
Lecture Notes on
Testing

15-122: Principles of Imperative Computation
William Lovas

Lecture 19
March 24, 2011

1 Summary

We begin with a discussion of the question, “Why do we test our code?”
There are many possible answers, including to increase confidence, to make
sure we handle boundary conditions, and to verify that the code meets our
expectations. What these ideas all boil down to essentially, though, is that

We test our code to find bugs!

Testing can almost never show complete correctness—there are usually ei-
ther infinitely many possible inputs, or prohibitively many to test them
all—so it is better to think of it as a tool for finding bugs in your code.

When should we test our code? Certainly not just when we discover a
bug—testing should be a continual aspect of the development cycle. The
methodology of test-driven development goes so far as to require program-
mers to write test cases before they write any code at all. Tests can serve
as a way of understanding the specification of a program, one on par with
though complementary to contracts. So perhaps a more general answer is
that

We test our code to understand it.

To understand code, we mean to understand its specification, its behavior,
and its shortcomings.

LECTURE NOTES MARCH 24, 2011



Testing L19.2

2 Useful Terms

black box testing testing only with regard to the specification of the func-
tion – its type and its contract – without looking at any of its code.
particularly useful when a function has strong contracts that describe
its intended behavior very clearly. make creative use of equivalence
classes and boundary cases to generate good tests.

glass box testing testing based on looking at the body of a function, trying
to come up with tests that exercise it fully. when glass box testing,
you should attempt to attain reasonable ”code coverage” – your tests
should exercise as many possible paths through the program as they
can. a.k.a., ”white box testing”

boundary cases inputs that are valid according to the specification, but at
some context-dependent ”boundary”. a.k.a., “edge cases”.

e.g., 0, -1, 1, the min int, and the max int, if the input is an int;
e.g., the empty array and any singleton array, if the input is an array;
e.g., the NULL pointer, if the input is a pointer.

equivalence class a set of tests such that any test in the set should yield
the same behavior. e.g., when testing binary search, the test “search
for 5 in [10, 12]” is in the same equivalence class as “search for 30 in
[300, 3000]”, “search for 0 in [1, 2]”, and “search for x in [y, z]” for any
x < y < z.

test-driven development the practice of writing tests before writing code,
using the precise language of test cases to clarify a program’s specifi-
cation before development begins.

unit testing testing small pieces of functionality to make sure they behave
as intended before using them in a larger program. helps to pin bugs
down earlier.

regression testing running old tests on new code, to make sure that previ-
ously correct code was not broken while being extended or modified.
sometimes fixing new bugs accidentally re-introduces old bugs, and
regression testing helps keep development moving in the right direc-
tion.

debugging a blank screen having no idea why a program is behaving in
an unexpected manner, and making random perturbations to the code

LECTURE NOTES MARCH 24, 2011



Testing L19.3

in the hopes that they might somehow suddenly fix everything. a.k.a.,
“programming by random perturbation”.

3 Testing Tips

• Write tests early! Writing tests can help clarify the spec of a problem
and guide your thinking about how to solve it. (They’re similar to
contracts in this regard—having a hard time writing a contract? Try
writing a few tests instead, until the ideas start to gel.) Use lots of
small unit tests along the way to building a large program to avoid
debugging a blank screen.

• Run tests often! Regressions are easy to introduce, and just because
your code passed some test once doesn’t mean it always will.

• Don’t be afraid to write new code! Testing often requires the use of auxil-
iary functions that you might not otherwise need, like pretty-printers,
equality-checkers, and convenience constructors. Writing this code
can be a fun and cathartic break from more mentally strenuous cod-
ing, and it will help you understand and evaluate your code more
effectively.

• Use tests with contracts! Be sure to compile with -d to enable dynamic
contract checking when running test code. Contracts and tests com-
plement each other dramatically: if every call to a function checks 10
invariants, then every test case you write for that function is 10 times
stronger!

LECTURE NOTES MARCH 24, 2011


