
Concurrent Programming
April 21, 2005

TopicsTopics
 Limitations of iterative servers
 Process-based concurrent servers
 Event-based concurrent servers
 Threads-based concurrent servers

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, S’05

Concurrent Programming is Hard!
 The human mind tends to be sequentialThe human mind tends to be sequential
 The notion of time is often misleadingThe notion of time is often misleading
 Thinking about all possible sequences of events in a computerThinking about all possible sequences of events in a computer

system is at least error prone and frequently impossiblesystem is at least error prone and frequently impossible
 Classical problem classes of concurrent programs:Classical problem classes of concurrent programs:

 Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system
 Example: who gets the last seat on the airplane?

 Deadlock: improper resource allocation prevents forward progress
 Example: traffic gridlock

 Lifelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress
 Example: people always jump in front of you in line

 Many aspects of concurrent programming are beyond theMany aspects of concurrent programming are beyond the
scope of 15-213scope of 15-213

– 3 – 15-213, S’05

Iterative Servers
Iterative servers process one request at a time.Iterative servers process one request at a time.

client 1 server client 2

call connect call accept
ret connect

ret accept

call connect

call read
write

ret read
close

close
call accept

ret connect

call read

ret read

close

write

ret accept

close

– 4 – 15-213, S’05

Fundamental Flaw of Iterative Servers

Solution: use Solution: use concurrent servers concurrent servers instead.instead.
 Concurrent servers use multiple concurrent flows to serve

multiple clients at the same time.

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for
data from
Client 1

– 5 – 15-213, S’05

Concurrent Servers:
Multiple Processes

Concurrent servers handle multiple requests concurrently.Concurrent servers handle multiple requests concurrently.
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

writefork

call
read

child 2

write

call read

end read
close

close

...

– 6 – 15-213, S’05

Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes1. Processes
 Kernel automatically interleaves multiple logical flows.
 Each flow has its own private address space.

2. Threads2. Threads
 Kernel automatically interleaves multiple logical flows.
 Each flow shares the same address space.
 Hybrid of processes and I/O multiplexing!

3. I/O multiplexing with 3. I/O multiplexing with select()select()
 User manually interleaves multiple logical flows.
 Each flow shares the same address space.
 Popular for high-performance server designs.

– 7 – 15-213, S’05

Review: Sequential Server

int main(int argc, char **argv)
{
 int listenfd, connfd;
 int port = atoi(argv[1]);
 struct sockaddr_in clientaddr;
 int clientlen = sizeof(clientaddr);
 listenfd = Open_listenfd(port);
 while (1) {

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
echo(connfd);
Close(connfd);

 }
 exit(0);
}

 Accept a connection request
 Handle echo requests until client terminates

– 8 – 15-213, S’05

Inner Echo Loop
void echo(int connfd)
{
 size_t n;
 char buf[MAXLINE];
 rio_t rio;

 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

printf("server received %d bytes\n", n);
Rio_writen(connfd, buf, n);

 }
}

 Server reads lines of text
 Echos them right back

– 9 – 15-213, S’05

int main(int argc, char **argv)
{
 int listenfd, connfd;
 int port = atoi(argv[1]);
 struct sockaddr_in clientaddr;
 int clientlen=sizeof(clientaddr);

 Signal(SIGCHLD, sigchld_handler);
 listenfd = Open_listenfd(port);
 while (1) {

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */
 echo(connfd); /* Child services client */
 Close(connfd); /* Child closes connection with client */
 exit(0); /* Child exits */
}
Close(connfd); /* Parent closes connected socket (important!) */

 }
}

Process-Based Concurrent Server

Fork separate process for each
client

Does not allow any
communication between
different client handlers

– 10 – 15-213, S’05

Process-Based Concurrent Server
(cont)

void sigchld_handler(int sig)
{
 while (waitpid(-1, 0, WNOHANG) > 0)

;
 return;
}

 Reap all zombie children

– 11 – 15-213, S’05

Implementation Issues With
Process-Based Designs
Server should restart Server should restart acceptaccept call if it is interrupted by call if it is interrupted by

a transfer of control to the SIGCHLD handlera transfer of control to the SIGCHLD handler
 Not necessary for systems with POSIX signal handling.

 Our Signal wrapper tells kernel to automatically restart
accept

 Required for portability on some older Unix systems.

Server must reap zombie childrenServer must reap zombie children
 to avoid fatal memory leak.

Server must Server must closeclose its copy of its copy of connfdconnfd..
 Kernel keeps reference for each socket.
 After fork, refcnt(connfd) = 2.
 Connection will not be closed until refcnt(connfd)=0.

– 12 – 15-213, S’05

Pros and Cons of Process-Based
Designs

+ Handles multiple connections concurrently+ Handles multiple connections concurrently
+ Clean sharing model+ Clean sharing model

 descriptors (no)
 file tables (yes)
 global variables (no)

+ Simple and straightforward.+ Simple and straightforward.
- Additional overhead for process control.- Additional overhead for process control.
- Nontrivial to share data between processes.- Nontrivial to share data between processes.

 Requires IPC (interprocess communication) mechanisms
FIFO’s (named pipes), System V shared memory and semaphores

– 13 – 15-213, S’05

Traditional View of a Process
Process = process context + code, data, and stackProcess = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)
Kernel context:
 VM structures
 Descriptor table
 brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

– 14 – 15-213, S’05

Alternate View of a Process
Process = thread + code, data, and kernel contextProcess = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write dataThread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code and Data

read-only code/data

stackSP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

– 15 – 15-213, S’05

A Process With Multiple Threads
Multiple threads can be associated with a processMultiple threads can be associated with a process

 Each thread has its own logical control flow
 Each thread shares the same code, data, and kernel context

 Share common virtual address space
 Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write dataThread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

 Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

– 16 – 15-213, S’05

Logical View of Threads
Threads associated with process form a pool of peers.Threads associated with process form a pool of peers.

 Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

– 17 – 15-213, S’05

Concurrent Thread Execution
Two threads run concurrently (are concurrent) if theirTwo threads run concurrently (are concurrent) if their

logical flows overlap in time.logical flows overlap in time.
Otherwise, they are sequential.Otherwise, they are sequential.

Examples:Examples:
 Concurrent: A & B, A&C
 Sequential: B & C

Time

Thread A Thread B Thread C

– 18 – 15-213, S’05

Threads vs. Processes
How threads and processes are similarHow threads and processes are similar

 Each has its own logical control flow.
 Each can run concurrently.
 Each is context switched.

How threads and processes are differentHow threads and processes are different
 Threads share code and data, processes (typically) do not.
 Threads are somewhat less expensive than processes.

 Process control (creating and reaping) is twice as expensive as
thread control.

 Linux/Pentium III numbers:
» ~20K cycles to create and reap a process.
» ~10K cycles to create and reap a thread.

– 19 – 15-213, S’05

Posix Threads (Pthreads)
Interface
PthreadsPthreads:: Standard interface for ~60 functions that Standard interface for ~60 functions that

manipulate threads from C programs.manipulate threads from C programs.
 Creating and reaping threads.

 pthread_create
 pthread_join

 Determining your thread ID
 pthread_self

 Terminating threads
 pthread_cancel
 pthread_exit
 exit [terminates all threads] , ret [terminates current thread]

 Synchronizing access to shared variables
 pthread_mutex_init
 pthread_mutex_[un]lock
 pthread_cond_init
 pthread_cond_[timed]wait

– 20 – 15-213, S’05

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

– 21 – 15-213, S’05

Execution of Threaded“hello, world”
main thread

peer thread

return NULL;main thread waits for
peer thread to terminate

exit()
terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread
terminates)

Pthread_create() returns

– 22 – 15-213, S’05

Thread-Based Concurrent Echo
Server
int main(int argc, char **argv)
{
 int port = atoi(argv[1]);
 struct sockaddr_in clientaddr;
 int clientlen=sizeof(clientaddr);
 pthread_t tid;

 int listenfd = Open_listenfd(port);
 while (1) {

int *connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, echo_thread, connfdp);

 }
}

 Spawn new thread for each client
 Pass it copy of connection file descriptor
 Note use of Malloc!

 Without corresponding free

– 23 – 15-213, S’05

Thread-Based Concurrent Server
(cont)

/* thread routine */
void *echo_thread(void *vargp)
{
 int connfd = *((int *)vargp);
 Pthread_detach(pthread_self());
 Free(vargp);
 echo(connfd);
 Close(connfd);
 return NULL;
}

 Run thread in “detached” mode
 Runs independently of other threads
 Reaped when it terminates

 Free storage allocated to hold clientfd
 “Producer-Consumer” model

– 24 – 15-213, S’05

Potential Form of Unintended Sharing

main thread

peer1

 while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, echo_thread, (void *) &connfd);

 }
}

connfd
Main thread stack

vargp
Peer1 stack

vargp
Peer2 stack

peer2

connfd = connfd1

 connfd = *vargpconnfd = connfd2

 connfd = *vargp

Race!

– 25 – 15-213, S’05

Issues With Thread-Based Servers
Must run Must run ““detacheddetached”” to avoid memory leak. to avoid memory leak.

 At any point in time, a thread is either joinable or detached.
 Joinable thread can be reaped and killed by other threads.

 must be reaped (with pthread_join) to free memory
resources.

 Detached thread cannot be reaped or killed by other threads.
 resources are automatically reaped on termination.

 Default state is joinable.
 use pthread_detach(pthread_self()) to make detached.

Must be careful to avoid unintended sharing.Must be careful to avoid unintended sharing.
 For example, what happens if we pass the address of

connfd to the thread routine?
 Pthread_create(&tid, NULL, thread, (void
*)&connfd);

All functions called by a thread must be All functions called by a thread must be thread-safethread-safe
 (next lecture)

– 26 – 15-213, S’05

Pros and Cons of Thread-Based
Designs
+ Easy to share data structures between threads+ Easy to share data structures between threads

 e.g., logging information, file cache.

+ Threads are more efficient than processes.+ Threads are more efficient than processes.

--- Unintentional sharing can introduce subtle and hard---- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!to-reproduce errors!
 The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads.
 (next lecture)

– 27 – 15-213, S’05

Event-Based Concurrent Servers
Using I/O Multiplexing
Maintain a pool of connected descriptors.Maintain a pool of connected descriptors.
Repeat the following forever:Repeat the following forever:

 Use the Unix select function to block until:
 (a) New connection request arrives on the listening descriptor.
 (b) New data arrives on an existing connected descriptor.

 If (a), add the new connection to the pool of connections.
 If (b), read any available data from the connection

 Close connection on EOF and remove it from the pool.

– 28 – 15-213, S’05

The select Function
select()select() sleeps until one or more file descriptors in the set sleeps until one or more file descriptors in the set readsetreadset

ready for reading.ready for reading.

#include <sys/select.h>

int select(int maxfdp1, fd_set *readset, NULL,NULL,NULL);

readset
• Opaque bit vector (max FD_SETSIZE bits) that indicates membership
in a descriptor set.
• If bit k is 1, then descriptor k is a member of the descriptor set.

maxfdp1
• Maximum descriptor in descriptor set plus 1.
• Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select()select() returns the number of ready descriptors and sets each bit of returns the number of ready descriptors and sets each bit of
readsetreadset to indicate the ready status of its corresponding descriptor. to indicate the ready status of its corresponding descriptor.

– 29 – 15-213, S’05

Macros for Manipulating Set
Descriptors
void void FD_ZERO(fd_setFD_ZERO(fd_set * *fdsetfdset););

 Turn off all bits in fdset.

void void FD_SET(intFD_SET(int fdfd, , fd_setfd_set * *fdsetfdset););

 Turn on bit fd in fdset.

void void FD_CLR(intFD_CLR(int fdfd, , fd_setfd_set * *fdsetfdset););

 Turn off bit fd in fdset.

intint FD_ISSET(intFD_ISSET(int fdfd, *, *fdsetfdset););

 Is bit fd in fdset turned on?

– 30 – 15-213, S’05

Overall Structure
listenfd

10

clientfd

7
4
-1
-1
12
5
-1
-1
-1

0
1
2
3
4
5
6
7
8
9

• • •

Active

Inactive

Active

Never Used

Manage Pool of ConnectionsManage Pool of Connections
 listenfd: Listen for requests

from new clients
 Active clients: Ones with a

valid connection

Use select to detect activityUse select to detect activity
 New request on listenfd
 Request by active client

Required ActivitiesRequired Activities
 Adding new clients
 Removing terminated clients
 Echoing

– 31 – 15-213, S’05

Representing Pool of Clients

/*
 * echoservers.c - A concurrent echo server based on select
 */
#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
 int maxfd; /* largest descriptor in read_set */
 fd_set read_set; /* set of all active descriptors */
 fd_set ready_set; /* subset of descriptors ready for reading
*/
 int nready; /* number of ready descriptors from select */
 int maxi; /* highwater index into client array */
 int clientfd[FD_SETSIZE]; /* set of active descriptors */
 rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */
} pool;

int byte_cnt = 0; /* counts total bytes received by server */

– 32 – 15-213, S’05

Pool Example
 maxfd = 12
 maxi = 6
 read_set = { 3, 4, 5, 7, 10, 12 }10

clientfd

7
4
-1
-1
12
5
-1
-1
-1

0
1
2
3
4
5
6
7
8
9

• • •

Active

Inactive

Active

Never Used

listenfd = 3

– 33 – 15-213, S’05

Main Loop
int main(int argc, char **argv)
{
 int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
 struct sockaddr_in clientaddr;
 static pool pool;

 listenfd = Open_listenfd(argv[1]);
 init_pool(listenfd, &pool);

 while (1) {
 pool.ready_set = pool.read_set;
 pool.nready = Select(pool.maxfd+1, &pool.ready_set,
 NULL, NULL, NULL);

 if (FD_ISSET(listenfd, &pool.ready_set)) {
 connfd = Accept(listenfd, (SA*)&clientaddr,&clientlen);
 add_client(connfd, &pool);
 }
 check_clients(&pool);
 }
}

– 34 – 15-213, S’05

Pool Initialization
/* initialize the descriptor pool */
void init_pool(int listenfd, pool *p)
{
 /* Initially, there are no connected descriptors */
 int i;
 p->maxi = -1;
 for (i=0; i< FD_SETSIZE; i++)
 p->clientfd[i] = -1;

 /* Initially, listenfd is only member of select read set */
 p->maxfd = listenfd;
 FD_ZERO(&p->read_set);
 FD_SET(listenfd, &p->read_set);
}

– 35 – 15-213, S’05

Initial Pool
 maxfd = 3
 maxi = -1
 read_set = { 3 }-1

clientfd

-1
-1
-1
-1
-1
-1
-1
-1
-1

0
1
2
3
4
5
6
7
8
9

• • •

Never Used

listenfd = 3

– 36 – 15-213, S’05

Adding Client
void add_client(int connfd, pool *p) /* add connfd to pool p */
{
 int i;
 p->nready--;

 for (i = 0; i < FD_SETSIZE; i++) /* Find available slot */
 if (p->clientfd[i] < 0) {
 p->clientfd[i] = connfd;
 Rio_readinitb(&p->clientrio[i], connfd);

 FD_SET(connfd, &p->read_set); /*Add desc to read set*/

 if (connfd > p->maxfd) /* Update max descriptor num */
 p->maxfd = connfd;
 if (i > p->maxi) /* Update pool high water mark */
 p->maxi = i;
 break;
 }
 if (i == FD_SETSIZE) /* Couldn't find an empty slot */
 app_error("add_client error: Too many clients");
}

– 37 – 15-213, S’05

 maxfd = 12
 maxi = 6
 read_set = { 3, 4, 5, 7, 10, 11, 12 }

Adding Client with fd 11
 maxfd = 12
 maxi = 6
 read_set = { 3, 4, 5, 7, 10, 11, 12 }10

clientfd

7
4
-1
-1
12
5
-1
-1
-1

0
1
2
3
4
5
6
7
8
9

• • •

Active

Inactive

Active

Never Used

listenfd = 3

11

– 38 – 15-213, S’05

Checking Clients
void check_clients(pool *p) { /* echo line from ready descs in pool p */
 int i, connfd, n;
 char buf[MAXLINE];
 rio_t rio;

 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
 connfd = p->clientfd[i];
 rio = p->clientrio[i];

 /* If the descriptor is ready, echo a text line from it */
 if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
 p->nready--;
 if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 byte_cnt += n;
 Rio_writen(connfd, buf, n);
 }
 else {/* EOF detected, remove descriptor from pool */
 Close(connfd);
 FD_CLR(connfd, &p->read_set);
 p->clientfd[i] = -1;
 }
 }
 }
}

– 39 – 15-213, S’05

Pro and Cons of Event-Based Designs
+ One logical control flow.+ One logical control flow.
+ Can single-step with a debugger.+ Can single-step with a debugger.
+ No process or thread control overhead.+ No process or thread control overhead.

 Design of choice for high-performance Web servers and
search engines.

- Significantly more complex to code than process- or- Significantly more complex to code than process- or
thread-based designs.thread-based designs.

- Can be vulnerable to denial of service attack- Can be vulnerable to denial of service attack
 How?

– 40 – 15-213, S’05

Approaches to Concurrency
ProcessesProcesses

 Hard to share resources: Easy to avoid unintended sharing
 High overhead in adding/removing clients

ThreadsThreads
 Easy to share resources: Perhaps too easy
 Medium overhead
 Not much control over scheduling policies
 Difficult to debug

 Event orderings not repeatable

I/O MultiplexingI/O Multiplexing
 Tedious and low level
 Total control over scheduling
 Very low overhead
 Cannot create as fine grained a level of concurrency

