15-213

“The course that gives CMU its Zip!”

Signals
March 3, 2005

Topics
m Process reaping
m Process hierarchy
m Shells
m Signals
m Nonlocal jumps

15-signals.ppt

ECF Exists at All Levels of a System

Exceptions \

m Hardware and operating system kernel >
software Previous Lecture

Concurrent Processes
m Hardware timer and kernel software

 \.

Signals

m Kernel software > This Lecture

Non-local jumps
m Application code

o 15-213, S'05

Multitasking

System Runs Many Processes Concurrently

m Process: executing program
® State consists of memory + register values + progra m counter

m Continually switches from one process to another

® Suspend process when it needs I/O resource or timer event
OCCUrs

® Resume process when I/O available or given scheduli ng priority

m Appears to users as if all processes execute simult aneously
® Although most systems can only execute one process at a time
® Except possibly with lower performance than if runn ing alone

3 15-213, S'05

Programmer’s Model of Multitasking

Basic Functions
m fork() spawns new process
® Called once, returns twice

m exit() terminates own process
® Called once, never returns
® Puts it into “zombie” status

m wait() and waitpid() wait for and reap terminated
children

m execl() and execve() runanew program in an existing
process
® Called once, (normally) never returns

Programming Challenge
m Understanding the nonstandard semantics of the func tions

m Avoiding improper use of system resources
® E.g. “Fork bombs” can disable a system.

4 15-213, S'05

Zombies

|dea

m \When process terminates, still consumes system reso urces
® Various tables maintained by OS

m Called a “zombie”
® Living corpse, half alive and half dead

Reaping
m Performed by parent on terminated child
m Parent is given exit status information
m Kernel discards process

What if Parent Doesn’t Reap?

m If any parent terminates without reaping a child, t hen child
will be reaped by init process

m Only need explicit reaping for long-running process es

® E.g., shells and servers
5 15-213, S’05

Zombie
Example

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PIDTTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
PIDTTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

—6—

void fork7()
{
if (fork() == 0) {
/* Child */
printf("Terminating Child, PID = %d\n",
getpid());
exit(0);
} else {
printf("Running Parent, PID = %d\n",
getpid());
while (1)
; [* Infinite loop */

m ps shows child
process as “defunct

m Killing parent allows
child to be reaped

15-213, S’05

Nonterminating

Child
Example

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps
| i nux> kill 6676
| i nux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

void fork8()

{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",
getpid());
while (1)
; [* Infinite loop */
} else {
printf("Terminating Parent, PID = %d\n",
getpid());
exit(0);

m Child process still active
even though parent has
terminated

m Must kill explicitly, or else
will keep running
iIndefinitely

15-213, S’05

walit : Synchronizing with children

int wait(int *child_status)
m suspends current process until one of its children
terminates
m return value is the pid of the child process that terminated

m if child_status != NULL , then the object it points to will
be set to a status indicating why the child proces S
terminated

g 15-213, S'05

walit : Synchronizing with children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
}
else {
printf("HP: hello from parent\n®);
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n"); HC Bye
exit(); |
} HP CT Bye

9- 15-213, S'05

Wait() Example

m If multiple children completed, will take in arbitr ary order

m Can use macros WIFEXITED and WEXITSTATUS to get
iInformation about exit status

void fork10()
{
pid_t pid[N];
int 1,
int child_status;
for (I=0;1<N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (I=0;1<N;i++) {
pid t wpid = wait (&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

Waitpid()

m waitpid(pid, &status, options)
® Can wait for specific process
® Various options

void fork11()
{
pid_t pid[N];
int 1,
int child_status;
for (I=0;1<N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (I=0;1<N;i++) {
pid t wpid = wait pi d(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

—-11 -

15-213,

S'05

Wait/Waitpid

Using wait (fork10)

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Using

12 —

waitpid (forkll)

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

Example Outputs

15-213, S’05

Unix Process Hierarchy

13-

15-213, S’05

The ps command

Unix> ps aux -w --forest

(output edited to fit slide)

USER PIDTTY STAT COMMAND
root 1? S init[3]
root 27 SW [keventd]
root 37 SWN [ksoftirgd CPUQ]
root 47 SW | kswapd]
root 57? SW | bdflush]
root 6 ? SW | kupdated |
root 97? SW< mdrecoveryd |
root 12 ? SW [scsi_eh 0]
root 397 ? S |/ sbin /pump -iethO
root 484 ? S< |/ usr/local/sbin/afsd - nosettime
root 5337 S syslogd -m0O
root 538 ? S klogd -2
rpc 563 ? S portmap
rpcuser 578 ? S rpc.statd
daemon 696 ? S / usr/sbin/atd
root 7137 S / usr /local/etc/nanny - init /etc/nanny.conf
mmdf 7217 S \ _/ usr /local/etc/deliver -b - csmtpcmu
root 7327 S \ _/ usr/local/sbin/named - f
root 738 7? S \ _/ usr/local/shin/sshd -D
root 739 7? S<L \ _/ usr/local/etc/ntpd -n
root 752 7? S<L | \ _/ usr/local/etc/ntpd -n
root 7537 S<L | \ _/ usr/local/etc/ntpd -n
root 744 7? S \ _/ usr/local/sbin/zhm - n zephyr -1.srv.cm
root 7747 S gpm -tps/2 - m/dev/Imouse
root 786 ? S crond
- 14 — 15-213, S’05

The ps Command (cont.)

USER
root
agn
root
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn
agn

—-15-—

PIDTTY STAT COMMAND
889ttyl S /bin/login
900ttyl S
921 ? SL
9481ttyl S
9581ttyl S
966 pts/0 S
1184 pts/0 S

3346 pts/0 S

1191 pts/O S

1204 8 pts/0 S |

1207 8 pts/0 S I
I

I
1212 pts/0 S ||

I

!

1208 8 pts/0 S
1209 8 pts/0 S
17814 8 pts/0 S |

2469 pts/0 S

2483 pts/0 S
2484 pts/0 S |
2485 pts/0 S |
3042 pts/0 S |
959ttyl S
1020ttyl S

_

Xinit --

\ ~ /bin/
_

agn

:0
\ Jetc/X11/X

\

- auth /usrl/agn/.Xauthority :0
sh [afs/cs.cmu.edu/user/agn/.xinitrc
xterm

- geometry 80x45+1+1

- tcsh

\ _/bin/

\ _ kwrapper

\ _ /binT

\ _ /usr/local/bin/wish8.0

\ _ /usr/local/bin/wish8.0
\ aspell -a -S

-C -]

-Is -n

-f/ usr
- f

sh [/ usr/local/libexec/moz

\ _/ usr/local/libexec/mozilla
\ _/ usr/local/libexec/moz
\ _/ usr/localllibexec
| \ _/ usr/localllibexec
| \ _/ usr/local/libexec
\ usr /local/lib/Acrobat

\ _ java_vm
\ _ java_vm
\ _ java_vm
\ _ java_vm

sh / usr/local/libexec/kde/bin/sta

ksmserver

15-213, S’05

Shell Programs

A shell is an application program that runs programs on
behalf of the user.
m sh — Original Unix Bourne Shell
m csh — BSD Unix C Shell, tcsh — Enhanced C Shell
m bash — Bourne-Again Shell

int main()

{
char cmdline[MAXLINE];

while (1) {
gr{r?t?(i/")- Execution is a sequence of
Fgets(cmdline, MAXLINE, stdin); read/evaluate steps
if (feof(stdin))
exit(0);

[* evaluate */
eval(cmdline);

_16.} 15-213, S'05

Simple Shell eval Function

void eval(char *cmdline)

{
char *argv[MAXARGS]; /* argv for execve() */

int bg; /* should the job runin bg orf g? */
pid_t pid; [* process id */

bg = parseline(cmdline, argv);

It ('builtin_command(argv)) {

It ((pid = Fork()) == 0) { /7 child]runs user job */

IT (execve(argVv]0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}

if ('bg) { /* parent waits for fg job to terminate */

int status;]

if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");

else /* otherwise, don’t wait for bg job */
printf("%d %s", pid, cmdline);

i Y 10210, O UV

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs

But what about background jobs?
m Will become zombies when they terminate.

m Will never be reaped because shell (typically) will not
terminate.

m Creates a memory leak that will eventually crashth e kernel
when it runs out of memory.

Solution: Reaping background jobs requires a
mechanism called a signal .

_ 18- 15-213, S'05

Signals

A signal is a small message that notifies a process that
an event of some type has occurred in the system.

m Kernel abstraction for exceptions and interrupts.

m Sent from the kernel (sometimes at the request of a nother
process) to a process.

m Different signals are identified by small integer | D’s (1-30)
m The only information in a signal is its ID and the fact that it
arrived.
ID Name Default Action Corresponding Event
2 | SIGINT Terminate Interrupt from keyboard (ctl -c)
9 | SIGKILL | Terminate Kill program (cannot override or ignore)
11 | SIGSEGV | Terminate & Dump | Segmentation violation
14 | SIGALRM | Terminate Timer signal
17 | SIGCHLD | Ignore Child stopped or terminated

19 15-213, S'05

Signal Concepts

Sending a signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destinati on
process.

m Kernel sends a signal for one of the following reas ons:

® Kernel has detected a system event such as divide-b y-zero
(SIGFPE) or the termination of a child process (SIG CHLD)

® Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destinat ion process.

—-20-— 15-213, S’05

- 21—

Signal Concepts (continued)

Recelving a signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal.

m Three possible ways to react:
® |gnore the signal (do nothing)
® Terminate the process (with optional core dump).

® Catch the signal by executing a user-level function calle da
signal handler.

» AKin to a hardware exception handler being called i n
response to an asynchronous interrupt.

15-213, S’05

Signal Concepts (continued)

A signal is pending if it has been sent but not yet
received.

m There can be at most one pending signal of any part icular type.

m Important: Signals are not queued

® |f a process has a pending signal of type k, thens ubsequent
signals of type k that are sent to that process are discarded.

A process can block the receipt of certain signals.

m Blocked signals can be delivered, but will not be r eceived until
the signal is unblocked.

A pending signal is received at most once.

—22_ 15-213, S’05

23—

Signal Concepts

Kernel maintains pending and blocked bit vectors in
the context of each process.

m pending - represents the set of pending signals
® Kernel sets bit kin pending whenever a signal of type k is
delivered.
® Kernel clears bitkin pending whenever a signal of type k is
received

m blocked - represents the set of blocked signals

® Can be set and cleared by the application using the
sigprocmask function.

15-213, S’05

Process Groups

Every process belongs to exactly
one process group

pid=20
pgid=20

Background Background

process group 32 process group 40
g2t - getpgrp () — Return process
0gid=20 pgidzzo group of current process
Tt Foreground """"" setpgid () - Change process

process group 20 group of a process

—24 — 15-213, S’05

Sending Signals with kil Program
Kill program sends
arbitrary signal to a linux> ./forks 16
Process or process linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
group
linux> ps
PIDTTY TIME CMD
24788 pts/2 00:00:00 tcsh
Examples 00:00:02 forks

24818 pts/2
m kill -9 24818 — 24819 pis/2

00:00:02 forks

@ Send SIGKILL to |2_4823 Ehsfg Zggif?i@() ps
process 24818 I!nux -
INUX> pPsS
m kill -9 —24817 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
® Send SIGKILL
Send SIG 0 24823 pts/2 00:00:00 ps

every process in
process group
24817.

linux>

25

15-213, S’05

Sending Signals from the Keyboard

Typing ctrl -c (ctrl -z) sends a SIGINT (SIGTSTP) to every job in the

— 26—

foreground process group.
m SIGINT — default action is to terminate each process
m SIGTSTP — default action is to stop (suspend) each p rocess

pid=21 pid=22
pgid=20 pgid=20

Background Background
! process process
group 32 group 40

Foreground
process group 20

15-213, S’05

Example of ctrl-c

27—

linux> ./forks 17
Child: pid=24868 pgrp=24867
Parent: pid=24867 pgrp=24867
<typed ctrl-z>
Suspended
linux> ps a
PIDTTY STAT TIME COMMAND

24788 pts/2 S 0:00 -usr/local/bin/tcsh -i
24867 pts/l2 T 0:01 ./forks 17

24868 pts/2 T 0:01 ./forks 17

24869 pts/2 R 0:00ps a

bass> fg

forks 17

<typed ctrl-c>

linux> ps a

PIDTTY STAT TIME COMMAND
24788 pts/2 S 0:00 -usr/local/bin/tcsh -i
24870 pts/2 R 0:00ps a

and ctrl-z

15-213, S’05

Sending Signals with kil

void fork12()

{

pid_t pid[N];
int i, child_status;

Tor(=0, 1< N, IT+)
if ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */

[* Parent terminates the child processes */

Tor=0,1<N; IT1)]
printf("Killing process %d\n", pid[i]);
Kill(pid[i], SIGINT);

}

[* Parent reaps terminated children */
for (i =010 < N:i++){
pid t wpid = wait(&child_status);

wpid, WEXITSTATUS(child_status));

printf("Child %d terminated with exit status %d\n",

| printf("Child %d terminated abnormally\n", wpid);

Function

15-213, S’05

Recelving Signhals

Suppose kernel is returning from an exception hand ler
and is ready to pass control to process p.

Kernel computes pnb = pending & ~blocked
m The set of pending nonblocked signals for process P

If (pnb ==0)
m Pass control to next instruction in the logical flo w for p.

Else

m Choose least nonzero bit k in pnb and force process p to
receive signal k.

m The receipt of the signal triggers some action by p
m Repeat for all nonzero k in pnb.

m Pass control to next instruction in logical flow fo rp.

—-29_ 15-213, S’05

Default Actions

Each signal type has a predefined default action , which
IS one of:

m The process terminates

m The process terminates and dumps core.

m The process stops until restarted by a SIGCONT sign al.
m The process ignores the signal.

—-30- 15-213, S’05

Installing Signal Handlers

The signal function modifies the default action
associated with the receipt of signal signum :

m handler_t *signal(int signum, handler_t *handler)

Different values for handler
m SIG_IGN: ignore signals of type signum

m SIG_DFL: revert to the default action on receipt of signals of
type signum .

m Otherwise, handler is the address of a signal handler
® Called when process receives signal of type signum
® Referred to as “ installing ” the handler.
® Executing handler is called “ catching ” or “ handling ” the signal.

® \When the handler executes its return statement, con trol passes
back to instruction in the control flow of the proc ess that was
interrupted by receipt of the signal.

_31- 15-213, S'05

Signal Handling Example

void int_handler(int sig)

{
printf("Process %d received signal %d\n",
getpid(), sig);
exit(0);
}
void fork13()
{
pid_t pid[N];
int i, child_status;
signal(SIGINT, int_handler);
}

—32_

linux> ./forks 13

Killing process 24973

Killing process 24974

Killing process 24975

Killing process 24976

Killing process 24977

Process 24977 received signal 2

Child 24977 terminated with exit status O
Process 24976 received signal 2

Child 24976 terminated with exit status O
Process 24975 received signal 2

Child 24975 terminated with exit status O
Process 24974 received signal 2

Child 24974 terminated with exit status O
Process 24973 received signal 2

Child 24973 terminated with exit status O
linux>

15-213, S’05

Signal Handler Complexities

Pending signals are not

int ccount =0;
void child_handler(int sig)

{
int child_status;
pid_t pid = wait(&child_status);
ccount--;
printf("Received signal %d from process %d\n",
sig, pid);
}
void fork14()
{
pid_t pid[N];
int i, child_status;
ccount = N;
signal(SIGCHLD, child_handler);
for (i=0; 1 <N; i++)
if ((pid[i] = fork()) == 0) {
/* Child: Exit */
exit(0);
}
while (ccount > 0)
pause();/* Suspend until signal occurs */
}

queued

m For each signal type,
just have single bit
Indicating whether or
not signal is pending

m Even if multiple
processes have sent
this signal

—33-—

15-213, S’05

Living With Nongueuing Signals

Must check for all terminated jobs
m Typically loop with wait

void child_handler2(int sig)
{
int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {
ccount--;
printf("Received signal %d from process %d\n", sig, pid);
}
}
void fork15()
{
signal(SIGCHLD, child_handler2);
}

—34— 15-213, S’05

Signal Handler Complexities (Cont.)

Signal arrival during long system calls (say a read)

Signal handler interrupts read() call
Linux: upon return from signal handler, the read() «callis
restarted automatically

Some other flavors of Unix can cause the read() call to fail
with an EINTER error number (errno)
In this case, the application program can restart t he slow
system call

Subtle differences like these complicate the writin g
of portable code that uses signals.

35 15-213, S'05

A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
printf(*You think hitting ctrl-c will stop the bomb? \n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK\n");
exit(0);
}

main() {
signal(SIGINT, handler); /* installs ctl-c handler * /
while(1) {
}

}

— 36— 15-213, S’05

A Program That Reacts to Internally
Generated Events

#include <stdio.h> main() {
#include <signal.h> signal(SIGALRM, handler);
alarm(1); /* send SIGALRM in
int beeps =0; 1 second */
[* SIGALRM handler */ while (1) {
void handler(int sig) { [* handler returns here */
printf("BEEP\n"); }
fflush(stdout); }
if (++beeps < 5) :
alarm(1): linux> a.out
else { BEEP
printf("BOOMN\N"); slEgs
exit(0); slEgs
} BEEP
} BEEP
BOOM!
bass>

37 15-213, S'05

Nonlocal Jumps: setimp/longimp

Powerful (but dangerous) user -level mechanism for transferring
control to an arbitrary location.

m Controlled to way to break the procedure call /ret urn discipline
m Useful for error recovery and signal handling

Int setimp(jmp_buf)
m Must be called before longjmp
m |dentifies a return site for a subsequent longjmp.
m Called once, returns one or more times

Implementation:

m Remember where you are by storing the currentregi ster context,
stack pointer, and PC value in jmp_buf.

m Return O

— 38—

15-213, S’05

setimp/longimp (cont)

void longimp(jmp_buf), Int 1)

m Meaning:
® return from the setjmp remembered by jump buffer
® ...this time returning 1 instead of O

m Called after setjmp
m Called once, but never returns

longimp Implementation:
m Restore register context from jump buffer |
m Set %eax (the return value) to |
m Jump to the location indicated by the PC stored in

—39_—

] again...

jump buf | .

15-213, S’05

setimp /longimp Example

— 40—

#include <setjmp.h>
jmp_buf buf;

main() {
if (setjimp(buf) !=0) {
printf("back in main due to an error\n");
else
printf("first time through\n");
p1(); /* p1 calls p2, which calls p3 */

}
P30 {
<error checking code>
if (error)
longjmp(buf, 1)
}

15-213, S’05

Putting It All Together: A Program
That Restarts Itself When ctrl-c ’d

#include <stdio.h>

#include <signal.h>

#include <setjmp.h>

sigimp_buf buf;

void handler(int sig) {
siglongjmp(buf, 1);

}

main() {

while(1) {
sleep(1);
printf("processing...\n");

}

}

signal(SIGINT, handler);

if (sigsetjmp(buf, 1))

printf("starting\n");

else

printf("restarting\n");

— 41 —

bass> a.out

starting

processing...

processing...

restarting +—=Ctrl-c
processing...
processing...
restarting
processing...

«—_Ctrl-c

15-213, S’05

Limitations of Nonlocal Jumps

Works within stack discipline
m Can only long jump to environment of function that has been

called but not yet completed

jmp_buf env;

P1()

{ After longjmp

if (setimp(env)) {

[* Long Jump to here */
} else {

P2();

}
}

P2()
{...P20);...P3();}

P3()

{
longjmp(env, 1);
—42- |y gimPp() 15-213, S'05

Before longjmp

Limitations of Long Jumps (cont.)

Works within stack discipline

m Can only long jump to environment of function that has been
called but not yet completed

jmp_buf env;
P1()
{

P2(); P3(); At setjmp
}
P2()
{

if (setimp(env)) {
[* Long Jump to here */

}
}
P3()
{ .

longjmp(env, 1); At longjmp

_ 43— J 15-213, S'05

Continuations

setimp /longimp limited by stack discipline
Similar restriction for exceptions in Java or ML

Continuations overcome this limitation

m Either save stack in addition to stack pointer, reg Isters, and
program counter
® How do we handle heap?

m Or do not use stack at all: compile program to cont Inuation-
passing style
® Every function takes continuation (address) as argu ment
® Jumps to function instead of returning
® Can be made somewhat efficient with good garbage co llection
® Used in SML of New Jersey implementation

— 44 — 15-213, S’05

Summary

Signals provide process -level exception handling
m Can generate from user programs

m Can define effect by declaring signal handler

Some caveats

m Very high overhead
® >10,000 clock cycles
® Only use for exceptional conditions

m Don’t have queues
® Just one bit for each pending signal type

Nonlocal jumps (or Java/ML -style exceptions) provide
exceptional control flow within process

m Within constraints of stack discipline

m Continuations overcome limitations, but expensive
—45 — 15-213, S'05

