal |l _sinmple_|>:

2 400500: be Oc 00 00 00 mv $0xc, Yesi Load 12 as 1st argunent

3 400505: bf 08 12 50 00 nmov $0x501208, %edi Load &gval 1 as 2nd ar gument
4 40050a: €8 bl ff ff ff callg 4004cO <simple_|> call sinple_l

5 40050f: 48 03 05 ea Oc 10 00 add 1051882(% i p) , % ax Add gval 2 to result

6 400516: c3 retq

The instruction on line 3 stores the address of global variable gval 1 in register %rdi. It does this by simply
copying the constant value 0x501208 into register %edi. The upper 32 bits of %rdi are then automat-
ically set to zero. The instruction on line 5 retrieves the value of gval2 and adds it to the value returned

Instruction Effect Description
movq S,D|D « S Move quad word
movabsqg I,R | R « I Move quad word
movslg S,R | R <« SignExtend(S) Move sign-extended double word
movsbg S, R | R <« SignExtend(S) Move sign-extended byte
movzbq S,R | R «— ZeroExtend(S) Move zero-extended byte
pushq S Rl%rsp] «— R[%rsp] —8; | Push

M[R[%rsp]] < S
popq D D — M[R[%rsp]]; Pop

Rl%rsp] <« R[%rsp]+ 8

Figure 3. Data movement instructions. These supplement the movement instructions of 1A32. The
novabsq instruction only allows immediate data (shown as I) as the source value. Others allow, immediate
data, a register, or memory (shown as S). Some instructions require the destination to be a register (shown
as R), while others allow both register and memory destinations (shown as D).

by the call to simple_l. Here we see PC-relative addressing—the immediate value 1051882 (hexadec-
imal 0x100cea) is added to the address of the following instruction to get 0x100cea + 0x400516 =
0x501200.

Figure 3 documents some of the data movement instructions available with x86-64, beyond those found in
I1A32 (see CS:APP Figure 3.4). Some instructions require to the destination to be a register, indicated by
R. The instructions shown include different variations of the mov instruction to move data into a 64-bit
register or memory destination. Moving immediate data to a 64-bit register can be done either with the
mov(q instruction, which will sign extend a 32-bit immediate value, or with the movabsq instruction, when
a full 64-bit immediate is required.

Moving from a smaller data size to 64 bits can involve either sign extension (movsbq, movslq) or zero
extension (movzbq). Perhaps unexpectedly, instructions that move or generate 32-bit register values also set
the upper 32 bits of the register to zero. Consequently there is no need for an instruction movz 1 q. Similarly,
the instruction movzbq has the exact same behavior as movzb 1 when the destination is a register—both
set the upper 56 bits of the destination register to zero. This is in contrast to instructions that generate 8
or 16-bit values, such as movb; these instructions do not alter the other bits in the register. The new stack
instructions pushq and popq allow pushing and popping of 64-bit values.

Practice Problem 1:

The following C function converts an argument of type sr ¢t to areturn value of type dst _t , where
these two types are defi ned using t ypedef :

dest t cvt(src_t x)

{
}

Assume argument X isin the appropriately named portion of register % di (i.e, % di , %edi , %di , or
%li |), and that some form of moveinstructionisto be used to perform the type conversion and to copy

return (dest _t) x;

Instruction Effect Description

leaq S, D|D «— &S Load effective address
incqQ D D «— D+ 1 | Increment

decq D D — D - 1 | Decrement

negq D D «— -D Negate

notq D D — 7D Complement

addg S,D|D «— D+ S | Add

subq S, D|D « D- S | Subtract

imulg S, D | D <« D* § | Multiply

Xorq S, D| D « D~ S | Exclusive-or

orq SSD|D «— D] S |Or

andq S,D|D «— D& S | And

salg k, D | D « D<< k| Leftshift

shlq &k, D | D « D << k| Leftshift (same as salq)
sarq k,D | D «— D >> k| Arithmetic right shift
shrq k, D | D « D>> k| Logical right shift

Figure 4: Integer 64-bit arithmetic operations. They resemble their 32-bit counterparts (CS:APP Fig-
ure 3.7).

the value to the appropriately named portion of register % ax. Fill in the following table indicating the
instruction, the source register, and the destination register for the following combinations of source and
destination type:

Tx Ty Instruction S D
| ong | ong novq % di % ax

i nt | ong
char | ong

unsi gned i nt unsi gned | ong

unsi gned char | unsigned | ong
| ong i nt

unsi gned | ong unsi gned

As shown in Figure 4, the arithmetic and logical instructions for 64-bit data resemble their 32-bit counter-
parts (see CS:APP Figure 3.7). For example, we find the instruction addq in addition to addl, and leaq
in addition to leal. As mentioned earlier, instructions that generate 32-bit register results, such as addl,
also set the high-order bits of the register to 0.

When mixing 32 and 64-bit data, ccc must make the right choice of arithmetic instructions, sign extensions,

and zero extensions. These depend on subtle aspects of type conversion and the interactions between the 32
and 64-bit instructions. This is illustrated by the following C function:

1 long int gfun(int x, int vy)
2 {

10

3 long int t1 = (long) x + v; /* 64-bit addition */
4 long int t2 = (long) (x +vy); /* 32-bit addition */
5 return tl | t2;

6 }

Assuming integers are 32 bits and long integers are 64, the two additions in this function proceed as follows.
Recall that type conversion has higher precedence than addition, and so line 3 calls for x to be converted to
64 bits, and by operand promotion Yy is also converted. Value t1 is then computed using 64-bit addition.
On the other hand, €2 is computed in line 4 by performing 32-bit addition and then extending this value to
64 bits.

The assembly code generated for this function is as follows

x86- 64 version of function gfun
Argunments in registers %di (x) and %si (y)

1 gfun:

2 nmovsl q %edi, % ax Convert x to |long

3 nmovsl q %esi, % dx Convert y to long

4 addl %esi, %edi lower bits of t2 (32-bit addition)
5 addq % dx, % ax t1 (64-bit addition)

6 movsl g %edi, % di Sign extend to get t2

7 orq %Wdi, % ax Return t1 | t2

8 ret

Local value t1 is computed by first sign extending the arguments. The movslq instructions on lines 2-3
take the lower 32 bits of the arguments in registers %rdi and %rsi and sign extend them to 64 bits in
registers %rax and %rdx. The addq instruction on line 5 then performs 64-bit addition to get t1. Value
t2 is computed by performing 32-bit addition on the lower 32 bits of the two operands (line 4). This value
is sign extended to 64 bits on line 6 (within a single register) to get t2.

Practice Problem 2:
A Cfunctionari t hpr ob with argumentsa, b, ¢, and d has the following body:

return a*b + c*d;
Itcompiles to the following x86-64 code:

Argunents: ain %di, bin %il, cin %dx, din %cx
1 arithprob:

2 novsl g %ecx, % cXx

3 nmovsbl %il, %esi

4 i mul q % dx, 9% cx

5 i mull %edi , %esi

6 | eal (% si,%cx), Y%eax
7 ret

The arguments and return value are all signed integers of various lengths. Based on this assembly code,
write afunction prototype describing the return and argument typesfor ar i t hpr ob.

11

Instruction | Effect Description
imulg S | R%rdx]:R[%rax] «— S x R[%rax] Signed full multiply
mulg S | R[%rdx|:R[%rax] < S x R%rax] Unsigned full multiply
cltq R[%rax] < SignExtend(R[%eax]) Convert %eax to quad word
cqto R[%rdx]:R[%rax] < SignExtend(R[%rax]) | Convert to oct word
idivqg S | R[%rdx] «— R[%rdx]:R[%rax] mod S; Signed divide
Rl%rax] «— R[%rdx|:R[%rax] =S
divg S | R%rdx] «— R[%rdx]:R[%rax] mod S, Unsigned divide
R[%rax] «— R[%rdx]:R[%rax] = S

Figure 5: Special arithmetic operations. These operations support full 64-bit multiplication and division,
for both signed and unsigned numbers. The pair of registers % dx and % ax are viewed as forming a single
128-hit oct word.

4.1 Special Arithmetic Instructions

Figure 5 show instructions used to generate the full 128-bit product of two 64-bit words, as well as ones to
support 64-bit division. They are similar to their 32-bit counterparts (CS:APP Figure 3.9). Several of these
instructions view the combination of registers %rdx and %rax as forming a 128-bit oct word. For example,
the imulg and mulq instructions store the result of multiplying two 64-bit values—the first as given by
the source operand, and the second from register %rax.

The two divide instructions 1divqgand divq start with %rdx - %rax as the 128-bit dividend and the source
operand as the 64-bit divisor. They then store the quotient in register %rax and the remainder in register
%rdx. Preparing the dividend depends on whether unsigned (divq) or signed (idivq) division is to be
performed. In the former case, register %rdx is simply set to 0. in the latter case, the instruction cqto is
used to perform sign extension, copying the sign bit of %rax into every bit of %rdx.2

Figure 5 also shows an instruction cltq to sign extend register %eax to %rax 2. This instruction is just a
shorthand for the instruction movslq %eaxreg,%raxreg.

Aside: What if 64-bit arithmeticisn’t good enough?

Gcc running on x86-64 supports arithmetic using 128-bit signed and unsigned arithmetic, viadatatypes__i nt 128t
and __ui nt 128_t . For example, the following C code computes the 128-bit product of two 64-hit integers and
stores the result in a 128-hit global variable. It also returns the lower 64 hits as the function result. It implements
this function using the single-operand version of thei mul | instruction.

/* d obal variable for 128-bit integer */
_int128 t prod;
[* Conmpute 128-bit product of two 64-bit integers */
long int oct_nul(long int x, long int y)
{
prod = (__int128_t) x * vy;
return (long) prod;

2Gasinstruction cqt o iscalled cqo in Intel and AMD documentation.
3Instruction ¢l t q iscalled cdge in Intel and AMD documentation.

12

}

Integers of this size can represent numbers in the range +£1.7 x 10®®, nearly the range of what can be represented
as aaingle-precision fbating-point number. End Aside.

5 Control

The control instructions and methods of implementing control transfers in x86-64 are essentially the same
as those in 1A32 (CS:APP Section 3.6). Two new instructions cmpq and testq are added to compare and
test quad words, augmenting those for byte, word, and double word sizes (CS:APP Section 3.6.1):

Instruction Based on | Description
cmpg Sy, 81| S1 - S92 | Compare quad words
testqg 59,51 | S1 & Sy | Testquad word

5.1 Conditional Move Instructions

Starting with the PentiumPro in 1995, recent generations of 1A32 processors have had conditional move
instructions that either do nothing or copy a value to a register depending on the values of the condition
codes. These provide an alternate way of implementing conditional operations that can be substantially
faster than using branching code. For years, these instructions have been largely unused. Gcc did not
generate code that used them, because that would prevent backward compatibility. The advent of x86-64
allowed the compiler writers to forgo this compatibility requirement, and so we now find conditional moves
in compiled x86-64 code. This section describes conditional moves and how they are used.

We saw in the 1A32 code generated by Gcc that conditional statements (using i) and conditional ex-
pressions (using ? :) were always implemented with conditional jumps, where the condition code values
determine whether or not a jump is taken.

As an example, consider the following general form of assignment and conditional expression
Vv = test-expr ? then-expr : else-expr;
The compiler generates code having a form shown by the following abstract code

it (Vtest-expr)
goto else;
v = then-expr;
goto done;
else:
v = else-expr;
done:

This code contains two code sequences—one evaluating then-expr and one evaluating else-expr. A combi-
nation of conditional and unconditional jJumps is used to ensure that just one of the sequences is evaluated.

13

As noted in the discussion of branch prediction and mispredication penalties (CS:APP Section 5.12), modern
processors can execute code of the style shown above efficiently only in the case where they can predict the
outcome of the test with high probability. The processor uses a deep pipeline that follows the predicted
branch direction, executing the chosen code sequence, a process known as speculative execution. If it
predicted the test outcome correctly, then it commits any speculative results and proceeds with no loss of
efficiency. If the prediction is incorrect, it must discard the speculative results and restart execution with
the other code sequence. This can incur a significant delay, perhaps 10-40 clock cycles. Processors employ
sophisticated branch prediction hardware that attempt to detect any regular pattern for a given branch being
taken or not taken.

As an extreme example of this inefficiency, consider the following C function for computing the maximum
of two values

int max(int x, int y)

{
}

return (x <y) ?2vy: X

In a typical application, the outcome of the test X < vy is highly unpredictable, and so even the most
sophisticated branch prediction hardware will guess correctly only around 50% of the time. In addition,
the computations performed in each of the two code sequences require only a single clock cycle. As a
consequence, the branch misprediction penalty dominates the performance of this function. Running on an
Intel Pentium 4 Xeon, we find the function requires around 10 cycles per call when the outcome is easily
predictable, but around 31 cycles per call when the outcome is random. From this we can infer that the
branch misprediction penalty is around 42 clock cycles.

Aside: How did you determinethis penalty?

Assume the probability of misprediction is p, the time to execute the code without mispredication is 7o, and the
misprediction penalty isTa p. Then theaveragetimeto executethecodeisTovg = (1—p)Tox+p(Tox+Tmp) =
Tox —I—pT]up. SOfOrp =0.5,Tox = 10, and Tavg = 31, Weget Trp = 42. End Aside.

An alternate method of implementing some forms of conditional operations is to use conditional move
instructions. With this approach, both the then-expr and the else-expr are evaluated, with the final value
chosen based on the evaluation test-expr. This can be described by the following abstract code:

vt = then-expr;
v = else-expr;
it (test-expr) v = vt;

The final statement in this sequence illustrates a conditional move—value vt is moved to v only if the tested
condition holds.

Figure 6 illustrates some of the conditional move instructions added to the 1A32 instruction set with the in-
troduction of the PentiumPro microprocessor. Each of these instructions has two operands: a source register
or memory location S, and a destination register D. As with the different set (CS:APP Section 3.6.2) and
Jump instructions (CS:APP Section 3.6.3), the outcome of these instructions depend on the values of the

14

Instruction Synonym | Move condition Description

cmove S,D | cmovz ZF Equal / zero

cmovne S,D | cmovnz | TZF Not equal / not zero

cmovs S, D SF Negative

cmovns S,D ~SF Nonnegative

cmovg S,D | cmovnle | 7(SF ™ OF) & ~ZF | Greater (signed >)

cmovge S,D | cmovnl | 7(SF™ OF) Greater or equal (signed >=)
cmovl S,D | cmovnge | SF™ OF Less (signed <)

cmovle S,D | cmovng | (SFTOF) | ZF Less or equal (signed <=)
cmova S,D | cmovnbe | TCF&™ZF Above (unsigned >)

cmovae S,D | cmovnb | TCF Above or equal (Unsigned >=)
cmovb S,D | cmovnae | CF Below (unsigned <)
cmovbe S,D | cmovna | CF| ZF below or equal (unsigned <=)

Figure 6: The cnov instructions. These instructions copy the source value Sto its destination D when
the move condition holds. Some instructions have “synonyms,” alternate names for the same machine
instruction.

condition codes. The source value is read from either memory or the source register, but it is copied to the
destination only if the specified condition holds.

The source and destination values can be 16, 32, or 64 bits long. Single byte conditional moves are not
supported. Unlike the unconditional instructions, where the operand length is explicitly encoded in the
instruction name (e.g., movw, movl, movq), conditional move operand lengths can be inferred from the
names of the destination registers, and so the same instruction name can be used for all operand lengths.

As an example, Gcc generates the following code for function max

x86- 64 code generated for function max
X in register %di, y in %esi

1 nmax:

2 cnpl %esi, %edi Conpare x:y

3 cnovge %edi, %esi if >= then y=x

4 nmov| o%esi, Yeax set y as return val ue
5 ret

This code uses a conditional move to overwrite the register containing y with X when x >y (line 3).

The conditional move can be implemented with no need to predict the outcome of the test. The processor
simply evaluates the code and then either updates the destination register or keeps it the same. Running the
code on the same Intel Pentium 4 Xeon, we find it requires around 10 cycles per call regardless of the test
outcome.

Practice Problem 3:
In the following C function, OP is some C operator declared earlier with #def i ne.

int arith(int x)

15

{
}

return x OP 4;

When compiled, Gcc generates the following x86-64 code:

x86-64 inplenmentation of arith
X in register %di

1 arith:

2 | eal 3(%di), %eax

3 cnpl $-1, %di

4 cnmovl e %ax, %edi

5 sarl $2, %edi

6 nov| %edi , %eax return val ue in %ax
7 ret

A. What operationis OP?
B. Annotate the code to explain how it works.

Not all conditional expressions can be compiled using conditional moves. Most significantly, the abstract
code shown earlier evaluates both then-expr and else-expr regardless of the test outcome. If one of those two
expressions could possibly generate an error condition or a side effect, this could lead to invalid behavior.
As an illustration, consider the following C function

int cread(int *xp)

{
}

At first, this seems like a good candidate to compile using a conditional move to read the value designated
by pointer xp, as shown in the following assembly code:

return (xp ? *xp : 0);

Invalid inplementati on of function cread
Xp in register %di

1 cread:

2 xor | Oeax, %Y%eax Set 0 as return val ue

3 testq % di, % di Test xp

4 cnovne (% di), % ax if 10, dereference xp to get return val ue
5 ret

This implementation is invalid, however, since the dereferencing of xp by the cmovne instruction (line 4)
occurs even when the test fails, causing a null pointer dereferencing error. Instead, this code must be
compiled using branching code.

A similar case holds when either of the two branches causes a side effect, as illustrated by the following
function

16

int |Icount = 0;
int se_max(int x, int y)

{
}

return (x <vy) ? (lcount++, y) : Xx;

This function increments global variable 1count as part of then-expr. Thus, branching code must be used
to ensure this side effect only occurs when the test condition holds.

Using conditional moves also does not always improve code efficiency. For example, if either the then-expr
or the else-expr evaluation requires a significant computation, then this effort is wasted when the corre-
sponding condition does not hold. Our experiments with Gcc indicate that it only uses conditional moves
when the two expressions can each be computed with a single instruction. This is being too conservative for
current processors, given their high branch misprediction penalties.

5.2 Looping Constructs

In CS:APP Section 3.6.5, we found that the three looping constructs of C: do-while, while, and for,
were all compiled for 1A32 using a common template based on the structure of do-whi le. The other loop
forms were transformed into do-whi e as illustrated in CS:APP Figure 3.14.

With x86-64, we find a richer variety of loop templates. The template for do-whi le remains the same,
and some whi le and For statements are implemented in this form. For example, the code generated for
Ffib_w and Fib_f shown in CS:APP Section 3.6.5 follows the same pattern as that shown for IA32. In
some cases, however, whi le and for loops are translated using a different template. Let us examine these
two different loop templates.

As an illustration, consider the following C function for computing factorial using a do-whi le loop

int fact_dw(int x)

{
int result = 1;
do {
result *= x;
X=-3
} while (x > 0);
return result;
}

Gcc generates the following code for x86-64

x86-64 inplenmentation of fact_dw
X in register %di

1 fact _dw

2 novl $1, %ax result =1

3 .L2: | oop:

4 i mul | %di, %ax result *= x
5 decl %edi X- -

17

6 testl %edi , %edi Test x
7 jg . L2 if >0 goto | oop
8 rep ; ret el se return

This code follows the loop template seen earlier. Within the loop, the imull I and decl instructions imple-
ment the body, while the testl and jg instructions implement the test. The loop is always entered from
the top. The general form of this implementation is

loop:
body-statement
t = test-expr;
if (v
goto loop;

Aside: Why istherear ep instruction in thiscode?

On line 8 of the x86-64 code for f act _dw, we see that the procedure ends with the instruction combination
rep; ret,ratherthansimply r et . Looking at the Intel and AMD documentation for ther ep instruction, we see
that it is normally used to implement a repeating string operation [3, 6]. It seems completely inappropriate here.
The answer to this puzzle can be seen in AMD’s guidelines to compiler writers[1]. They recommend this particul ar
combination to avoid making the r et instruction be the target of a conditional jump instruction. This is the case
here, because it is preceded by aaj g instruction, and in the event the jump condition does not hold, the program
“falls through” to the return. According to AMD, the processor does a better job predicting the outcome of the
branch if it does not have ar et instruction as atarget. Thisr ep instruction will have no effect, since it is not
followed by a string manipulation instruction. Its only purpose isto serve as a branch target. End Aside.

Now consider a factorial function based on a whi Ie loop:

int fact_while(int x)

{
int result = 1;
while (x > 0) {
result *= x;
X- -
}
return result;
}

(These two functions yield different results when x < 0.) Gcc generates the following code for x86-64

x86-64 inpl enentation of fact_while
X in register %di

1 fact_while:

2 novl $1, Y%eax result =1
3 jnp .L12 goto niddle
4 ,L13: | oop:

5 i mul | %edi , Y%eax result *= x
6 decl %edi X- -

18

7 .L12: m ddl e:

8 testl %edi, %edi Test x
9 jg . L13 if >0 goto | oop
10 rep ; ret el se return

In this loop, we see the exact same four instructions, but we also see a second entry point into the loop,
labeled middle in the comments. When entering at this point, only the instructions implementing the loop
test are executed. The program enters via this point at the start of the loop, providing the initial loop test.
This code has the following general form:

goto middle
loop:
body-statement
middle:
t = test-expr;
if (O
goto loop;

Comparing this form to the form based on translating whi le into do-whi le, we see that this new code
requires an additional unconditional jump at the beginning, but it then avoids having duplicate copies of the
test code. On a modern machine, unconditional jumps have negligible performance overhead, and so this
new form would seem better in most cases.

Practice Problem 4:
For the following C function, the expressions EXPR1-EXPR5 were specifi ed using #def i ne:

long int puzzle(int a, int b)

{ . .
int i;
long int result = EXPR1;
for (i = EXPR2; i > EXPR3; i -= EXPR4)
result *= EXPR5;
return result;
}

Gcc generates the following x86-64 code:

x86-64 inmpl ementation of puzzle
ain register %di, b in register %esi
return value in register % ax

1 puzzle:

2 novsl g %esi, % dx

3 jnp . L60

4 .L61:

5 nmovsl g %edi, % ax

6 subl %esi, %edi
7 i mul q % ax, % dx

19

8 .L60:

9 testl %edi, %edi
10 jg .L61

11 novq % dx, 9% ax
12 ret

A. What register isbeing used for local variabler esul t ?
B. What register is being used for local variablei ?
C. Givevalid defi nitionsfor expressions EXPR1-EXPR5

6 Procedures

We have already seen in our code samples that the x86-64 implementation of procedure calls differs sub-
stantially from that of 1A32. By doubling the register set, programs need not be so dependent on the stack
for storing and retrieving procedure information. This can greatly reduce the overhead for procedure calls
and returns.

Here are some of the highlights of how procedures are implemented with x86-64:

6.1

Arguments (up to the first six) are passed to procedures via registers, rather than on the stack. This
eliminates the overhead of storing and retrieving values on the stack.

The cal I instruction stores a 64-bit return pointer on the stack.

Many functions do not require a stack frame. Only functions that cannot keep all local variables in
registers need to allocate space on the stack.

Functions can access storage on the stack up to 128 bytes beyond (i.e., at a lower address than) the
current value of the stack pointer. This allows some functions to store information on the stack without
incrementing or decrementing the stack pointer.

There is no frame pointer. Instead, references to stack locations are made relative to the stack pointer.
Typical functions allocate their total stack storage needs at the beginning of the call and keep the stack
pointer at a fixed position.

As with 1A32, some registers are designated as callee-save registers. These must be saved and restored
by any procedure that modifies them.

Argument Passing

Up to six integral (i.e., integer and pointer) arguments can be passed via registers. The registers are used in
a specified order, and the name used for a register depends on the size of the data type being passed. These
are shown in Figure 7. Arguments are allocated to these registers according to their ordering in the argument

20

Argument Operand Size (bits)
Number 64 32 16 8
1 %rdi %edi %di %dl
2 %rsi %esi %S i %sil
3 %rdx %edx %dx %dl
4 %rcx %ecx %CX %cl
5 %r8 %r8d %r8w %r8b
6 %ro %rod %row %r9b

Figure 7: Registers for passing function arguments The registers are used in a specified order and
named according to the argument sizes.

list. Arguments smaller than 64 bits can be accessed using the appropriate subsection of the 64-bit register.
For example, if the first argument is 32 bits, it can be accessed as %edi.

As an example of argument passing, consider the following C function having eight arguments

void proc(long al, long *alp,
i nt az, int *az2p,
short a3, short *a3p,
char a4, char *adp)

{
*alp += al;
*az2p += az2;
*a3p += a3;
*adp += a4,
}

The arguments include a range of different sized integers (64, 32, 16, and 8 bits) as well as different types
of pointers, each of which is 64 bits.

This function is implemented in x86-64 as follows:

x86- 64 inpl ementation of function proc
Argunment s passed as fol |l ows:

al in %di (64 bits)
alp in %si (64 bits)
a2 in %dx (32 bits)
azp in %cx (64 bits)
a3 in % 8w (16 bits)
a3pin %9 (64 bits)

a4 at 8(%sp) (8 bits)
adp at 16(% sp) (64 bits)

1 proc:

2 novq 16(% sp), % 10 Fetch ad4p (64 bits)
3 addq Wwdi, (%si) *alp += al (64 bits)
4 addl %edx, (% cx) *a2p += a2 (32 bits)
5 nmovzbl 8(% sp), %eax Fetch a4 (8 hits)

21

6 addw % 8w, (9% 9) *a3p += a3 (16 bits)
7 addb %l , (% 10) *adp += a4 (8 bits)
8 ret

The first six arguments are passed in registers, while the last two are at positions 8 and 16 relative to the
stack pointer. Different versions of the add instruction are used according to the sizes of the operands:
addq for al (long), addl for a2 (int), addw for a3 (short), and addb for a4 (char).

Practice Problem 5:
A Cfunctioni ncr pr ob with argumentsq, t , and x (not given in that order) has the following body:

*to+= X
*q += *t,

It compilesto the following x86-64 code:

1 incrprob:

addl (% dx), %edi
nov| %edi, (% dx)
novsl g %edi, % di
addq Wdi, (%si)
ret

o 0~ WN

Determine all valid function prototypesfor i ncr pr ob by determining the ordering and possible types
of the three parameters.

6.2 Stack Frames

We have already seen that many compiled functions do not require a stack frame. If all of the local variables
can be held in registers, and the function does not call any other functions (sometimes referred to as a leaf
procedure, in reference to the tree structure of procedure calls), then the only need for the stack is to save
the return pointer.

On the other hand, there are several reasons a function may require a stack frame:

e There are too many local variables to hold in registers.

Some local variables are arrays or structures.

The function uses the address-of operator (&) to compute the address of a local variable.

The function must pass some arguments on the stack to another function.

The function needs to save the state of a callee-save register before modifying it.

22

When any of these conditions hold, we find the compiled code for the function creating a stack frame. Unlike
the code for 1A32, where the stack pointer fluctuates back and forth as values are pushed and popped, the
stack frames for x86-64 procedures usually have a fixed size, set at the beginning of the procedure by
decrementing the stack pointer (register %rsp). The stack pointer remains at a fixed position during the
call, making it possible to access data using offsets relative to the stack pointer. As a consequence, the
frame pointer (register %ebp) seen in 1A32 code is no longer needed.

In addition, whenever one function (the caller) calls another (the callee), the return pointer gets pushed on
the stack. By convention, we consider this part of the caller’s stack frame, in that it encodes part of the
caller’s state. But this information gets popped from the stack as control returns to the caller, and so it does
not affect the offsets used by the caller for accessing values within the stack frame.

The following function illustrates many aspects of the x86-64 stack discipline.

long int call_proc()

{
long x1 =1; int x2 = 2
short x3 = 3; char x4 = 4;
proc(x1, &x1, x2, &2, x3, &x3, x4, &x4);
return (x1+x2)*(x3-x4);
}

Gcc generates the following x86-64 code.

x86-64 inpl ementation of call_proc
1 call _proc:

2 subqg $32, % sp Allocate 32-byte stack frane
3 nov| $2, %edx Pass 2 as argunent 3
4 nov| $3, 9% 8d Pass 3 as argunent 5
5 | eaq 31(%sp), % ax Conpute &x4

6 | eaq 24(% sp), % cx Pass &2 as argunent 4
7 | eaq 28(%sp), w9 Pass &3 as argument 6
8 | eaq 16(% sp), % si Pass &1 as argunent 2
9 nov| $1, %edi Pass 1 as argunent 1
10 novq $1, 16(% sp) x1 =1

11 novq % ax, 8(% sp) Pass &4 as argunment 8
12 novl $2, 24(% sp) X2 = 2

13 nmovw $3, 28(% sp) x3 = 3

14 nmovb $4, 31(%sp) X4 = 4

15 novl $4, (% sp) Pass 4 as argument 7
16 call proc Cal |

17 movsw 28(% sp) , %edx Get x3

18 nmovsbl 31(% sp), %ecx Get x4

19 nmovsl q 24(% sp), % ax Get x2

20 addq 16(% sp), % ax Conpute x1+x2

21 addq $32, % sp Deal | ocate stack franme
22 subl %ecx, %edx Conpute (int) (x3-x4)
23 movsl g %edx, % dx Sign extend to |ong

24 i mulq o% dx, 9% ax Return (x1+x2)*(x3-x4)
25 ret

23

A). Before call to proc

31 28
x4 x3 X2
24
x1
16
Argument 8 8
Stack pointer Argument 7 0
% sp
B). During call to proc
x4 x3 X2
x1
Argument 8
g 16
Argument 7
g 8
Stack pointer Return Pointer 0
% sp

Figure 8: Stack frame structure for cal | _pr oc. The frame is required to hold local variables x1-x4, as
well as for the seventh and eighth arguments to pr oc. During the execution of pr oc (B), the stack pointer
is shifted down by 8.

24

Figure 8A illustrates the stack frame set up during the execution of cal I proc. Function call proc
allocates 32 bytes on the stack by decrementing the stack pointer. It uses bytes 16-31 to hold local variables
X1 (bytes 16-23), x2 (bytes 24-27), x3 (bytes 28-29), and x4 (byte 31). These allocations are sized
according to the variable types. Byte 30 is unused. Bytes 0-7 and 8-15 of the stack frame are used to
hold the seventh and eighth arguments to cal I Jproc, since there are not enough argument registers. The
parameters are allocated eight bytes each, even though parameter x4 requires only a single byte. In the
code for cal I_proc, we can see instructions initializing the local variables and setting up the parameters
(both in registers and on the stack) for the call to cal I _proc. After proc returns, the local variables are
combined to compute the final expression, which is returned in register %rax. The stack space is deallocated
by simply incrementing the stack pointer before the ret instruction.

Figure 8B illustrates the stack during the execution of proc. The call instruction pushed the return
pointer onto the stack, and hence the stack pointer is shifted down by 8 relative to its position during the
execution of cal I_proc. Hence, within the code for proc, arguments 7 and 8 are accessed by offsets of
8 and 16 from the stack pointer.

Observe how cal I _proc changed the stack pointer only once during its execution. Gcc determined that
32 bytes would suffice for holding all local variables and for holding the additional arguments to proc.
Minimizing the amount of movement by the stack pointer simplifies the compiler’s task of generating refer-
ence to stack elements using offsets from the stack pointer.

6.3 Register Saving Conventions

We saw in 1A32 (CS:APP Section 3.73) that some registers used for holding temporary values are by desig-
nated as caller saved, where the callee is free to overwrite their values, while others are callee saved, where
the callee must save their values on the stack before writing to them. With x86-64, the following registers
are designated as being callee saved: %rbx, %rbp, and %r12-%r15.

Aside: Arethere any caller-saved temporary registers?

Of the 16 general-purpose registers, we've seen that six are designated for passing arguments, six are for callee-
saved temporaries, one (% ax) holds the return value for afunction, and one (% sp) serves as the stack pointer. In
addition, % 10 has a specifi ¢ use in supporting languages that allow static scoping. Thisincludes Pascal, but not C
or C++. Only % 12 isleft as acaler-saved temporary register, but thisis generally reserved for use by the linking
code.

Of course, some of the argument registers can be used when a procedure has less than six arguments, and % ax can
be used within a procedure. Moreover, it's always possible to save the state of some callee-saved registers and then
use them to hold temporary values. End Aside.

We illustrate the use of callee-saved registers with a somewhat unusual version of a recursive factorial
function:

/* Conmpute x! and store at resultp */
voi d sfact_hel per(long int x, long int *resultp)
{
if (x <=0)
*resultp = 1;
el se {

25

A). Before decrementing the stack pointer (on line 4)
Stack pointer

% sp >

Saved % bp g

%
Saved % bx 16
B). After decrementing the stack pointer
Saved % b
aved % bp 16

Saved % bx 8
Stack pointer nresul t 0
% sp

Figure 9: Stack frame for function sf act _hel per. This function decrements the stack pointer after
saving some of the state.

long int nresult;
sfact _hel per(x-1, &nresult);
*resultp = x * nresult;

}

To compute the factorial of a value X, this function would be called at the top level as follows:

long int sfact(long int x)

{
long int result;
sfact _hel per(x, &result);
return result;

}

The x86-64 code for sFact_helper is shown below

x86-64 inplenmentation of sfact_hel per
Argument x in %di, resultp in %si
1 sfact _hel per:

2 novq % bx, -16(% sp) Save % bx (callee save)

3 novq % bp, -8(% sp) Save % bp (call ee save)

4 subq $24, % sp Allocate 24 bytes on stack
5 testq % di, % di Test x

6 novq % di , % bx Copy x to % bx

7 novq % si, % bp Copy resultp to % bp

8 jle . L17 if x<=0 goto finish

9 | eaq -1(%wdi), %di xml = x-1 (1st argument)
10 novq % sp, % sSi &iresult (2nd argunent)
11 cal | sfact _hel per sfact _hel per (xmil, &nresult)
12 i mulq (% sp), % bx x*nresul t

26

13 novq % bx, (% bp) *result = x*nresult

14 novq 8(% sp), % bx Rest ore % bx

15 novq 16(% sp), %bp Restore % bp

16 addq $24, % sp Deal | ocate stack frame
17 ret Return

18 . L17: finish:

19 novq $1, (%si) *resultp = 1

20 novq 8(% sp), % bx Rest ore % bx

21 novq 16(% sp), %bp Restore % bp

22 addq $24, % sp Deal | ocate stack frame
23 ret Return

Figure 9 illustrates how sfact_helper uses the stack to store the values of callee-saved registers and to
hold the local variable nresult. This implementation has the interesting feature that the two callee-saved
registers it uses (%rbx and %rbp) are saved on the stack (lines 2-3) before the stack pointer is decremented
(line 4) to allocate the stack frame. As a consequence, the stack offset for %rbx shifts from —16 at the
beginning to +8 at the end (line 14). Similarly, the offset for %rbp shifts from —8 to +16.

Being able to access memory beyond the stack pointer is an unusual feature of x86-64. It requires that the
virtual memory management system allocate memory for that region. The x86-64 ABI [8] specifies that
programs can use the 128 bytes beyond (i.e., at lower addresses than) the current stack pointer. The ABI
refers to this area as the red zone. It must be kept available for reading and writing as the stack pointer
moves.

Note also how the code for sFact_helper has two separate ret instructions: one for each branch of
the conditional statement. This contrasts with 1A32 code, where we always saw the different branches
come together at the end of a function to a shared ret instruction. This is partly because 1A32 requires a
much more elaborate instruction sequence to exit a function, and it is worthwhile to avoid duplicating these
instructions at multiple return points.

Practice Problem 6:
For the following C program

long int local _array(int i)

{
long int a[4] = {2L, 3L, 5L, 71};
int idx =i & 3;
return a[idx];

}

GcCc generates the following code

x86-64 inplementation of |ocal_array

Argurment i in %edi
1 local _array:
2 andl $3, %edi

3 novq $2, -40(% sp)
4 novq $3, -32(% sp)

27

novq $5, -24(% sp)

novq $7, -16(% sp)

novq -40(% sp, % di, 8), % ax
ret

w0 N o g

A. Draw adiagram indicating the stack locations used by this function and their offsetsrelative to the
stack pointer.

B. Annotate the assembly code to describe the effect of each instruction
C. What interesting feature does this exampleillustrate about the x86-64 stack discipline?

Practice Problem 7:
For the following recursive factorial program

long int rfact(long int x)

{
if (x <=0)
return 1;
el se {
long int xml = x-1;
return x * rfact(xml);
}
}

GCc generates the following code

x86-64 inplementation of recursive factorial function rfact
Argunment x in %di
1 rfact:

2 testq %di, % di
3 pushq % bx

4 movl $1, %eax

5 novq %di, % bx
6 jle . L9

7 | eaq -1(%wdi), %di
8 call rfact

9 i mul q % bx, 9% ax
10 . L9:

11 popq % bx

12 ret

A. What value does the function store in % bx?

B. What are the purposes of the pushq (line 3) and popq (line 11) instructions?

C. Annotate the assembly code to describe the effect of each instruction

D. What interesting feature does this exampleillustrate about the x86-64 stack discipline?

28

7 Data Structures

Data structures follow the same principles in x86-64 as they do in 1A32: arrays are allocated as sequences of
identically-sized blocks holding the array elements, structures are allocated as sequences of variably-sized
blocks holding the structure elements, and unions are allocated as a single block big enough to hold the
largest union element.

One difference is that x86-64 follows a more stringent set of alignment requirements. For any scalar data
type requring K bytes, its starting address must be a multiple of K. Thus, data types long, double, and
pointers must be aligned on 8-byte boundaries. In addition, data type long double uses a 16-byte align-
ment (and size allocation), even though the actual representation requires only 10 bytes. These alignment
conditions are imposed to improve memory system performance—the memory interface is designed in most
processors to read or write aligned blocks that are eight or sixteen bytes long.

Practice Problem 8:

For each of the following structure declarations, determine the offset of each fi eld, the total size of the
structure, and its alignment requirement under x86-64.

A. struct PL { int i; char c; long j; char d; };
B. struct P2 { long j; char c¢; char d; int i; };
C. struct P3 { short W 3]; char c[3] };

D. struct P4 { short wW3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

8 Floating Point

Starting with the Pentium MMX in 1997, both Intel and AMD have introduced successive generations of
media instructions to support graphics and image processing. The most recent version of these is named
SSE3, for “Streaming SIMD Extensions, version 3.” It is available on all x86-64 processors. The media
instructions originally focused on allowing multiple operations to be performed in a parallel mode known
as single instruction, multiple data or SIMD (pronounced SIM-DEE). In this mode the same operation is
performed on a number of different data values in parallel.

The media instructions implement SIMD operations by having a set of registers that can hold multiple data
values in packed format. For example, SSE3 provides sixteen XMM registers of 128 bits each, named
%xmmO-%xmm15. Each one of these registers can hold a vector of K elements of IV bits each, such that
K x N = 128. For integers, K can be 8, 16, 32, or 64 bits, while for floating-point numbers, K can be
32 or 64. For example, a single SSE3 instruction can add two byte vectors of eight elements each. The
floating point formats match the IEEE standard formats for single and double-precision values. The major
use of these media instructions are in library routines for graphics and image processing. These routines
must be written with special tools and using assembly code, since the major compilers do not support the
media extensions.

29

Instruc