
15-122 Midterm Exam - I Page 1 of 11

15-122 : Principles of Imperative Computation

Midterm Exam - I

Fall 2011

Name:

Andrew ID:

Recitation:

Answer the questions in the space provided following each question. We
must be able to clearly understand your answer. It it is vague or confused,
it will be marked wrong. Be sure to read the directions to each question
carefully so that you know what it is asking for.

Question Points Score

1 30

2 28

3 10

4 12

5 20

Total: 100

15-122 Midterm Exam - I Page 2 of 11

15-122 Midterm Exam - I Page 3 of 11

1. Modular Arithmetic.

(a) For each of the following statements, indicate whether it is true or false. If the
statement is true, explain why. If it is false, provide a counterexample.

i.(4) If x and y are ints in C0, and y >= x, then x+ (y − x)/2 = (x+ y)/2.

Solution:

ii.(4) If x is an int in C0, then (x << 2) >> 2 = x.

Solution:

iii.(4) If x, y and z are ints in C0, then (x+ y) + z = x+ (y + z).

Solution:

15-122 Midterm Exam - I Page 4 of 11

(b) Answer the following questions.

i.(4) If your machine implements 16-bit signed ints, what would be the max int in
hex?

Solution:

ii.(4) Find the 16-bit two’s complement of max int from part (iv). Is it equal to
min int? If not, what is the min int in hex ?

Solution:

iii.(5) Write a C0 function bit() which returns bit number i in the two’s complement
representation of n. Also supply a postcondition capturing the value range of
the output.

Solution:
int bit(int n, int i)

//@requires 0 <= i && i < 32;

//@ensures ____________________________________ ;

15-122 Midterm Exam - I Page 5 of 11

(c)(5) Implement a function iushr(n, k) which is like n >> k except that it fills the
highest bits with zeros instead of copying the sign bit. iushr stands for integer
unsigned shift right. Note you do not need to fill up the whole answer box (your
answer will likely be much smaller).

Solution:

15-122 Midterm Exam - I Page 6 of 11

2. Searching. Shown here is a binary search program that finds the largest index n of the
target key in the array. For example, if A = [1 2 3 3 4 4 4], then search largest(4,

A, 7) will return 6. On the other hand, search largest(1, A, 7) returns 0.

int search_largest(int key, int[] A, int n)

//@requires 0 <= n && n <= \length(A);

//@requires is_sorted(A, n);

{

int lower = 0;

int upper = n;

while (lower < upper)

{

int mid = lower + (upper-lower)/2;

if (key >= A[mid]) lower = mid+1;

else upper = mid;

}

//@assert lower == upper;

if (?????)

return lower - 1;

else

return -1;

}

(a)(4) Write in the box below the missing if-condition at the end of the function so that
the proper value is returned.

Solution:

(b)(5) Write in the box below loop postconditions for the successful search, namely when
search largest returns the valid index.

Solution:

//@ensures

15-122 Midterm Exam - I Page 7 of 11

(c)(5) Write in the box below postconditions for the unsuccessful search, namely when
search largest returns -1.

Solution:

//@ensures

(d)(5) Write in the box below loop invariants for the successful search.

Solution:

//@loop_invariant

(e)(5) Write in the box below loop invariants for the unsuccessful search. You may use
function is sorted()

Solution:

//@loop_invariant

(f)(4) There are the two most common methods of searching arrays for an element: linear
and binary search. You know that the latter is asymptotically faster than the
former. However, linear search has some advantages compare to binary search.
When will you be using linear search instead of binary search? Circle the T or the
F on each line below to indicate true or false.

(T F) The input data is sorted.

(T F) The input data is random.

(T F) The input data is of a relatively small size.

(T F) The input data has too many duplicates.

15-122 Midterm Exam - I Page 8 of 11

3.(10) Arrays. Given a sorted in ascending order list of ints, write an insert function, that
inserts a new element key into the array in order. The function should return a new
array (of a bigger size-!) with the key inserted. Your loop invariants (together with the
function preconditions) should be strong enough to guarantee the postconditions. You
may use the helper function bool is sorted(int[] A, int lower, int upper) that
returns true if the array is sorted in ascending order

Solution:

int[] insert_inorder(int key, int[] A, int len)

//@requires 0 <= len && len <= \length(A);

//@requires is_sorted(A, 0, len);

//@ensures

//@ensures

15-122 Midterm Exam - I Page 9 of 11

4. Sorting.

(a)(4) External sorting is required when the data being sorted do not fit into the main
memory of a computer. An external sort makes the use of external memory such
as hard disks Which of the following sorting algorithms is the most suitable for
external sorting.

A. quicksort

B. mergesort

C. bubble sort

D. insertion sort

(b)(4) There is an array of 100 million records of people each of which consists of different
criteria such as name, birth year, zodiac sign and so on. You want to study the
distribution of names according to other criteria. So what you need is to sort
the array with respect to one criteria and then do further sorting with respect to
another. However, you have to make sure that the next sort will preserve the order
of records obtained by the previous sort. Which sort shall you use?

A. quicksort

B. mergesort

C. bubble sort

D. insertion sort

(c)(4) The merge function employed by mergesort as discussed in lecture allocates some
auxiliary space each time it is called. If we call mergesort with an array of size n,
how much extra space does mergesort allocate, overall? Choose the tightest bound
from the list.

A. O(1)

B. O(n log n)

C. O(log n)

D. O(n)

15-122 Midterm Exam - I Page 10 of 11

5. Asymptotic Complexity.

(a)(5) What is the worst-case runtime complexity (in terms of n) of the following code
using big-O notation?

for (int i = 0; i < n; i++) {

for (int j = 1; j < i; j++) {

for (int k = 1; k < j; k++) {

printint(i + j + k);

}

}

}

Solution:

(b)(5) What is the worst-case runtime complexity (in terms of n) of the following code
using big-O notation?

//@assert n >= 0;

int k = 1;

while (k <= n) {

k = 2 * k;

}

Solution:

(c)(5) What is the best-case runtime complexity (in terms of n) of the following code using
big-O notation?

for (int k = 1; k < n; k++) {

int value = a[k];

int j = k;

while (j > 0 && a[j-1] > value) {

a[j] = a[j-1];

j--;

}

a[j] = value;

}

Solution:

15-122 Midterm Exam - I Page 11 of 11

(d)(5) Prove that 3n2 + 2n + 10 = O(n2) using the formal definition of big-O. That is,
find c > 0 and n0 ≥ 0 such that for every n ≥ n0, 3n

2 + 2n+ 10 ≤ c n2.

Solution:

