15-213

“The course that gives CMU its Zip!”

Network Programming
April 12, 2005

Topics
m Programmer’s view of the Internet (review)
m Sockets interface
m \Writing clients and servers

23-network.ppt

A Client-Server Transaction

Most network applications are based on the client -
server model:

m A server process and one or more client processes
m Server manages some resource .
m Server provides service by manipulating resource for clients.

1. Client sends request
Client \ 7" Server —
process / . _______\ process FIZEOLICE
4. Client 2. Server

3. Server sends response
handles handles

response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

o 15-213, S'05

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32 -bit IP addresses .
m 128.2.203.179

2. The set of IP addresses is mapped to a set of
Identifiers called Internet domain names .

m 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate
with a process on another Internet host over a
connection .

3 15-213, S'05

1. IP Addresses

32-bit IP addresses are stored in an |P address struct

m |P addresses are always stored in memory in network byte
order (big-endian byte order)

m True in general for any integer transferred ina pa cket header
from one machine to another.
® E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {

unsigned int s_addr; /* network byte order (big-endi an) */
I
Handy network byte-order conversion functions:
htonl: ~ convert longint from host to network byte order.
htons: convert short int from host to network byte order.
ntohl: ~ convert longint from network to host byte order.

ntohs: convert short int from network to host byte order.
4 15-213, S'05

2. Domain Naming System (DNS)

The Internet maintains a mapping between IP address es
and domain names in a huge worldwide distributed
database called DNS.

m Conceptually, programmers can view the DNS database as a
collection of millions of host entry structures

[* DNS host entry structure */
struct hostent {

char *h_name; [* official domain name of ho st */

char **h_aliases; /* null-terminated array of d omain names */
int h_addrtype; /* host address type (AF_INET) */

int h_length; /* length of an address, in bytes */

char **h_addr_list; /* null-terminated array of i n_addr structs */

Functions for retrieving host entries from DNS:
m gethostbyname : query key is a DNS domain name.
_- m gethostbyaddr: query key is an IP address. 15-213, S'05

3. Internet Connections

Clients and servers communicate by sending streams
of bytes over connections .

Connections are point -to-point, full -duplex (2 -way
communication), and reliable.

Client socket address Server socket address
128.2.194.242: 208.216.181.15:

Connection socket pair

_ l‘v\
N
o)
SR
= 3
® o
QO =
N

(128.2.194.242: , 208.216.181.15:80) + ——— .
Client host address Server host address
128.2.194.242 208.216.181.15
Note: IS an Note: is a well-known port
ephemeral port allocated associated with Web servers

-6- by the kernel 15-213, S'05

Clients

Examples of client programs
m Web browsers, ftp ,telnet , ssh

How does a client find the server?

m The IP address in the server socket address identif
host (more precisely, an adapter on the host)

m The (well-known) port in the server socket address
the service, and thus implicitly identifies the ser
that performs that service.

m Examples of well know ports
® Port 7: Echo server
® Port 22: Ssh server
® Port 23: Telnet server
® Port 25: Mail server
® Port 80: Web server

les the

identifies
ver process

15-213, S'05

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
"""""" 128.2.194.242:80

(i.e., the Web server)
@ 5

Kernel

........................... Service request for Web server
128.2.194.242:7 (port 80)
; (i.e., the echo server)

Kernel

-8-— 15-213, S'05

Servers

Servers are long -running processes (daemons).
m Created at boot-time (typically) by the init proces s (process 1)
m Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well -known
port associated with a particular service.

m Port 7: echo server
m Port 22: ssh server
m Port 23: telnet server
m Port 25: mall server
m Port 80: HTTP server

A machine that runs a server process is also often
referred to as a “server.”

9 15-213, S'05

Server Examples

Web server (port 80)

m Resource: files/compute cycles (CGI programs)
m Service: retrieves files and runs CGI programs on b ehalf of

the client

FTP server (20, 21)

m Resource: files
m Service: stores and retrieve files

Telnet server (23)
m Resource: terminal

See /etc/services for a
comprehensive list of the
services available on a
Linux machine.

m Service: proxies a terminal on the server machine

Mail server (25)
m Resource: email “spool” file

m Service: stores mail messages in spool file

—-10 -

15-213, S'05

Sockets Interface

Created in the early 80’s as part of the original B erkeley
distribution of Unix that contained an early versio n of
the Internet protocols.

Provides a user -level interface to the network.
Underlying basis for all Internet applications.

Based on client/server programming model.

- 11 - 15-213, S’05

Sockets

What is a socket?

m To the kernel, a socket is an endpoint of communica tion.

m To an application, a socket is a file descriptor th at lets the
application read/write from/to the network.

® Remember: All Unix 1/O devices, including networks, are
modeled as files.

Clients and servers communicate with each other by
reading from and writing to socket descriptors.

The main distinction between regular file /O and s ocket
/O is how the application “opens” the socket
descriptors.

—12 — 15-213, S'05

Overview of the Sockets Interface

open_clientfd

Client /
Server
Session

—-13-—

> open_listenfd

Client Server
socket socket
!
bind
v
listen
Connection l
connect | request accept <
v v
» rio_writen »rio_readlineb N
v v

rio_readlineb

A

rio_writen

Await connection
request from

next client

\ 4

close

\ 4

rio_readlineb

A 4

close

15-213, S’05

Socket Address Structures

Generic socket address:
m For address arguments to connect , bind , and accept.

m Necessary only because C did not have generic(void*)
pointers when the sockets interface was designed.

struct sockaddr {
unsigned short sa_family; /* protocol family */
char sa_data[14]; /* address data. */

J

sa_family

——
Family Specific

- 14 - 15-213, S'05

Socket Address Structures

Internet -specific socket address:

m Must cast (sockaddr_in *) to (sockaddr *) for connect |,
bind , and accept .

struct sockaddr_in {
unsigned short sin_family; /* address family (alw ays AF_INET) */
unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr; /*IP addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struc t sockaddr) */

Ji

sin_port sin_addr
AF_INET 0 0 0 0 0 0 0 0
sin_family —~

Family Specific

15 15-213, S'05

Example: Echo Client and Server

On Server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (
server received 4 bytes: 123

server established connection with KITTYHAWK.CMCL (
server received 7 bytes: 456789

128.2.194.242)

128.2.194.242)

On Client

kittyhawk> echocl i ent bass 5000
Please enter msg: 123
Echo from server: 123

kittyhawk> echocl i ent bass 5000
Please enter msg: 456789

Echo from server: 456789

kittyhawk>

- 16 —

15-213, S'05

Echo

Client Main Routine

Send line to
server ~——

Receive line

#include "csapp.h"

[* usage: ./echoclient host port */
int main(int argc, char **argv)
{
int clientfd, port;
char *host, buffMAXLINE];

ro_t rio;
host = argv[1]; port = atoi(argv[2]);
clientfd = Open_clientfd(host, port);

Rio_readinitb(&rio, clientfd);

printf("type:"); fflush(stdout);

while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_writen(clientfd, buf, strlen(buf));
Rio_readlineb(&rio, buf, MAXLINE);

from server

v

printf("echo:");
Fputs(buf, stdout);
printf("type:"); fflush(stdout);
}
Close(clientfd);
exit(0);

—-17 -

=0-213, S’05

Echo Client: open_clientfd

int open_clientfd(char *hostname, int port)

{

: : _ This function opens a
int clientfd, . connection from the client to
struct hostent *hp; the server at hostname:port

struct sockaddr_in serveraddr;

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) <0
return -1; /* check errno for cause of error */

/* Fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET,;
bcopy((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h_length);

serveraddr.sin_port = htons(port);

[* Establish a connection with the server */

if (connect(clientfd, (SA *) &serveraddr, sizeof(se
return -1;

return clientfd;

rveraddr)) < 0)

Echo Client: open_clientfd
(socket)

socket creates a socket descriptor on the client

m Just allocates & initializes some internal data str uctures

m AF_INET: indicates that the socket is associated with Inte rnet
protocols.

m SOCK_STREAMelects a reliable byte stream connection
® Provided by TCP

int clientfd; /* socket descriptor */

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) <0)
return -1; /* check errno for cause of error */

... (more)

- 19— 15-213, S'05

Echo Client: open_clientfd
(gethostbyname)

The client then builds the server’s Internet addres S.

int clientfd; [* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

/* fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */ Check this out!
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_port = htons(port);
bcopy((char *)hp->h_addr_list[0],

(char *)&serveraddr.sin_addr.s_addr, hp->h_length);

—-20-— 15-213, S’05

A Careful Look at bcopy Arguments

struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

bcopy((char *)hp->h_addr_list[0], /* src, dest */
(char *)&serveraddr.sin_addr.s_addr, hp->h_length);

o1 15-213, S'05

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the se rver.
m Client process suspends (blocks) until the connecti on is created.

m After resuming, the client is ready to begin exchan ging messages
with the server via Unix 1/O calls on descriptor clientfd.

int clientfd; /* socket descripto r*/
struct sockaddr_in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

[* Establish a connection with the server */

if (connect(clientfd, (SA *)&serveraddr, sizeof(ser veraddr)) < 0)
return -1;

return clientfd;

oo 15-213, S'05

Echo Server: Main Routine

int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;
struct hostent *hp;
char *haddrp;

port = atoi(argv[1]); /* the server listens on a po rt passed
on the command line */
listenfd = open_listenfd(port);

while (1) {
clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &client len);
hp = Gethostbyaddr((const char *)&clientaddr.sin_add r.s_addr,

sizeof(clientaddr.sin_addr.s_addr), AF_INET);
haddrp = inet ntoa(clientaddr.sin_addr);
printf("server connected to %s (%s)\n", hp->h_name, haddrp);
echo(connfd);
Close(connfd);

—23— 15-213, S'05

Echo Server: open listenfd

int open_listenfd(int port)
{
int listenfd, optval=1;
struct sockaddr_in serveraddr;

[* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) <0

return -1;

/* Eliminates "Address already in use" error from b
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

... (more)

ind. */

—24 —

15-213, S'05

Echo Server: open_listenfd

(cont)

/[* Listenfd will be an endpoint for all requests to
on any IP address for this host */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET,;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
if (bind(listenfd, (SA *)&serveraddr, sizeof(server
return -1;

[* Make it a listening socket ready to accept
connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

port

addr)) < 0)

—25_

15-213, S'05

Echo Server: open_listenfd
(socket)

socket creates a socket descriptor on the server.

m AF_INET: indicates that the socket is associated with Inte rnet
protocols.

m SOCK_STREAMelects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

[* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) <0)
return -1;

- 26— 15-213, S'05

Echo Server: open_listenfd
(setsockopt)

The socket can be given some attributes.

[* Eliminates "Address already in use" error from b ind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

Handy trick that allows us to rerun the server
Immediately after we Kill it.

m Otherwise we would have to wait about 15 secs.
m Eliminates “Address already in use” error from bind().

Strongly suggest you do this for all your servers t 0
simplify debugging.

—27— 15-213, S'05

Echo Server: open_listenfd
(initialize socket address)

Next, we Initialize the socket with the server's Int ernet
address (IP address and port)

struct sockaddr_in serveraddr; /* server's socket add r */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));

serveraddr.sin_family = AF_INET,;

serveraddr.sin_port = htons((unsigned short)port);

serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

sin_port sin_addr

AF_INET 0 0 0 0 0 0 0 0

sin_family
|IP addr and port stored in network (big -endian) byte order

—28 — 15-213, S'05

Echo Server: open_listenfd
(bind)

bind associates the socket with the socket address we
just created.

int listenfd; /* listening socket * /
struct sockaddr_in serveraddr; /* server’s socket add r */
/* listenfd will be an endpoint for all requests to port
on any IP address for this host */
if (bind(listenfd, (SA *)&serveraddr, sizeof(server addr)) < 0)
return -1;

—29_

15-213, S’05

Echo Server: open_listenfd
(listen)

listen indicates that this socket will accept
connection (connect) requests from clients.

int listenfd; /* listening socket */

[* Make it a listening socket ready to accept conne ction requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

We’'re finally ready to enter the main server loopt hat
accepts and processes client connection requests.

-30 - 15-213, S’05

Echo Server: Main Loop

The server loops endlessly, waiting for connection
requests, then reading input from the client, and
echoing the input back to the client.

main() {

[* create and configure the listening socket */

—-31-—

while(1) {
* Accept(): wait for a connection request */
[* echo(): read and echo input lines from client ti | EOF */
/* Close(): close the connection */
}
}
15-213, S'05

Echo Server: accept

accept() blocks waiting for a connection request.

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr_in clientaddr;

int clientlen;

clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &client len);

accept returns a connected descriptor (connfd) with

the same properties as the listening descriptor
(listenfd)

m Returns when the connection between client and serv eris
created and ready for I/O transfers.

m All I/0O with the client will be done via the connec ted socket.

accept also fills in client’s IP address.
—-32— 15-213, S’05

Echo Server: accept

Client L

clientfd

Connection
request

clientfd

Client L ____________

listenfd(3)

O

Server

listenfd(3)

Server

listenfd(3)

o

Client L

clientfd

—-33-—

»

O
J Server

connfd(4)

lllustrated

1. Server blocks in accept,
waiting for connection
request on listening
descriptor | i stenfd.

2. Client makes connection
request by calling and blocking in
connect.

3. Server returns connf d from
accept . Client returns from
connect . Connection is now
established between clientfd
and connf d.

15-213, S'05

Connected vs. Listening Descriptors

Listening descriptor
m End point for client connection requests.
m Created once and exists for lifetime of the server.

Connected descriptor
m End point of the connection between client and serv

m A new descriptor is created each time the server ac
connection request from a client.

m Exists only as long as it takes to service client.

Why the distinction?

m Allows for concurrent servers that can communicate
many client connections simultaneously.
® E.g., Each time we receive a new request, we fork a
handle the request.

—34 -

er.
cepts a

over

child to

15-213, S'05

Echo Server: ldentifying the Client

The server can determine the domain name and IP

address of the client.

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; [* pointer to dotted decimal s tring */

hp = Gethostbyaddr((const char *)&clientaddr.sin_add r.s_addr,
sizeof(clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);

printf("server connected to %s (%s)\n", hp->h_name, haddrp);

- 35—

15-213, S'05

Echo Server: echo

The server uses RIO to read and echo text lines unt
EOF (end-of-file) is encountered.

m EOF notification caused by client calling
close(clientfd).

m IMPORTANT: EOF is a condition, not a particular dat a byte.
void echo(int connfd)
{
size tn;
char buffMAXLINE];
ro_t rio;
Rio_readinitb(&rio, connfd);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) '= 0) {
printf("server received %d bytes\n", n);
Rio_writen(connfd, buf, n);
}
}
_ 36— 15-213, S'05

Testing Servers Using telnet

The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connectio ns
m Our simple echo server
m \Web servers
m Mail servers

Usage:
m unix> tel net <host> <portnunber>

m Creates a connection with a server running on <host > and
listening on port <port nunber >.

-37 - 15-213, S’05

Testing the Echo Server With telnet

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)

server received 8 bytes: 456789

kittyhawk> tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '"]".

123

123

Connection closed by foreign host.
kittyhawk> tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is "]".

456789

456789

Connection closed by foreign host.
kittyhawk>

23g 15-213, S'05

For More Information

W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI", Volume 1,
Second Edition, Prentice Hall, 1998.

m THE network programming bible.

Unix Man Pages
m Good for detailed information about specific functi ons

Complete versions of the echo client and server are
developed in the text.

m Available from csapp.cs.cmu.edu course website

m You should compile and run them for yourselves to s ee how
they work.

m Feel free to borrow any of this code.

-39 — 15-213, S’05

