
Andrew login ID:

Full Name:

CS 15-213, Spring 2004

Exam 1
February 26, 2004

Instructions:

� Make sure that your exam is not missing any sheets (there should be 15), then write your full name
and Andrew login ID on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of 80 points.

� The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

� This exam is OPEN BOOK. You may use any books or notes you like. No electronic devices are
allowed. Good luck!

1 (9):

2 (14):

3 (12):

4 (8):

5 (12):

6 (12):

7 (6):

8 (7):

TOTAL (80):

Page 1 of 15

Problem 1. (9 points):
Assume we are running code on a

���
-bit machine using two’s complement arithmetic for signed integers.

Short integers are encoded using � bits. Sign extension is performed whenever a short is casted to an int.
For this problem, assume that all shift operations are arithmetic. Fill in the empty boxes in the table below.

int i = -42;
unsigned ui = i;
short s = -7;
unsigned short us = s;

Note: You need not fill in entries marked with ”–”. TMax denotes the largest positive two’s complement
number and TMin denotes the minimum negative two’s complement number. Finally, you must use hex-
idecimal notation for your answers in the “Hex Representation” column, failure to do so will result in being
marked incorrect on that portion of the question.

Expression Decimal Representation Hex Representation

Zero
�

000

– ��� 3f7

i -42 3d6

i ��� 5 -2 3fe

ui 982 3d6

(int) s -7 3f9

(int)(s ˆ -12) 13 00d

(int) us 25 019

TMax 511 1ff

TMin -512 200

Page 2 of 15

Problem 2. (14 points):

Consider the following 11-bit floating point representation based on the IEEE floating point format:

� There is a sign bit in the most significant bit.

� The next ����� bits are the exponent. The exponent bias is 7.

� The last ����� bits are the significand.

Numeric values are encoded in this format as a value of the form 	
��� � ��������������
, where � is the sign

bit, � is exponent after biasing, and
�

is the significand.

Part I

How many FP numbers are in the following intervals � ���! ?
For each interval � ���! , count the number of " such that �$#%"'&(.

A. Interval � � � �) :
�+*

=64

B. Interval � � � �-, � :
��.

=16

Part II

Answer the following problems using either decimal (e.g.,
��,0/)1 �) or fractional (e.g.,

� ��2�3
) representations

for numbers that are not integers.

A. For denormalized numbers:

(a) What is the smallest value � of the exponent after biasing? -6

(b) What is the largest value
�

of the significand? 63/64

B. For normalized numbers:

(a) What is the smallest value � of the exponent after biasing? -6

(b) What is the largest value � of the exponent after biasing? 7

(c) What is the smallest value
�

of the significand? 1

(d) What is the largest value
�

of the significand? 127/64

Page 3 of 15

Part III

Fill in the blank entries in the following table giving the encodings for some interesting numbers.

Description � � 	 Binary Encoding

Zero � � � �
0 0000 000000

Smallest Positive (nonzero) -6 1/64 1/4096 0 0000 000001

Largest denormalized -6 63/64 63/4096 0 0000 111111

Smallest positive normalized -6 1 1/64 0 0001 000000

Positive Infinity — — — 0 1111 000000

Negative Infinity — — — 1 1111 000000

Page 4 of 15

Problem 3. (12 points):

Consider the following assembly code:

08048333 <func>:
8048333: 55 push %ebp
8048334: 89 e5 mov %esp,%ebp
8048336: 83 ec 0c sub $0xc,%esp
8048339: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
8048340: 8b 45 08 mov 0x8(%ebp),%eax
8048343: 0f af 45 0c imul 0xc(%ebp),%eax
8048347: 39 45 fc cmp %eax,0xfffffffc(%ebp)
804834a: 72 02 jb 804834e <func+0x1b>
804834c: eb 2f jmp 804837d <func+0x4a>
804834e: 8b 45 08 mov 0x8(%ebp),%eax
8048351: 89 c2 mov %eax,%edx
8048353: 0f af 55 0c imul 0xc(%ebp),%edx
8048357: 8d 45 fc lea 0xfffffffc(%ebp),%eax
804835a: 01 10 add %edx,(%eax)
804835c: 8b 45 08 mov 0x8(%ebp),%eax
804835f: 48 dec %eax
8048360: 89 44 24 04 mov %eax,0x4(%esp,1)
8048364: 8b 45 0c mov 0xc(%ebp),%eax
8048367: 03 45 08 add 0x8(%ebp),%eax
804836a: d1 e8 shr $0x1,%eax
804836c: 89 04 24 mov %eax,(%esp,1)
804836f: e8 bf ff ff ff call 8048333 <func>
8048374: 89 c2 mov %eax,%edx
8048376: 8d 45 fc lea 0xfffffffc(%ebp),%eax
8048379: 29 10 sub %edx,(%eax)
804837b: eb c3 jmp 8048340 <func+0xd>
804837d: 8b 45 fc mov 0xfffffffc(%ebp),%eax
8048380: c9 leave
8048381: c3 ret

Page 5 of 15

The assembly on the previous page corresponds to the C code below. Fill in the blanks in the C code to
match the operations done in the assembly.

unsigned int func(unsigned int a, unsigned int b)
{
unsigned int result = 0;
while (result

�
a*b) {

result += a*b ;
result -= func((a+b)/2 , a-1);

}
return result;

}

Page 6 of 15

Problem 4. (8 points):
Consider the following C declarations:

struct a_struct {
char a;
struct a_strcut *b;

};

struct b_struct {
char c;
int i;
double * d;
short e[3];
struct a_struct m;

};

A. Using the templates below (allowing a maximum of 32 bytes), indicate the allocation of data for
struct b struct. Mark off and label the areas for each individual element (arrays may be labeled
as a single element). Cross hatch the parts that are allocated, but not used, and be sure to clearly
indicate the end of the structure. Assume the Linux alignment rules discussed in class.

struct b struct:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| c X X X| i i i i| d d d d| e e e e|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| e e X X| a X X X| b b b b| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Page 7 of 15

B. How would you define the struct b2 struct structure to minimize the number of bytes allocated
for the structure using the same fields as the struct b struct structure?

struct b2 struct {

char c;
short e[3];
int i;
double * d;
struct a_struct m;

(Most solutions with e and c adjacent work.)

};

C. What is the value of sizeof(struct b2 struct)? 24

Page 8 of 15

Problem 5. (12 points):
Consider the following C code:

struct triple
{

int x;
char c;
int y;

};

int mystery1(int x);
int mystery2(int x);
int mystery3(struct triple* t);

int main()
{

struct triple t = {35, ’q’, 10};

int result1 = mystery1(42);
int result2 = mystery2(19);
int result3 = mystery3(&t);

printf("result1 = %d\n", result1);
printf("result2 = %d\n", result2);
printf("result3 = %d\n", result3);

return 0;
}

Using the assembly code for mystery1, mystery2, and mystery3 on the next page, fill in the proper
values in this program’s output:

result1 = 3

result2 = 19

result3 = 350

Page 9 of 15

080483d0 <mystery1>:
80483d0: 55 push %ebp
80483d1: 89 e5 mov %esp,%ebp
80483d3: 53 push %ebx
80483d4: 8b 45 08 mov 0x8(%ebp),%eax
80483d7: 89 c3 mov %eax,%ebx
80483d9: 83 e3 01 and $0x1,%ebx
80483dc: 85 c0 test %eax,%eax
80483de: 74 0b je 80483eb <mystery1+0x1b>
80483e0: c1 f8 01 sar $0x1,%eax
80483e3: 50 push %eax
80483e4: e8 e7 ff ff ff call 80483d0 <mystery1>
80483e9: 01 c3 add %eax,%ebx
80483eb: 89 d8 mov %ebx,%eax
80483ed: 8b 5d fc mov 0xfffffffc(%ebp),%ebx
80483f0: c9 leave
80483f1: c3 ret

080483f4 <mystery2>:
80483f4: 55 push %ebp
80483f5: 89 e5 mov %esp,%ebp
80483f7: 8b 55 08 mov 0x8(%ebp),%edx
80483fa: 31 c0 xor %eax,%eax
80483fc: 85 d2 test %edx,%edx
80483fe: 7e 06 jle 8048406 <mystery2+0x12>
8048400: 40 inc %eax
8048401: 4a dec %edx
8048402: 85 d2 test %edx,%edx
8048404: 7f fa jg 8048400 <mystery2+0xc>
8048406: c9 leave
8048407: c3 ret

08048408 <mystery3>:
8048408: 55 push %ebp
8048409: 89 e5 mov %esp,%ebp
804840b: 8b 45 08 mov 0x8(%ebp),%eax
804840e: 8b 10 mov (%eax),%edx
8048410: 0f af 50 08 imul 0x8(%eax),%edx
8048414: 89 d0 mov %edx,%eax
8048416: c9 leave
8048417: c3 ret

Page 10 of 15

Problem 6. (12 points):

This problem tests your understanding of byte ordering and the stack discipline. The following program
reads a string from standard input and prints an integer in it’s hexadecimal format based on the input it was
given.

#include <stdio.h>

int get_key () �
int key;
scanf ("%s", &key);
return key;�

int main () �
printf ("0x%8x\n", get_key());
return 0;�

Here is the corresponding machine code on a Linux/x86 machine:

08048414 <get_key>:
8048414: 55 push %ebp
8048415: 89 e5 mov %esp,%ebp
8048417: 83 ec 18 sub $0x18,%esp
804841a: 83 c4 f8 add $0xfffffff8,%esp
804841d: 8d 45 fc lea 0xfffffffc(%ebp),%eax
8048420: 50 push %eax address arg for scanf

8048421: 68 b8 84 04 08 push $0x80484b8 format string for scanf

8048426: e8 e1 fe ff ff call 804830c <_init+0x50> call scanf

804842b: 8b 45 fc mov 0xfffffffc(%ebp),%eax
804842e: 89 ec mov %ebp,%esp
8048430: 5d pop %ebp
8048431: c3 ret

08048434 <main>:
8048434: 55 push %ebp
8048435: 89 e5 mov %esp,%ebp
8048437: 83 ec 08 sub $0x8,%esp
804843a: 83 c4 f8 add $0xfffffff8,%esp
804843d: e8 d2 ff ff ff call 8048414 <get_key>
8048442: 50 push %eax integer arg of printf

8048443: 68 bb 84 04 08 push $0x80484bb format string for printf

8048448: e8 ef fe ff ff call 804833c <_init+0x80> call printf

804844d: 31 c0 xor %eax,%eax
804844f: 89 ec mov %ebp,%esp
8048451: 5d pop %ebp
8048452: c3 ret

Page 11 of 15

Here are a few notes to help you with the problem:

� scanf (‘‘%s’’, i) reads a string from the standard input stream and stores it at stores it at
address i (including the terminating ’\0’ character. It does not check the size of the destination
buffer.

� printf ("0x%8x\n", j) prints 8 digits of the integer i in hexadecimal format as 0x "�" " "�" "
� Recall that Linux/x86 machines are Little Endian.

� You will need to know the hex values for the following characters:

Character Hex Value Character Hex Value

’E’ 0x45 ’s’ 0x73
’v’ 0x76 ’h’ 0x68
’i’ 0x69 ’!’ 0x21
’l’ 0x6c ’\0’ 0x00

A. Suppose we run this program on a Linux/x86 machine with the input string “Evil!”.

Here is a template for the stack, showing the location of key. Indicate with a labelled arrow where
%ebp points to, and fill in the stack with the values that were just read in after the call to scanf
(addresses increase from left to right).

|<------ key ------>|
+----+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | 45 | 76 | 69 | 6c | 21 | 00 | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+----+

ˆ
%ebp

What is the 4-byte integer (in hex) printed by printf inside main?

0x 6c697645

Page 12 of 15

B. Suppose we instead gave it the input string “Evillish!”.

For the remaining problems, each answer should be an unsigned 4-byte integer expressed as 8 hex-
adecimal digits.

(a) What is the value of (&key)[1] just after scanf returns to get key?

(&key)[1] = 0x 6873696c

(b) What is the value of %ebp immediately before the execution of the ret instruction of get key?

%ebp = 0x 6873696c

You can use the following template of the stack as scratch space. This will not be considered for
credit.

+----+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+----+

Page 13 of 15

Problem 7. (6 points):

Consider the following code for a matrix multiplication function:

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;
for (k=0; k<m; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

with matricies a[n][m], b[m][n] and c[n,n].

1. Assume that m is twice as large as n. Is the above loop optimally arranged for preserving locality? If
not, state the optimal nesting of these loops.

No,

Nest them as

for (... i ...)
for (... k ...)
for (... j ...)

see class13, slides 30-40

2. Assume that n is twice as large as m. Is the above loop optimally arranged for preserving locality? If
not, state the optimal nesting of these loops.

No,

Nest them as

for (... i ...)
for (... k ...)
for (... j ...)

see class13, slides 30-40

Page 14 of 15

Problem 8. (7 points):
Answer true or false for each of the statements below. For full credit your answer must be correct and you
must write the entire word (either true or false in the answer space.

1. If it takes less time to do either a cache access or a main mem-
ory access than to perform a branch, then loop unrolling always
improves performance.

false

2. On the Fish machines the most effective way to time a short routine
is to use the cycle counter.

true

3. Loop invariant code motion can be applied to expressions involv-
ing the loop induction variable

false

4a. typedef int (*a)(int *);
typedef a b[10];
typedef b* (*c)();
c d;
int *(*(*)(int *))[10] (*e)();
d and e have the same type. either

4b. e and c have the same type. false

5. In C, the variable f is declared as: int f[12][17]. The ad-
dress for f[3][8] can sometimes be greater than the address for
f[8][3].

false

6. The largest possible finite denormalized IEEE floating number is
greater than the smallest possible positive normalized IEEE float-
ing number:

false

Page 15 of 15

