15-213

“The course that gives CMU its Zip!”

System-Level 1/O
April 6, 2006

Topics
m More on Cyclone
m Unix I/O
m Robust reading and writing
m Reading file metadata
m Sharing files
m |/O redirection
m Standard 1/O

21-i 0. ppt

Unsafe Features in C

Remember this “check list” (with cyclone solutions)

m Pointer arithmetic (fat pointers, bounded pointers)

m Some casts to pointers (disallow certainc asts)

m Unions (tagged unions)

m Printf and scanf (use tagged unions)

m Uninitialized variables (check if vars ini tialized before use)
m Malloc/free (no free; garbage collection; regions)
m Returning stack locations (regions)

m Linking (type I nformation in object files)

Need to know pitfalls to avoid them
Important debugging aid
Can help identify good coding practices, evenin C

(Even if you will never write a line of Cyclone cod e)

—-2- 15-213, S'06

SAL

SAL Is an annotation language for C
m Similar to the primitives in Cyclone
m Pre- and post-conditions for all functions
m Tries to avoid the same unsafe features of C
m Bug finding instead of safety guarantee

Used at Microsoft, especially in Vista development
m All code must pass checker before release into main branch
m Encourages good coding style
m Not all correct code checks
m Occasionally, must escape checker (with peer review)

Successful in drastically reducing number of bugs

Ideas behind SAL, Cyclone will be mainstream in muc h

s of Industrial systems programming 15913 S06

Example from Exam2, S'05

Recognize fat and thin (bounded) pointers
Recognize if pointers may be NULL or not
Tell which regions pointers point to

Common idiom: pass array and its size (also in SAL)

4 — 15-213, S’06

A Typical Hardware System

CPU chip

register file

: ALU

system bus memory bus

ir .5 l
usintertace [N S0 KT ma
us nteriace bridge memory

l ‘ \ ‘ /O bus \ ‘ Expansion slots for
other devices such

USB graphics disk as network adapters.
controller adapter controller

P l |

A 4

mouse keyboard monitor
5 15-213, S'06

Reading a Disk Sector: Step 1

CPU chip

register file

Jr

ALU

bus interface

N
N—

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

main
memory

<

ﬁ F /0 bus >

Ry

USB
controller

o

mouse keyboard

graphics
adapter

monitor

e

disk
controller

A

\ 4

15-213, S’06

Reading a Disk Sector: Step 2

CPU chip

ster fil Disk controller reads the sector and
register e : performs a direct memory access (DMA)

transfer into main memory.
ALU sfer into ma emory

Jr

bus interface <::::> i\,—/ mr:rii(?ry
ﬁ F /O bus .
R L

<

USB graphics disk
controller adapter controller
mouse keyboard monitor >

7 15-213, S'06

Reading a Disk Sector: Step 3

CPU chip

register file

-
1r

: ALU

bus interface <:::>

When the DMA transfer completes, the
disk controller notifies the CPU with an

interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

main
memory

<

ﬁ F /0 bus >

Ry

<

USB graphics
controller adapter
mouse keyboard monitor

<>

disk
controller

4

A 4

15-213, S’06

Unix Files

A Unix file Is a sequence of m bytes:
=B,B,...,B,,...,B

m-1

All I/0O devices are represented as files:

m /dev/sda2 (/usr disk partition)
m/dev/tty2 (terminal)

Even the kernel is represented as a file:

m / dev/ knem (kernel memory image)
m/ proc (kernel data structures)

15-213, S’06

Unix File Types

Regqular file
m Binary or text file.
m Unix does not know the difference!

Directory file
m A file that contains the names and locations of oth er files.

Character special and block special files
m Terminals (character special) and disks (block spe cial)

FIFO (named pipe)

m A file type used for interprocess communication

Socket

m A file type used for network communication between
processes

_ 10— 15-213, S'06

Unix I/O

The elegant mapping of files to devices allows kern
export simple interface called Unix 1/O.

Key Unix idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):

m Opening and closing files
® open()and cl ose()

m Changing the current file position (seek)
® | seek (not discussed)

m Reading and writing a file
® read() and wite()

- 11 -

el to

15-213, S’06

Opening Files

Opening a file informs the kernel that you are gett ing
ready to access that file.

int fd; /* file descriptor */

i f ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror("open");
exit(1);

}

Returns a small identifying integer file descriptor
mfd == -1 indicates that an error occurred

Each process created by a Unix shell begins life wi th
three open files associated with a terminal:

m O: standard input
m 1: standard output

19 m 2: standard error 15-213, S'06

Closing Files

Closing a file informs the kernel that you are fini shed
accessing that file.

int fd; /[* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close");
exit(1);

}

Closing an already closed file is a recipe for disa ster in
threaded programs (more on this later)

Moral: Always check return codes, even for seeming| y
benign functions such as cl ose()

—-13 - 15-213, S’06

Reading Files

Reading a file copies bytes from the current file
position to memory, and then updates file position.

char buf[512];
int fd; /[* file descriptor */
i nt nbytes; [* nunber of bytes read */

[* Open file fd ... */

/* Then read up to 512 bytes fromfile fd */

i f ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror("read");
exit(1);

}

Returns number of bytes read from file f d into buf
m hbyt es < O indicates that an error occurred.

m short counts (nbytes < sizeof (buf)) are possible and
are not errors!

- 14 - 15-213, S'06

Wirriting Files

Writing a file copies bytes from memory to the curr ent file
position, and then updates current file position.

char buf[512];
int fd; /* file descriptor */
i nt nbytes; [* nunber of bytes read */

/[* Qpen the file fd ... */
/[* Then wite up to 512 bytes frombuf to file fd */
i f ((nbytes = wite(fd, buf, sizeof(buf)) < 0) {
perror("wite");
exit(1);

}

Returns number of bytes written from buf to file f d.
m hbyt es < O indicates that an error occurred.

m As with reads, short counts are possible and are no t errors!

Transfers up to 512 bytes from address buf tofile fd

15 15-213, S'06

Unix I/O Example

Copying standard input to standard output one byte
time.

#i ncl ude "csapp. h"

i nt mai n(voi d)

{

char c;

whi | e(Read(STDIN_FI LENO, &c, 1) !'= 0)
Wite(STDOUT FI LENO, &c, 1);
exit(0);

}

Note the use of error handling wrappers for read an
write (Appendix B).

—-16 —

at a

d

15-213, S’06

Dealing with Short Counts

Short counts can occur in these situations:
m Encountering (end-of-file) EOF on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m \Writing to disk files.

How should you deal with short counts in your code?

m Use the RIO (Robust I/O) package from your textbook 's
csapp. c file (Appendix B).

—17 - 15-213, S'06

The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O i n
applications such as network programs that are subj ect to short

counts.

RIO provides two different kinds of functions

m Unbuffered input and output of binary data
®@rio readnandrio witen

m Buffered input of binary data and text lines
@ rio readlinebandrio _readnb
® Cleans up some problems with Stevens’s readl i ne and r eadn functions.

® Unlike the Stevens routines, the buffered RIO routi nes are thread-safe and
can be interleaved arbitrarily on the same descript or.

Download from
csapp. cs. cnmu. edu/ public/ics/code/src/csapp.c

csapp. cs. cnu. edu/ public/ics/code/incl ude/ csapp. h

—-18 — 15-213, S’06

Unbuffered RIO Input and Output

Same interface as Unix readand wite

Especially useful for transferring data on network
sockets

#i ncl ude "csapp. h"

ssize t rio readn(int fd, void *usrbuf, size t n);
ssize t riowiten(nt fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (ri o_r eadn only), -1 on error

m i o_readn returns short count only it encounters EOF.
mrio_witen neverreturns a short count.

m Callsto rio readnand ri o_witen can be interleaved
arbitrarily on the same descriptor.

-19—

15-213, S'06

Implementation of ri o readn

/*
* rio_readn - robustly read n bytes (unbuffered)
*/
ssize t rio readn(int fd, void *usrbuf, size t n)
{
size t nleft = n;
ssize t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig
handl er return */

nread = O; /* and call read() again */
el se
return -1; /[* errno set by read() */
}
else if (nread == 0)
br eak; [* ECF */
nleft -= nread;
buf p += nread;
}
return (n - nleft); [* return >= 0 */
}
—-20 -

15-213, S'06

Buftered 1/O: Motivation

I/O Applications Read/Write One Character at a Time
m getc, putc, ungetc

m gets
® Read line of text, stopping at newline

Implementing as Calls to Unix I/O Expensive

m Read & Write involve require Unix kernel calls
® > 10,000 clock cycles

Buffer

already read unread

Buffered Read
m Use Unix read to grab block of characters

m User input functions take one character atatime f rom buffer

21— e Refill buffer when empty

15-213, S'06

Buffered I/O: Implementation

m File has associated buffer to hold bytes that have

from file but not yet read by user code

Buffer

< ri o_cnt >

been read

already read

unread

r | O_bUf -/ . ./
ri o _bufptr

t ypedef struct {

int rio _fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio buf[RIO BUFSI ZE]; /* internal buffer */

} rio_t;

22 15-213, S'06

Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#i ncl ude "csapp. h"
void rio readinitb(rio t *rp, int fd);

ssize t rio readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize t rio_readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 onerro r

mrio_readlinebreads atextline ofupto mnmaxl en bytes from
file f d and stores the line in usr buf .

® Especially useful for reading text lines from netwo rk sockets.
m i o _readnbreads upto n bytesfromfile fd.

m Callsto rio _readlinebandrio_readnb can be interleaved
arbitrarily on the same descriptor.

® Warning: Don’t interleave with callsto ri o_readn
23 15-213, S'06

RIO Example

Copying the lines of a text file from standard inpu

standard output.

#i ncl ude "csapp. h"

int main(int argc, char **argv)

{
I nt n;
riot rio;
char buf [MAXLI NE] ;
Rio readinitb(&io, STD N FlILENO) ;
while((n = R o _readlineb(&io, buf,

Ri o witen(STDOUT _FI LENG, buf,

exit(0);

}

MAXLI NE)) != 0)

n);

—24 —

tto

15-213, S’06

How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinct open disk

files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (terminal)
stdin fdo = File access| |
stdout fd1 =] : ile i Info i
File size nio In
stderr fd?2 File pos _ \ st at
fd 3 refcnt =1 File type struct
fd 4 ~ : :
J
_—— "File access
File pos F-lle size
refcnt =1 File type

- 25— 15-213, S’06

File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries

m E.g., Calling open twice with the same fil enane argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
~ File A ~
//' .
fd O - = File access
1]:3 ; File pos File size
fd 3 refcnt=1 File type
fd 4 ~ 0
File pos
refcnt=1
— 26— : 15-213, S'06

How Processes Share Files

A child process inherits its parent’s open files. H

—_27—

the situation immediately after a

Descriptor Open file table
tables (shared by
all processes)
Parent's table File A
fd 0 7 .
fd 1 i :
Fil
fd 2 e pos
fd 3 refcnt =2
fd 4 ~
Child's table File B
fd 0 ,
/ .
fd1 File pos
fd 2
fd 3 refcnt =2
fd 4

fork

v-node table
(shared by

all processes)

»

File access

File size

File type

_— File access

File size

File type

ere is

15-213, S’06

/O Redirection

Question: How does a shell implement I/O redirectio n?
uni x> |'s > foo.txt

Answer: By calling the dup2(ol dfd, newfd) function
m Copies (per-process) descriptor table entry ol df d to entry

newf d
Descriptor table Descriptor table
before dup2(4, 1) after dup2(4, 1)
fd O fd O
fd 1 a fd 1 b
fd 2 > fd 2
fd 3 fd 3
fd 4 b fd 4 b

- 28 — 15-213, S’06

I/O Redirection Example

Before calling dup2(4, 1), stdout (descriptor 1) points
to a terminal and descriptor 4 points to an open di

file.
Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
stdin fdo = File access
stdout fd1 : : .
stderr fd2 File pos F-lle size
fd 3 refcnt=1 File type
fd 4 : :
File access
File pos F-lle size
refcnt=1 File type

—29_

sk

15-213, S’06

I/O Redirection Example (cont)

After calling dup2(4, 1), stdout is now redirected to the
disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)

__FileA_ . __ i ,
fd 0 ! -am-mTTTTT File access!
Ig; = ' File pos ! . File size !
fd 3 ' ref cnt =0 E . File type |
fda |~ o | o |

File access
File pos F-lle size
ref cnt =2 File type

-30 - 15-213, S’06

Standard 1/O Functions

The C standard library (| 1 bc. a) contains a collection of
higher -level standard I/O functions
m Documented in Appendix B of K&R.

Examples of standard 1/O functions:
m Opening and closing files (f open and f cl ose)
m Reading and writing bytes (freadand fwite)
m Reading and writing text lines (fgets and f put s)
m Formatted reading and writing (f scanf and fprintf)

—-31-— 15-213, S’06

Standard 1/O Streams

Standard I/0O models open files as streams
m Abstraction for a file descriptor and a buffer in m emory.

C programs begin life with three open streams (defi ned

—-32—

In stdi o. h)

m St di n (standard input)
m st dout (standard output)
m st derr (standard error)

#1 ncl ude <stdi o. h>
extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

int main() {
fprintf(stdout,
}

"Hell o, world\n");

/* standard i nput (descriptor 0) */
/* standard output (descriptor 1) */
/* standard error (descriptor 2) */

15-213, S'06

Buffering in Standard 1/O

Standard I/O functions use bhuffered 1/O

printf("h");

printf("e");
printf("I");
printf("I");
printf("o");

buf orintf("\n"):

h|ell | 1 o1l\n

fflush(stdout);

wite(l, buf += 6, 6);

—-33-—

15-213, S’06

Standard 1/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Unix st race program:

#i ncl ude <stdi o. h>

i nt main()

{

Q'T'f@.q

printf("\n")
fflush(stdout);
exit(0);

| i nux> strace ./hello

—34 -

execve("./hello", ["hello"], [/* ... *I]).

wite(l, "hello\n", 6...) = 6

_exit(0) = ?
15-213, S'06

Unix I/O vs. Standard 1I/O vs. RIO

Standard I/O and RIO are implemented using low

Unix 1/O.

fopen fdopen
fread fwite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fcl ose

open read
wite |seek
st at cl ose

Which ones should you use in your programs?

- 35—

C application program

N Standard I/O

-level

RIO

functions functions

Unix I/O functions
(accessed via system calls)

ri o_readn

rio witen
rio readinithb
rio_readlineb
ri o_readnb

15-213, S’06

Pros and Cons of Unix I/O

Pros

m Unix I/O is the most general and lowest overhead fo rm of I/O.

® All other I/O packages are implemented using Unix I /O
functions.

m Unix I/O provides functions for accessing file meta data.

Cons
m Dealing with short counts is tricky and error prone

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addressed by the standard /O and
RIO packages.

—-36— 15-213, S'06

Pros and Cons of Standard 1/O

Pros:

m Buffering increases efficiency by decreasing the nu mber of
read and wri t e system calls.

m Short counts are handled automatically.

cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and outpu ton
network sockets

m There are poorly documented restrictions on streams that
Interact badly with restrictions on sockets

—-37-— 15-213, S'06

Pros and Cons of Standard |/O (cont)

Restrictions on streams:

m Restriction 1: input function cannot follow output function
without intervening callto ffl ush, f seek, f set pos, or
rew nd.

® |atter three functions all use | seek to change file position.

m Restriction 2: output function cannot follow an inp ut
function with intervening callto f seek, f set pos, or r ew nd.

Restriction on sockets:
m You are not allowed to change the file position of a socket.

3g 15-213, S'06

Pros and Cons of Standard |/O (cont)

Workaround for restriction 1:
m Flush stream after every output.

Workaround for restriction 2:

m Open two streams on the same descriptor, one forre ading
and one for writing:

FILE *fpin, *fpout;

fpin = fdopen(sockfd, "r");
f pout = fdopen(sockfd, "w');

m However, this requires you to close the same descri ptor
twice:

fcl ose(fpin);
fcl ose(fpout);

m Creates a deadly race in concurrent threaded progra ms!
—39— 15-213, S’06

Choosing I/O Functions

General rule: Use the highest -level I/O functions you
can.

m Many C programmers are able to do all of their work using
the standard I/O functions.

When to use standard |/O?
m \When working with disk or terminal files.

When to use raw Unix I/O
m \When you need to fetch file metadata.
m In rare cases when you need absolute highest perfor mance.

When to use RIO?
m \When you are reading and writing network sockets or pipes.
m Never use standard 1/O or raw Unix I/O on sockets o r pipes.

—40 - 15-213, S'06

For Further Information

The Unix bible:

m W. Richard Stevens, Advanced Programming in the Un ix
Environment, Addison Wesley, 1993.
Somewhat dated, but still useful.

m W. Richard Stevens, Unix Network Programming :
Networking APIs: Sockets and XTI (Volume 1), 1998

Stevens is arguably the best technical writer ever.

m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.

—-41 - 15-213, S'06

