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“The course that gives CMU its Zip!”

System-Level 1/O
April 6, 2006

Topics
m More on Cyclone
m Unix I/O
m Robust reading and writing
m Reading file metadata
m Sharing files
m |/O redirection
m Standard 1/O
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Unsafe Features in C

Remember this “check list” (with cyclone solutions)

m Pointer arithmetic (fat pointers,  bounded pointers)

m Some casts to pointers (disallow certainc  asts)

m Unions (tagged unions)

m Printf and scanf (use tagged unions)

m Uninitialized variables (check if vars ini  tialized before use)
m Malloc/free (no free; garbage collection; regions)
m Returning stack locations  (regions)

m Linking (type I nformation in object files)

Need to know pitfalls to avoid them
Important debugging aid
Can help identify good coding practices, evenin C

(Even if you will never write a line of Cyclone cod e)

—-2- 15-213, S'06




SAL

SAL Is an annotation language for C
m Similar to the primitives in Cyclone
m Pre- and post-conditions for all functions
m Tries to avoid the same unsafe features of C
m Bug finding instead of safety guarantee

Used at Microsoft, especially in Vista development
m All code must pass checker before release into main branch
m Encourages good coding style
m Not all correct code checks
m Occasionally, must escape checker (with peer review )

Successful in drastically reducing number of bugs

Ideas behind SAL, Cyclone will be mainstream in muc  h
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Example from Exam2, S'05

Recognize fat and thin (bounded) pointers
Recognize if pointers may be NULL or not
Tell which regions pointers point to

Common idiom: pass array and its size (also in SAL)
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A Typical Hardware System
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Reading a Disk Sector: Step 1
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Reading a Disk Sector: Step 2
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Reading a Disk Sector: Step 3
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Unix Files

A Unix file Is a sequence of m bytes:
=B,B,...,B,,...,B

m-1

All I/0O devices are represented as files:

m /dev/sda2 (/usr disk partition)
m/dev/tty2 (terminal)

Even the kernel is represented as a file:

m / dev/ knem (kernel memory image)
m/ proc (kernel data structures)
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Unix File Types

Regqular file
m Binary or text file.
m Unix does not know the difference!

Directory file
m A file that contains the names and locations of oth er files.

Character special and block special files
m Terminals (character special) and disks ( block spe  cial)

FIFO (named pipe)

m A file type used for interprocess communication

Socket

m A file type used for network communication between
processes
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Unix I/O

The elegant mapping of files to devices allows kern
export simple interface called Unix 1/O.

Key Unix idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):

m Opening and closing files
® open()and cl ose()

m Changing the current file position (seek)
® | seek (not discussed)

m Reading and writing a file
® read() and wite()

- 11 -
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Opening Files

Opening a file informs the kernel that you are gett  ing
ready to access that file.

int fd; /* file descriptor */

i f ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror("open");
exit(1);

}

Returns a small identifying integer  file descriptor
mfd == -1 indicates that an error occurred

Each process created by a Unix shell begins life wi  th
three open files associated with a terminal:

m O: standard input
m 1: standard output
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Closing Files

Closing a file informs the kernel that you are fini shed
accessing that file.

int fd; /[* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close");
exit(1);

}

Closing an already closed file is a recipe for disa  ster in
threaded programs (more on this later)

Moral: Always check return codes, even for seeming| y
benign functions such as cl ose()
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Reading Files

Reading a file copies bytes from the current file
position to memory, and then updates file position.

char buf[512];
int fd; /[* file descriptor */
i nt nbytes; [ * nunber of bytes read */

[* Open file fd ... */

/* Then read up to 512 bytes fromfile fd */

i f ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror("read");
exit(1);

}

Returns number of bytes read from file  f d into buf
m hbyt es < O indicates that an error occurred.

m short counts (nbytes < sizeof (buf) ) are possible and
are not errors!
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Wirriting Files

Writing a file copies bytes from memory to the curr ent file
position, and then updates current file position.

char buf[512];
int fd; /* file descriptor */
i nt nbytes; [ * nunber of bytes read */

/[* Qpen the file fd ... */
/[* Then wite up to 512 bytes frombuf to file fd */
i f ((nbytes = wite(fd, buf, sizeof(buf)) < 0) {
perror("wite");
exit(1);

}

Returns number of bytes written from  buf to file f d.
m hbyt es < O indicates that an error occurred.

m As with reads, short counts are possible and are no t errors!

Transfers up to 512 bytes from address  buf tofile fd
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Unix I/O Example

Copying standard input to standard output one byte
time.

#i ncl ude "csapp. h"

i nt mai n(voi d)

{

char c;

whi | e(Read( STDIN_FI LENO, &c, 1) !'= 0)
Wite( STDOUT FI LENO, &c, 1);
exit(0);

}

Note the use of error handling wrappers for read an
write (Appendix B).
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Dealing with Short Counts

Short counts can occur in these situations:
m Encountering (end-of-file) EOF on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m \Writing to disk files.

How should you deal with short counts in your code?

m Use the RIO (Robust I/O) package from your textbook 's
csapp. c file (Appendix B).
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The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O i n
applications such as network programs that are subj ect to short

counts.

RIO provides two different kinds of functions

m Unbuffered input and output of binary data
®@rio readnandrio witen

m Buffered input of binary data and text lines
@ rio readlinebandrio _readnb
® Cleans up some problems with Stevens’s readl i ne and r eadn functions.

® Unlike the Stevens routines, the buffered RIO routi nes are thread-safe and
can be interleaved arbitrarily on the same descript  or.

Download from
csapp. cs. cnmu. edu/ public/ics/code/src/csapp.c

csapp. cs. cnu. edu/ public/ics/code/incl ude/ csapp. h
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Unbuffered RIO Input and Output

Same interface as Unix readand wite

Especially useful for transferring data on network
sockets

#i ncl ude "csapp. h"

ssize t rio readn(int fd, void *usrbuf, size t n);
ssize t riowiten(nt fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF ( ri o_r eadn only), -1 on error

m i o_readn returns short count only it encounters EOF.
mrio_witen neverreturns a short count.

m Callsto rio readnand ri o_witen can be interleaved
arbitrarily on the same descriptor.

-19—
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Implementation of ri o readn

/*
* rio_readn - robustly read n bytes (unbuffered)
*/
ssize t rio readn(int fd, void *usrbuf, size t n)
{
size t nleft = n;
ssize t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig
handl er return */

nread = O; /* and call read() again */
el se
return -1; /[* errno set by read() */
}
else if (nread == 0)
br eak; [* ECF */
nleft -= nread;
buf p += nread;
}
return (n - nleft); [* return >= 0 */
}
—-20 -
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Buftered 1/O: Motivation

I/O Applications Read/Write One Character at a Time
m getc, putc, ungetc

m gets
® Read line of text, stopping at newline

Implementing as Calls to Unix I/O Expensive

m Read & Write involve require Unix kernel calls
® > 10,000 clock cycles

Buffer

already read unread

Buffered Read
m Use Unix read to grab block of characters

m User input functions take one character atatime f  rom buffer

21— e Refill buffer when empty
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Buffered I/O: Implementation

m File has associated buffer to hold bytes that have

from file but not yet read by user code

Buffer

< ri o_cnt >

been read

already read

unread

r | O_bUf -/ . ./
ri o _bufptr

t ypedef struct {

int rio _fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio buf[RIO BUFSI ZE]; /* internal buffer */

} rio_t;
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Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#i ncl ude "csapp. h"
void rio readinitb(rio t *rp, int fd);

ssize t rio readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize t rio_readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 onerro r

mrio_readlinebreads atextline ofupto mnmaxl en bytes from
file f d and stores the line in  usr buf .

® Especially useful for reading text lines from netwo rk sockets.
m i o _readnbreads upto n bytesfromfile fd.

m Callsto rio _readlinebandrio_readnb can be interleaved
arbitrarily on the same descriptor.

® Warning: Don’t interleave with callsto  ri o_readn
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RIO Example

Copying the lines of a text file from standard inpu

standard output.

#i ncl ude "csapp. h"

int main(int argc, char **argv)

{
I nt n;
riot rio;
char buf [ MAXLI NE] ;
Rio readinitb(&io, STD N FlILENO) ;
while((n = R o _readlineb(&io, buf,

Ri o witen(STDOUT _FI LENG, buf,

exit(0);

}

MAXLI NE)) != 0)

n);

—24 —
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How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinct open disk

files. Descriptor 1 ( stdout ) points to terminal, and
descriptor 4 points to open disk file.

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (terminal)
stdin fdo = File access| |
stdout fd1 =] : ile i Info i
File size nio In
stderr fd?2 File pos _ \ st at
fd 3 refcnt =1 File type struct
fd 4 ~ : :
J
_—— "File access
File pos F-lle size
refcnt =1 File type
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File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries

m E.g., Calling open twice with the same fil enane argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
~ File A ~
//' .
fd O - = File access
1]:3 ; File pos File size
fd 3 refcnt=1 File type
fd 4 ~ 0
File pos
refcnt=1
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How Processes Share Files

A child process inherits its parent’s open files. H

—_27—

the situation immediately after a

Descriptor Open file table
tables (shared by
all processes)
Parent's table  File A
fd 0 7 .
fd 1 i :
Fil
fd 2 e pos
fd 3 refcnt =2
fd 4 ~
Child's table File B
fd 0 ,
/ .
fd1 File pos
fd 2
fd 3 refcnt =2
fd 4

fork

v-node table
(shared by

all processes)

»

File access

File size

File type

_— File access

File size

File type

ere is
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/O Redirection

Question: How does a shell implement I/O redirectio  n?
uni x> |'s > foo.txt

Answer: By calling the dup2(ol dfd, newfd) function
m Copies (per-process) descriptor table entry ol df d to entry

newf d
Descriptor table Descriptor table
before dup2(4, 1) after dup2(4, 1)
fd O fd O
fd 1 a fd 1 b
fd 2 > fd 2
fd 3 fd 3
fd 4 b fd 4 b
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I/O Redirection Example

Before calling dup2(4, 1), stdout (descriptor 1) points
to a terminal and descriptor 4 points to an open di

file.
Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
stdin fdo = File access
stdout fd1 : : .
stderr fd2 File pos F-lle size
fd 3 refcnt=1 File type
fd 4 : :
File access
File pos F-lle size
refcnt=1 File type

—29_
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I/O Redirection Example (cont)

After calling dup2(4, 1), stdout is now redirected to the
disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)

__FileA_ . __ i ,
fd 0 ! -am-mTTTTT File access!
Ig; = ' File pos ! . File size !
fd 3 ' ref cnt =0 E . File type |
fda |~ o | o |

File access
File pos F-lle size
ref cnt =2 File type
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Standard 1/O Functions

The C standard library ( | 1 bc. a) contains a collection of
higher -level standard I/O functions
m Documented in Appendix B of K&R.

Examples of standard 1/O functions:
m Opening and closing files ( f open and f cl ose)
m Reading and writing bytes ( freadand fwite)
m Reading and writing text lines ( fgets and f put s)
m Formatted reading and writing (  f scanf and fprintf)
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Standard 1/O Streams

Standard I/0O models open files as streams
m Abstraction for a file descriptor and a buffer in m emory.

C programs begin life with three open streams (defi ned

—-32—

In stdi o. h)

m St di n (standard input)
m st dout (standard output)
m st derr (standard error)

#1 ncl ude <stdi o. h>
extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

int main() {
fprintf(stdout,
}

"Hell o, world\n");

/* standard i nput (descriptor 0) */
/* standard output (descriptor 1) */
/* standard error (descriptor 2) */
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Buffering in Standard 1/O

Standard I/O functions use bhuffered 1/O

printf("h");

printf("e");
printf("I");
printf("I");
printf("o");

buf orintf("\n"):

h|ell | 1 o1l\n

fflush(stdout);

wite(l, buf += 6, 6);

—-33-—

15-213, S’06



Standard 1/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Unix st race program:

#i ncl ude <stdi o. h>

i nt main()

{

Q'T'f@.q

printf("\n" )
fflush(stdout);
exit(0);

| i nux> strace ./hello

—34 -

execve("./hello", ["hello"], [/* ... *I]).

wite(l, "hello\n", 6...) = 6

_exit(0) = ?
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Unix I/O vs. Standard 1I/O vs. RIO

Standard I/O and RIO are implemented using low

Unix 1/O.

fopen fdopen
fread fwite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fcl ose

open read
wite |seek
st at cl ose

Which ones should you use in your programs?

- 35—

C application program

N Standard I/O

-level

RIO

functions functions

Unix I/O functions
(accessed via system calls)

ri o_readn

rio witen
rio readinithb
rio_readlineb
ri o_readnb
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Pros and Cons of Unix I/O

Pros

m Unix I/O is the most general and lowest overhead fo  rm of I/O.

® All other I/O packages are implemented using Unix I /O
functions.

m Unix I/O provides functions for accessing file meta data.

Cons
m Dealing with short counts is tricky and error prone

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addressed by the standard /O and
RIO packages.
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Pros and Cons of Standard 1/O

Pros:

m Buffering increases efficiency by decreasing the nu mber of
read and wri t e system calls.

m Short counts are handled automatically.

cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and outpu ton
network sockets

m There are poorly documented restrictions on streams that
Interact badly with restrictions on sockets
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Pros and Cons of Standard |/O (cont)

Restrictions on streams:

m Restriction 1: input function cannot follow output function
without intervening callto  ffl ush, f seek, f set pos, or
rew nd.

® |atter three functions all use | seek to change file position.

m Restriction 2: output function cannot follow an inp ut
function with intervening callto  f seek, f set pos, or r ew nd.

Restriction on sockets:
m You are not allowed to change the file position of a socket.
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Pros and Cons of Standard |/O (cont)

Workaround for restriction 1:
m Flush stream after every output.

Workaround for restriction 2:

m Open two streams on the same descriptor, one forre  ading
and one for writing:

FILE *fpin, *fpout;

fpin = fdopen(sockfd, "r");
f pout = fdopen(sockfd, "w');

m However, this requires you to close the same descri ptor
twice:

fcl ose(fpin);
fcl ose(fpout);

m Creates a deadly race in concurrent threaded progra  ms!
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Choosing I/O Functions

General rule: Use the highest -level I/O functions you
can.

m Many C programmers are able to do all of their work using
the standard I/O functions.

When to use standard |/O?
m \When working with disk or terminal files.

When to use raw Unix I/O
m \When you need to fetch file metadata.
m In rare cases when you need absolute highest perfor  mance.

When to use RIO?
m \When you are reading and writing network sockets or pipes.
m Never use standard 1/O or raw Unix I/O on sockets o r pipes.
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For Further Information

The Unix bible:

m W. Richard Stevens, Advanced Programming in the Un  ix
Environment, Addison Wesley, 1993.
Somewhat dated, but still useful.

m W. Richard Stevens, Unix Network Programming :
Networking APIs: Sockets and XTI (Volume 1), 1998

Stevens is arguably the best technical writer ever.

m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.
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