15-213

“The course that gives CMU its Zip!”

Concurrent Programming
April 21, 2005

Topics
m Limitations of iterative servers
m Process-based concurrent servers
m Event-based concurrent servers
m Threads-based concurrent servers

Concurrent Programming is Hard!

® The human mind tends to be sequential
® The notion of time is often misleading

® Thinking about all possible sequences of events in a computer
system is at least error prone and frequently impossible

® C(Classical problem classes of concurrent programs:

m Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system
e Example: who gets the last seat on the airplane?
m Deadlock: improper resource allocation prevents forward progress
e Example: traffic gridlock
m Lifelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress
e Example: people always jump in front of you in line

® Many aspects of concurrent programming are beyond the
scope of 15-213
o 15-213, S’05

lterative Servers

Iterative servers process one request at a time.

client 1

call connect
ret connect
call read
ret read

close

call accept

ret accept

write

close

server

ret accept
write

close

client 2

call connect

ret connect

call read

ret read

close

15-213, S’05

Fundamental Flaw of Iterative Servers

client 1

call connect

ret connect

call fgets

User goes
out to lunch

Client 1 blocks
waiting for user

to type in data v

Server blocks
waiting for
data from
Client 1

server
| call accept
.. ».
L
........................... p| ret accept

call read

v

Solution: use concurrent servers instead.

m Concurrent servers use multiple concurrent flows to serve
multiple clients at the same time.

client 2

call connect

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

15-213, S’05

Concurrent Servers:
Multiple Processes

Concurrent servers handle multiple requests concurrently.

client 1

call connect

ret connect

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

chiId1/

call read

fork

server

call accept

ret accept

fork
call accept

ret accept

v

child 2
call /

read

write

close

v

client 2

call connect

ret connect

call fgets

write

call read

end read
close

¥ i5-213, 505

Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes
m Kernel automatically interleaves multiple logical flows.
m Each flow has its own private address space.

2. Threads
m Kernel automatically interleaves multiple logical flows.
m Each flow shares the same address space.
m Hybrid of processes and I/0 multiplexing!

3. /0 multiplexing with select ()
m User manually interleaves multiple logical flows.
m Each flow shares the same address space.
m Popular for high-performance server designs.

_6— 15-213, S'05

Review: Sequential Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[l])
struct sockaddr in clientaddr;
int clientlen = sizeof(clientaddr) ;
listenfd = Open listenfd (port) ;
while (1) {
connfd = Accept(listenfd, (SA *) &clientaddr,
echo (connfd) ;
Close (connfd) ;

}
exit (0) ;

&clientlen) ;

m Accept a connection request
m Handle echo requests until client terminates

15-213, S’05

Inner Echo Loop

void echo(int connfd)

{
size t n;
char buf [MAXLINE] ;
rio t rio;

Rio readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {
printf ("server received %d bytes\n", n);
Rio writen(connfd, buf, n);

m Server reads lines of text
m Echos them right back

15-213, S’05

Process-Based Concurrent Server

int main(int argc, char **argv)

{ Fork separate process for each
int listenfd, connfd; client

int port = atoi(argv[1l]); Does not allow any
struct sockaddr_in clientaddr; communication between

int clientlen=sizeof (clientaddr) ; different client handlers

Signal (SIGCHLD, sigchld handler);
listenfd = Open listenfd (port) ;

while (1) {
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen)
if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close (connfd); /* Parent closes connected socket (important!) */

9- 15-213, S'05

Process-Based Concurrent Server
(cont)

void sigchld handler (int sig)

{
while (waitpid(-1, 0, WNOHANG) > 0)

return;

}

m Reap all zombie children

—10 - 15-213, S'05

Implementation Issues With
Process-Based Designs

Server should restart accept call if it is interrupted by
a transfer of control to the SIGCHLD handler

m Not necessary for systems with POSIX signal handling.
e Our signal wrapper tells kernel to automatically restart
accept

m Required for portability on some older Unix systems.

Server must reap zombie children
m to avoid fatal memory leak.

Server must close its copy of connfd.

m Kernel keeps reference for each socket.
m After fork, refcent (connfd) = 2.
m Connection will not be closed until refent (connfd) =0.

11— 15-213, S’05

Pros and Cons of Process-Based
Designs

+ Handles multiple connections concurrently

+ Clean sharing model
m descriptors (no)
m file tables (yes)
= global variables (no)

+ Simple and straightforward.
- Additional overhead for process control.

- Nontrivial to share data between processes.

m Requires IPC (interprocess communication) mechanisms
FIFO’s (named pipes), System V shared memory and semaphores

1o 15-213, S'05

Traditional View of a Process

Process = process context + code, data, and stack

—13—

Process context

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:

VM structures
Descriptor table
brk pointer

Code, data, and stack

SP

brk

stack

shared libraries

PC —

run-time heap

read/write data

read-only code/data

15-213, S’05

Alternate View of a Process

Process = thread + code, data, and kernel context

Thread (main thread) Code and Data

shared libraries

brk

run-time heap

|

- :

, |

, |

|

| .

| Thread context: | read/write data
! Data registers . PC —» read-only code/data
! |
, |
, |
, |
, |
, |

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:

VM structures
Descriptor table
brk pointer

_ 14— 15-213, S'05

A Process With Multiple Threads

Multiple threads can be associated with a process
m Each thread has its own logical control flow

m Each thread shares the same code, data, and kernel context
e Share common virtual address space

m Each thread has its own thread id (TID)
Thread 1 (main thread) Shared code and data Thread 2 (peer thread)

shared libraries

stack 1 stack 2
run-time heap

Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes Condition codes
SP1 0 SP2
PC1 Kernel context: PC2

VM structures
Descriptor table

brk pointer
— 15— 15-213, S'05

Logical View of Threads

Threads associated with process form a pool of peers.

m Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

? @ T
‘ (P1)

OJOXO
T (oo
e

and kernel context
2 3

"4 | shared code, dat:_‘

15-213, S’05

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if their
logical flows overlap in time.

Otherwise, they are sequential.

Thread A Thread B Thread C
Examples:
m Concurrent: A&B,A&C | [_______________________________________
m Sequential: B & C I
Time | I ------

—17 - 15-213, S’05

Threads vs. Processes

How threads and processes are similar
m Each has its own logical control flow.
m Each can run concurrently.
m Each is context switched.

How threads and processes are different
m Threads share code and data, processes (typically) do not.

m Threads are somewhat less expensive than processes.

® Process control (creating and reaping) is twice as expensive as
thread control.

® Linux/Pentium Il numbers:
» ~20K cycles to create and reap a process.
» ~10K cycles to create and reap a thread.

_ 18— 15-213, S'05

Posix Threads (Pthreads)
Igl;’erf ce

reads: Standard interface for ~60 functions that

manipulate threads from C programs.

m Creating and reaping threads.
® pthread create
® pthread join

m Determining your thread ID
® pthread self

m Terminating threads
® pthread cancel
® pthread exit

® exit [terminates all threads], ret [terminates current thread]

m Synchronizing access to shared variables
® pthread mutex init
® pthread mutex [un]lock
® pthread cond init
® pthread cond [timed]wait
—19 —

15-213, S’05

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" Thread attributes

_~1 (usually NULL)

void *thread(void *vargp);

int main() { Thread arguments
pthread t tid;] (void *p)

Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL) ;

} return value

(void **p)

/* thread routine */

void *thread(void *vargp) ({
printf ("Hello, world'\n");
return NULL;

_o0— 15-213, S'05

Execution of Threaded“hello, world”

main thread

call Pthread_create()
Pthread_create() returns

call Pthread_join() | e

printf ()
main thread waits for return NULL;
peer thread to terminate (peer thread

.................................... ominaten
Pthread_join() returns &=

exit ()
terminates Y

main thread and

any peer threads

oq 15-213, S'05

Thread-Based Concurrent Echo
Server

int main(int argc, char **argv)

{
int port = atoi(argv[1l])
struct sockaddr in clientaddr;
int clientlen=sizeof (clientaddr) ;
pthread t tid;

int listenfd = Open listenfd (port) ;
while (1) {

int *connfdp = Malloc(sizeof (int));

Pthread create(&tid, NULL, echo thread, connfdp) ;

*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);

m Spawn new thread for each client
m Pass it copy of connection file descriptor
m Note use of Malloc!

—20 _

e Without corresponding free 15.213. S'05

Thread-Based Concurrent Server
(cont)

/* thread routine */

void *echo thread(void *vargp)

{
int connfd = *((int *)wvargp);
Pthread detach(pthread self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

}

= Run thread in “detached” mode
® Runs independently of other threads
® Reaped when it terminates

m Free storage allocated to hold clientfd
® “Producer-Consumer” model

_23— 15-213, S'05

Potential Form of Unintended Sharing

while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo thread, (void *) &connfd);

}
}
main thread
Main thread stack
connfd = connfd, connfd
................................ peer Peer, stack
®vargp
connfd = connfd, < > 100“““ = *vargp
.......... Race!
.................................. peer,
....................... Peer, stack
connfd = *var
1 P ®vargp

—24 — v 15-213, S’05

Issues With Thread-Based Servers

Must run “detached” to avoid memory leak.
m At any point in time, a thread is either joinable or detached.

m Joinable thread can be reaped and killed by other threads.
® must be reaped (with pthread join) to free memory
resources.
m Detached thread cannot be reaped or killed by other threads.
® resources are automatically reaped on termination.

m Default state is joinable.
® use pthread detach(pthread self ()) to make detached.

Must be careful to avoid unintended sharing.

m For example, what happens if we pass the address of
connfd to the thread routine?
® Pthread create(&tid, NULL, thread, (void

*) &connfd) ;

All functions called by a thread must be thread-safe

m (next lecture)
o5 15-213, S'05

Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads
m e.g., logging information, file cache.

+ Threads are more efficient than processes.

--- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

m The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads.

= (next lecture)

— 26— 15-213, S'05

Event-Based Concurrent Servers
Using I/0O Multiplexing

Maintain a pool of connected descriptors.

Repeat the following forever:

m Use the Unix select function to block until:
® (a) New connection request arrives on the listening descriptor.
® (b) New data arrives on an existing connected descriptor.

= If (a), add the new connection to the pool of connections.

= If (b), read any available data from the connection
® Close connection on EOF and remove it from the pool.

o7 15-213, S'05

The select Function

select () sleeps until one or more file descriptors in the set readset
ready for reading.

#include <sys/select.h>

int select(int maxfdpl, fd set *readset, NULL,NULL,NULL) ;

readset
« Opaque bit vector (max FD_SETSIZE bits) that indicates membership
in a descriptor set.
- If bit k is 1, then descriptor k is a member of the descriptor set.

maxfdpl
« Maximum descriptor in descriptor set plus 1.
* Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select () returns the number of ready descriptors and sets each bit of
readset to indicate the ready status of its corresponding descriptor.

_ 28— 15-213, S'05

Macros for Manipulating Set
Descriptors

void FD ZERO (fd set *fdset);
m Turn off all bits in £dset.

void FD SET(int fd, fd set *fdset);
m Turn on bit £d in fdset.

void FD CLR(int fd, fd set *fdset);
m Turn off bit £d in £dset.

int FD _ISSET(int fd, *fdset);
m Is bit £d in £dset turned on?

— 29— 15-213, S'05

Overall Structure

listenfd
clientfd
0 10)
1 7 > Active
2
4 <
3 -1
> | i
4 y nactive
<
9 12
> Active
6 5
7 -1)
8 1
9 1 > Never Used

—30-—

Manage Pool of Connections

m listenfd: Listen for requests
from new clients

m Active clients: Ones with a
valid connection

Use select to detect activity
= New request on listenfd
m Request by active client

Required Activities
m Adding new clients
m Removing terminated clients
m Echoing

15-213, S’05

Representing Pool of Clients

/*

* echoservers.c - A concurrent echo server based on select
*/

#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
int maxfd; /* largest descriptor in read set */
fd set read set; /* set of all active descriptors */
fd set ready set; /* subset of descriptors ready for reading

*/
int nready; /* number of ready descriptors from select */
int maxi; /* highwater index into client array */
int clientfd[FD SETSIZE]; /* set of active descriptors */

rio t clientrio[FD SETSIZE]; /* set of active read buffers */
} pool;

int byte cnt = 0; /* counts total bytes received by server */

3q 15-213, S'05

Pool Example

listenfd =3

clientfd

10

© 0O N O o1 A WM = O
-
N

—_32_

7 \

> Active

> Inactive

> Active

> Never Used

m maxfd =12
E maxi=6
m read_set={3,4,5,7,10,12}

15-213, S’05

Main Loop

{

int main(int argc, char **argv)

int listenfd, connfd, clientlen = sizeof(struct sockaddr in);
struct sockaddr in clientaddr;
static pool pool;

listenfd = Open listenfd(argv[l]);
init pool(listenfd, &pool);

while (1) {
pool.ready set = pool.read set;

pool.nready = Select (pool.maxfd+l, &pool.ready set,
NULL, NULL, NULL);

if (FD_ISSET(listenfd, &pool.ready set)) {

connfd = Accept(listenfd, (SA*)&clientaddr, &clientlen);
add client(connfd, &pool);

}
check clients (&pool) ;

— 33 —

15-213, S’05

Pool Initialization

/* initialize the descriptor pool */
void init pool (int listenfd, pool *p)
{

/* Initially, there are no connected descriptors */

int i;

p—>maxi = -1;

for (i=0; i< FD_SETSIZE; i++)
p—->clientfd[i] = -1;

/* Initially, listenfd is only member of select read set */
p—>maxfd = listenfd;

FD ZERO (&p->read set);

FD SET(listenfd, &p->read set);

—34 — 15-213, S'05

Initial Pool

listenfd =3

clientfd

© 0O N O o1 A WM = O

1 1 1 1 1 1 1 1 1 1

— 35 —

> Never Used

m maxfd =3
= maxi = -1
m read_set={3}

15-213, S’05

Adding Client

void add client(int connfd, pool *p) /* add connfd to pool p */
{

int i;
p->nready--;

for (i = 0; i < FD_SETSIZE; i++) /* Find available slot */
if (p->clientfd[i] < 0) {
p—->clientfd[i] = connfd;
Rio readinitb (&p->clientrio[i], connfd);

FD SET (connfd, &p->read set); /*Add desc to read set*/

if (connfd > p->maxfd) /* Update max descriptor num */
p->maxfd = connfd;
if (i > p->maxi) /* Update pool high water mark */
p—>maxi = i;
break;
}
if (i == FD_SETSIZE) /* Couldn't find an empty slot */
app_error("add client error: Too many clients");

— 36— 15-213, S’05

Adding Client with fd 11

_37-—

© 0O N O o1 A WM = O

listenfd =3

clientfd

10
7
4

11
-1

12

T 5§ 1 1 1
—_ | | 2] O

7 \

> Active

> Inactive

> Active

m maxfd =12
mE maxi=6
m read_set={3,4,5,7,10,11,12}

> Never Used

15-213, S’05

Checking Clients

void check clients(pool *p) { /* echo line from ready descs in pool p */
int i, connfd, n;
char buf[MAXLINE] ;
rio_t rio;

for (1 = 0; (i <= p->maxi) && (p->nready > 0); i++) {
connfd = p->clientfd[i];
rio = p->clientrio[i];

/* If the descriptor is ready, echo a text line from it */
if ((connfd > 0) && (FD_ISSET (connfd, &p->ready set))) ({
p->nready--;
if ((n = Rio_readlineb(&rio, buf, MAXLINE)) '= 0) {
byte cnt += n;
Rio writen(connfd, buf, n);
}
else {/* EOF detected, remove descriptor from pool */
Close (connfd) ;
FD CLR(connfd, &p->read set);
p->clientfd[i] = -1;

Pro and Cons of Event-Based Designs

+ One logical control flow.
+ Can single-step with a debugger.

+ No process or thread control overhead.

m Design of choice for high-performance Web servers and
search engines.

- Significantly more complex to code than process- or
thread-based designs.

- Can be vulnerable to denial of service attack
= How?

— 39— 15-213, S’05

Approaches to Concurrency

Processes
m Hard to share resources: Easy to avoid unintended sharing
m High overhead in adding/removing clients

Threads

m Easy to share resources: Perhaps too easy
m Medium overhead

m Not much control over scheduling policies
|

Difficult to debug
® Event orderings not repeatable

I/0 Multiplexing
m Tedious and low level
m Total control over scheduling
m Very low overhead
m Cannot create as fine grained a level of concurrency

—40 — 15-213, S’05

