
Signals
March 3, 2005

TopicsTopics� Process reaping� Process hierarchy� Shells� Signals� Nonlocal jumps

15-signals.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, S’05

ECF Exists at All Levels of a System

ExceptionsExceptions� Hardware and operating system kernel
software

Concurrent processesConcurrent processes� Hardware timer and kernel software

SignalsSignals� Kernel software

NonNon --local jumpslocal jumps� Application code

Previous Lecture

This Lecture

– 3 – 15-213, S’05

Multitasking

System Runs Many Processes ConcurrentlySystem Runs Many Processes Concurrently� Process: executing program� State consists of memory + register values + progra m counter� Continually switches from one process to another� Suspend process when it needs I/O resource or timer event
occurs� Resume process when I/O available or given scheduli ng priority� Appears to users as if all processes execute simult aneously� Although most systems can only execute one process at a time� Except possibly with lower performance than if runn ing alone

– 4 – 15-213, S’05

Programmer’s Model of Multitasking

Basic FunctionsBasic Functions� fork() spawns new process� Called once, returns twice� exit() terminates own process� Called once, never returns� Puts it into “zombie” status� wait() and waitpid() wait for and reap terminated
children� execl() and execve() run a new program in an existing
process� Called once, (normally) never returns

Programming ChallengeProgramming Challenge� Understanding the nonstandard semantics of the func tions� Avoiding improper use of system resources� E.g. “Fork bombs” can disable a system.

– 5 – 15-213, S’05

Zombies
IdeaIdea � When process terminates, still consumes system reso urces� Various tables maintained by OS� Called a “zombie”� Living corpse, half alive and half dead

ReapingReaping� Performed by parent on terminated child� Parent is given exit status information� Kernel discards process

What if Parent Doesn’t Reap?What if Parent Doesn’t Reap?� If any parent terminates without reaping a child, t hen child
will be reaped by init process� Only need explicit reaping for long-running process es� E.g., shells and servers

– 6 – 15-213, S’05

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

Zombie
Example

� ps shows child
process as “defunct”� Killing parent allows
child to be reaped

void fork7()
{

if (fork() == 0) {
/* Child */
printf("Terminating Child, PID = %d\n",

getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
}

}

– 7 – 15-213, S’05

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Nonterminating
Child
Example

� Child process still active
even though parent has
terminated� Must kill explicitly, or else
will keep running
indefinitely

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

}

– 8 – 15-213, S’05

wait : Synchronizing with children
intint wait(intwait(int *child_status)*child_status)� suspends current process until one of its children

terminates� return value is the pid of the child process that terminated� if child_status != NULL , then the object it points to will
be set to a status indicating why the child proces s
terminated

– 9 – 15-213, S’05

wait : Synchronizing with children
void fork9() {

int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");

}
else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");
exit();

}
HP

HC Bye

CT Bye

– 10 – 15-213, S’05

Wait() Example� If multiple children completed, will take in arbitr ary order� Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void fork10()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
}

– 11 – 15-213, S’05

Waitpid()� waitpid(pid, &status, options)� Can wait for specific process� Various options

void fork11()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}

– 12 – 15-213, S’05

Wait/Waitpid Example Outputs

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

Using wait (fork10)

Using waitpid (fork11)

– 13 – 15-213, S’05

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

– 14 – 15-213, S’05

The ps command

USER PID TTY STAT COMMANDUSER PID TTY STAT COMMAND
root 1 ? S init [3]root 1 ? S init [3]
root 2 ? SW [root 2 ? SW [keventdkeventd]]
root 3 ? SWN [ksoftirqd_CPU0]root 3 ? SWN [ksoftirqd_CPU0]
root 4 ? SW [root 4 ? SW [kswapdkswapd]]
root 5 ? SW [root 5 ? SW [bdflushbdflush]]
root 6 ? SW [root 6 ? SW [kupdatedkupdated]]
root 9 ? SW< [root 9 ? SW< [mdrecoverydmdrecoveryd]]
root 12 ? SW [scsi_eh_0]root 12 ? SW [scsi_eh_0]
root 397 ? S /root 397 ? S / sbinsbin /pump /pump -- i eth0i eth0
root 484 ? S< /root 484 ? S< / usr/local/sbin/afsdusr/local/sbin/afsd -- nosettimenosettime
root 533 ? S root 533 ? S syslogdsyslogd -- m 0m 0
root 538 ? S root 538 ? S klogdklogd -- 22
rpcrpc 563 ? S 563 ? S portmapportmap
rpcuserrpcuser 578 ? S 578 ? S rpc.statdrpc.statd
daemon 696 ? S /daemon 696 ? S / usr/sbin/atdusr/sbin/atd
root 713 ? S /root 713 ? S / usrusr /local/etc/nanny /local/etc/nanny -- init /etc/nanny.confinit /etc/nanny.conf
mmdfmmdf 721 ? S 721 ? S \\ _ /_ / usrusr /local/etc/deliver /local/etc/deliver -- b b -- csmtpcmucsmtpcmu
root 732 ? S root 732 ? S \\ _ /_ / usr/local/sbin/namedusr/local/sbin/named -- ff
root 738 ? S root 738 ? S \\ _ /_ / usr/local/sbin/sshdusr/local/sbin/sshd -- DD
root 739 ? S<L root 739 ? S<L \\ _ /_ / usr/local/etc/ntpdusr/local/etc/ntpd -- nn
root 752 ? S<L | root 752 ? S<L | \\ _ /_ / usr/local/etc/ntpdusr/local/etc/ntpd -- nn
root 753 ? S<L | root 753 ? S<L | \\ _ /_ / usr/local/etc/ntpdusr/local/etc/ntpd -- nn
root 744 ? S root 744 ? S \\ _ /_ / usr/local/sbin/zhmusr/local/sbin/zhm -- n zephyrn zephyr -- 1.srv.cm1.srv.cm
root 774 ? S root 774 ? S gpmgpm -- t ps/2 t ps/2 -- m /dev/mousem /dev/mouse
root 786 ? S root 786 ? S crondcrond

Unix> ps aux -w --forest (output edited to fit slide)

– 15 – 15-213, S’05

The ps Command (cont.)

USER PID TTY STAT COMMANDUSER PID TTY STAT COMMAND
root 889 tty1 S /bin/login root 889 tty1 S /bin/login ---- agnagn
agn 900 tty1 S agn 900 tty1 S \\ _ _ xinitxinit ---- :0:0
root 921 ? SL root 921 ? SL \\ _ /etc/X11/X _ /etc/X11/X -- auth /usr1/agn/.Xauthority :0auth /usr1/agn/.Xauthority :0
agn 948 tty1 S agn 948 tty1 S \\ _ /bin/_ /bin/ shsh // afs/cs.cmu.edu/user/agn/.xinitrcafs/cs.cmu.edu/user/agn/.xinitrc
agn 958 tty1 S agn 958 tty1 S \\ _ _ xtermxterm -- geometry 80x45+1+1 geometry 80x45+1+1 -- C C -- j j -- lsls -- nn
agn 966 pts/0 S | agn 966 pts/0 S | \\ _ _ -- tcshtcsh
agn 1184 pts/0 S | agn 1184 pts/0 S | \\ _ /usr/local/bin/wish8.0 _ /usr/local/bin/wish8.0 -- f /f / usrusr
agn 1212 pts/0 S | | agn 1212 pts/0 S | | \\ _ /usr/local/bin/wish8.0 _ /usr/local/bin/wish8.0 -- f f
agn 3346 pts/0 S | | agn 3346 pts/0 S | | \\ _ _ aspellaspell -- a a -- SS
agn 1191 pts/0 S | agn 1191 pts/0 S | \\ _ /bin/_ /bin/ shsh // usr/local/libexec/mozusr/local/libexec/moz
agn 1204 8 pts/0 S | agn 1204 8 pts/0 S | \\ _ /_ / usr/local/libexec/mozillausr/local/libexec/mozilla
agn 1207 8 pts/0 S | agn 1207 8 pts/0 S | \\ _ /_ / usr/local/libexec/mozusr/local/libexec/moz
agn 1208 8 pts/0 S | | agn 1208 8 pts/0 S | | \\ _ /_ / usr/local/libexecusr/local/libexec
agn 1209 8 pts/0 S | | agn 1209 8 pts/0 S | | \\ _ /_ / usr/local/libexecusr/local/libexec
agn 17814 8 pts/0 S | | agn 17814 8 pts/0 S | | \\ _ /_ / usr/local/libexecusr/local/libexec
agn 2469 pts/0 S | agn 2469 pts/0 S | \\ _ _ usrusr /local/lib/Acrobat/local/lib/Acrobat
agn 2483 pts/0 S | agn 2483 pts/0 S | \\ _ _ java_vmjava_vm
agnagn 2484 pts/0 S | 2484 pts/0 S | \\ _ _ java_vmjava_vm
agnagn 2485 pts/0 S | 2485 pts/0 S | \\ _ _ java_vmjava_vm
agnagn 3042 pts/0 S | 3042 pts/0 S | \\ _ _ java_vmjava_vm
agnagn 959 tty1 S 959 tty1 S \\ _ /bin/_ /bin/ shsh // usr/local/libexec/kde/bin/stausr/local/libexec/kde/bin/sta
agnagn 1020 tty1 S 1020 tty1 S \\ _ _ kwrapperkwrapper ksmserverksmserver

– 16 – 15-213, S’05

Shell Programs
A A shellshell is an application program that runs programs on is an application program that runs programs on

behalf of the user.behalf of the user.� sh – Original Unix Bourne Shell� csh – BSD Unix C Shell, tcsh – Enhanced C Shell � bash – Bourne-Again Shell

int main()
{

char cmdline[MAXLINE];

while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))

exit(0);

/* evaluate */
eval(cmdline);

}
}

Execution is a sequence of Execution is a sequence of
read/evaluate stepsread/evaluate steps

– 17 – 15-213, S’05

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or f g? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */

printf("%d %s", pid, cmdline);
}

}

– 18 – 15-213, S’05

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs .Shell correctly waits for and reaps foreground jobs .

But what about background jobs?But what about background jobs?� Will become zombies when they terminate.� Will never be reaped because shell (typically) will not
terminate.� Creates a memory leak that will eventually crash th e kernel
when it runs out of memory.

Solution: Reaping background jobs requires a Solution: Reaping background jobs requires a
mechanism called a mechanism called a signalsignal ..

– 19 – 15-213, S’05

Signals

A A signalsignal is a small message that notifies a process that is a small message that notifies a process that
an event of some type has occurred in the system.an event of some type has occurred in the system.� Kernel abstraction for exceptions and interrupts.� Sent from the kernel (sometimes at the request of a nother

process) to a process.� Different signals are identified by small integer I D’s (1-30)� The only information in a signal is its ID and the fact that it
arrived.

Timer signalTimer signalTerminateTerminateSIGALRMSIGALRM1414

Segmentation violationSegmentation violationTerminate & DumpTerminate & DumpSIGSEGVSIGSEGV1111

1717

99

22

IDID

Child stopped or terminatedChild stopped or terminatedIgnoreIgnoreSIGCHLDSIGCHLD

Kill program (cannot override or ignore)Kill program (cannot override or ignore)TerminateTerminateSIGKILLSIGKILL

Interrupt from keyboard (Interrupt from keyboard (ctlctl -- cc))TerminateTerminateSIGINTSIGINT

Corresponding EventCorresponding EventDefault ActionDefault ActionNameName

– 20 – 15-213, S’05

Signal Concepts

Sending a signalSending a signal� Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destinati on
process.� Kernel sends a signal for one of the following reas ons:� Kernel has detected a system event such as divide-b y-zero

(SIGFPE) or the termination of a child process (SIG CHLD)� Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destinat ion process.

– 21 – 15-213, S’05

Signal Concepts (continued)

Receiving a signalReceiving a signal� A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal.� Three possible ways to react:� Ignore the signal (do nothing)� Terminate the process (with optional core dump).� Catch the signal by executing a user-level function calle d a

signal handler.
» Akin to a hardware exception handler being called i n

response to an asynchronous interrupt.

– 22 – 15-213, S’05

Signal Concepts (continued)

A signal is A signal is pendingpending if it has been sent but not yet if it has been sent but not yet
received.received.� There can be at most one pending signal of any part icular type.� Important: Signals are not queued� If a process has a pending signal of type k, then s ubsequent

signals of type k that are sent to that process are discarded.

A process can A process can blockblock the receipt of certain signals.the receipt of certain signals.� Blocked signals can be delivered, but will not be r eceived until
the signal is unblocked.

A pending signal is received at most once.A pending signal is received at most once.

– 23 – 15-213, S’05

Signal Concepts

Kernel maintains Kernel maintains pendingpending and and blockedblocked bit vectors in bit vectors in
the context of each process.the context of each process.� pending – represents the set of pending signals� Kernel sets bit k in pending whenever a signal of type k is

delivered.� Kernel clears bit k in pending whenever a signal of type k is
received � blocked – represents the set of blocked signals� Can be set and cleared by the application using the
sigprocmask function.

– 24 – 15-213, S’05

Process Groups
Every process belongs to exactly Every process belongs to exactly

one process groupone process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrpgetpgrp () () –– Return process Return process
group of current processgroup of current process

setpgidsetpgid () () –– Change process Change process
group of a processgroup of a process

– 25 – 15-213, S’05

Sending Signals with kill Program

kill kill program sends program sends
arbitrary signal to a arbitrary signal to a
process or process process or process
groupgroup

ExamplesExamples� kill –9 24818�

Send SIGKILL to
process 24818� kill –9 –24817�

Send SIGKILL to
every process in
process group
24817.

linux> ./forks 16
linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

– 26 – 15-213, S’05

Sending Signals from the Keyboard
Typing ctrlTyping ctrl --c (ctrlc (ctrl --z) sends a SIGINT (SIGTSTP) to every job in the z) sends a SIGINT (SIGTSTP) to every job in the

foreground process group.foreground process group.� SIGINT – default action is to terminate each process � SIGTSTP – default action is to stop (suspend) each p rocess

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process
group 32

Background
process
group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

– 27 – 15-213, S’05

Example of ctrl-c and ctrl-z

linux> ./forks 17
Child: pid=24868 pgrp=24867
Parent: pid=24867 pgrp=24867

<typed ctrl-z>
Suspended
linux> ps a

PID TTY STAT TIME COMMAND
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i
24867 pts/2 T 0:01 ./forks 17
24868 pts/2 T 0:01 ./forks 17
24869 pts/2 R 0:00 ps a
bass> fg
./forks 17
<typed ctrl-c>
linux> ps a

PID TTY STAT TIME COMMAND
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i
24870 pts/2 R 0:00 ps a

– 28 – 15-213, S’05

Sending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

– 29 – 15-213, S’05

Receiving Signals

Suppose kernel is returning from an exception hand ler Suppose kernel is returning from an exception hand ler
and is ready to pass control to process and is ready to pass control to process pp ..

Kernel computesKernel computes pnbpnb = pending & ~blocked= pending & ~blocked� The set of pending nonblocked signals for process p

If (If (pnbpnb == 0== 0)) � Pass control to next instruction in the logical flo w for p.

ElseElse � Choose least nonzero bit k in pnb and force process p to
receive signal k.� The receipt of the signal triggers some action by p� Repeat for all nonzero k in pnb.� Pass control to next instruction in logical flow fo r p.

– 30 – 15-213, S’05

Default Actions

Each signal type has a predefined Each signal type has a predefined default actiondefault action , which , which
is one of:is one of:� The process terminates� The process terminates and dumps core.� The process stops until restarted by a SIGCONT sign al.� The process ignores the signal.

– 31 – 15-213, S’05

Installing Signal Handlers

The The signalsignal function modifies the default action function modifies the default action
associated with the receipt of signal associated with the receipt of signal signumsignum ::� handler_t *signal(int signum, handler_t *handler)

Different values for Different values for handlerhandler ::� SIG_IGN: ignore signals of type signum� SIG_DFL: revert to the default action on receipt of signals of
type signum .� Otherwise, handler is the address of a signal handler� Called when process receives signal of type signum� Referred to as “ installing ” the handler.� Executing handler is called “ catching ” or “ handling ” the signal.� When the handler executes its return statement, con trol passes

back to instruction in the control flow of the proc ess that was
interrupted by receipt of the signal.

– 32 – 15-213, S’05

Signal Handling Example
void int_handler(int sig)
{

printf("Process %d received signal %d\n",
getpid(), sig);

exit(0);
}

void fork13()
{

pid_t pid[N];
int i, child_status;
signal(SIGINT, int_handler);

. . .
}

linux> ./forks 13
Killing process 24973
Killing process 24974
Killing process 24975
Killing process 24976
Killing process 24977
Process 24977 received signal 2
Child 24977 terminated with exit status 0
Process 24976 received signal 2
Child 24976 terminated with exit status 0
Process 24975 received signal 2
Child 24975 terminated with exit status 0
Process 24974 received signal 2
Child 24974 terminated with exit status 0
Process 24973 received signal 2
Child 24973 terminated with exit status 0
linux>

– 33 – 15-213, S’05

Signal Handler Complexities
Pending signals are not Pending signals are not

queuedqueued� For each signal type,
just have single bit
indicating whether or
not signal is pending� Even if multiple
processes have sent
this signal

int ccount = 0;
void child_handler(int sig)
{

int child_status;
pid_t pid = wait(&child_status);
ccount--;
printf("Received signal %d from process %d\n",

sig, pid);
}

void fork14()
{

pid_t pid[N];
int i, child_status;
ccount = N;
signal(SIGCHLD, child_handler);
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Exit */
exit(0);

}
while (ccount > 0)

pause();/* Suspend until signal occurs */
}

– 34 – 15-213, S’05

Living With Nonqueuing Signals
Must check for all terminated jobsMust check for all terminated jobs� Typically loop with wait

void child_handler2(int sig)
{

int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {

ccount--;
printf("Received signal %d from process %d\n", sig, pid);

}
}

void fork15()
{

. . .
signal(SIGCHLD, child_handler2);
. . .

}

– 35 – 15-213, S’05

Signal Handler Complexities (Cont.)

Signal arrival during long system calls (say a Signal arrival during long system calls (say a readread))

Signal handler interrupts Signal handler interrupts read()read() callcall
Linux: upon return from signal handler, the read() call is

restarted automatically
Some other flavors of Unix can cause the read() call to fail

with an EINTER error number (errno)
in this case, the application program can restart t he slow
system call

Subtle differences like these complicate the writin g Subtle differences like these complicate the writin g
of portable code that uses signals.of portable code that uses signals.

– 36 – 15-213, S’05

A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
printf("You think hitting ctrl-c will stop the bomb? \n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK\n");
exit(0);

}

main() {
signal(SIGINT, handler); /* installs ctl-c handler * /
while(1) {
}

}

– 37 – 15-213, S’05

A Program That Reacts to Internally
Generated Events
#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {

printf("BEEP\n");
fflush(stdout);

if (++beeps < 5)
alarm(1);

else {
printf("BOOM!\n");
exit(0);

}
}

main() {
signal(SIGALRM, handler);
alarm(1); /* send SIGALRM in

1 second */

while (1) {
/* handler returns here */

}
}

linux> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

– 38 – 15-213, S’05

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) userPowerful (but dangerous) user --level mechanism for transferring level mechanism for transferring
control to an arbitrary location.control to an arbitrary location.� Controlled to way to break the procedure call / ret urn discipline� Useful for error recovery and signal handling

intint setjmp(jmp_bufsetjmp(jmp_buf j)j)� Must be called before longjmp� Identifies a return site for a subsequent longjmp.� Called once, returns one or more times

Implementation:Implementation:� Remember where you are by storing the current regi ster context,
stack pointer, and PC value in jmp_buf.� Return 0

– 39 – 15-213, S’05

setjmp/longjmp (cont)

void void longjmp(jmp_buflongjmp(jmp_buf j, j, intint i)i)� Meaning:� return from the setjmp remembered by jump buffer j again... � …this time returning i instead of 0� Called after setjmp� Called once, but never returns

longjmplongjmp Implementation:Implementation:� Restore register context from jump buffer j� Set %eax (the return value) to i� Jump to the location indicated by the PC stored in jump buf j .

– 40 – 15-213, S’05

setjmp /longjmp Example

#include <setjmp.h>
jmp_buf buf;

main() {
if (setjmp(buf) != 0) {

printf("back in main due to an error\n");
else

printf("first time through\n");
p1(); /* p1 calls p2, which calls p3 */

}
...
p3() {

<error checking code>
if (error)

longjmp(buf, 1)
}

– 41 – 15-213, S’05

Putting It All Together: A Program
That Restarts Itself When ctrl-c ’d
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {
siglongjmp(buf, 1);

}

main() {
signal(SIGINT, handler);

if (!sigsetjmp(buf, 1))
printf("starting\n");

else
printf("restarting\n");

while(1) {
sleep(1);
printf("processing...\n");

}
}

bass> a.out

Ctrl-c

starting
processing...
processing...
restarting
processing...
processing...
restarting
processing...

Ctrl-c

– 42 – 15-213, S’05

Limitations of Nonlocal Jumps

Works within stack disciplineWorks within stack discipline� Can only long jump to environment of function that has been
called but not yet completed
jmp_buf env;

P1()
{

if (setjmp(env)) {
/* Long Jump to here */

} else {
P2();

}
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{

longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp

After longjmp

– 43 – 15-213, S’05

Limitations of Long Jumps (cont.)
Works within stack disciplineWorks within stack discipline� Can only long jump to environment of function that has been

called but not yet completed

jmp_buf env;

P1()
{

P2(); P3();
}

P2()
{

if (setjmp(env)) {
/* Long Jump to here */

}
}

P3()
{

longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

– 44 – 15-213, S’05

Continuations

setjmpsetjmp //longjmplongjmp limited by stack disciplinelimited by stack discipline

Similar restriction for exceptions in Java or MLSimilar restriction for exceptions in Java or ML

Continuations Continuations overcome this limitationovercome this limitation� Either save stack in addition to stack pointer, reg isters, and
program counter� How do we handle heap?� Or do not use stack at all: compile program to cont inuation-
passing style� Every function takes continuation (address) as argu ment� Jumps to function instead of returning� Can be made somewhat efficient with good garbage co llection� Used in SML of New Jersey implementation

– 45 – 15-213, S’05

Summary

Signals provide processSignals provide process --level exception handlinglevel exception handling� Can generate from user programs� Can define effect by declaring signal handler

Some caveatsSome caveats� Very high overhead� >10,000 clock cycles� Only use for exceptional conditions� Don’t have queues� Just one bit for each pending signal type

NonlocalNonlocal jumps (or Java/MLjumps (or Java/ML --style exceptions) provide style exceptions) provide
exceptional control flow within processexceptional control flow within process� Within constraints of stack discipline� Continuations overcome limitations, but expensive

