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Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 80 minutes to complete the exam.

• There are 4 problems.

• Read each problem carefully before attempting to solve it.

• Consider writing out programs on scratch paper first.

Searching Stacks Modular arith.

& sorting & queues Linked lists & JVM

Prob 1 Prob 2 Prob 3 Prob 4 Total

Score 40 50 30 30 150

Max 40 50 30 30 150

Grader fp tc wjl tc/fp
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1 Searching and Sorting (40 pts)

Shown here is the binary search program from Homework Assignment 2 that has been repaired,
except that the condition before the return statements at the end of the function has been omitted.
A copy of this code is provided on the last sheet, which you may tear off and use for reference
while working on Tasks 2 and 3.

1 int binsearch_smallest(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A,n);
4 /*@ensures (\result == -1 && !is_in(x, A, n))
5 || (A[\result] == x && (\result == 0 || A[\result-1] < x));
6 @*/
7 { int lower = 0;
8 int upper = n;
9 while (lower < upper)
10 //@loop_invariant 0 <= lower && lower <= upper && upper <= n;
11 //@loop_invariant lower == 0 || A[lower-1] < x;
12 //@loop_invariant upper == n || A[upper] >= x;
13 { int mid = lower + (upper-lower)/2;
14 if (A[mid] < x) lower = mid+1;
15 else /*@assert(A[mid] >= x);@*/ upper = mid;
16 }
17 //@assert lower == upper;

18 if ( )

19 return lower;
20 else
21 return -1;
22 }

Task 1 (10 pts). Fill in the missing condition at the end of the function so that the proper value is
returned.

18 if (lower < n && A[lower] == x)
19 return lower;
20 else
21 return -1;
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The next two questions ask you to show that the postcondition of the function is satisfied, in
two parts. For each part, reason from the function’s precondition, loop invariants, the explicit
assertion, and the condition you inserted. You can refer to annotations by the line they appear in.

Task 2 (10 pts). If the function returns some result i for 0 ≤ i < n, show that either i = 0 or
A[i− 1] < x.

Since 0 ≤ i < n, we know the condition in line 18 must be true, so lower < n and A[lower ] =
x. Also, lower is returned, so i = lower .

By loop invariant (11), lower = 0 or A[lower −1] < x. This is exactly what we have to show
since the return value i = lower and lower is not modified after the loop.

Task 3 (10 pts). If the function returns −1, show that x cannot be in the array. To simplify the
reasoning, you may assume that lower != 0 and upper != n at line 17.

Since the result i = −1 and lower ≥ 0, the test on line (18) must be false. So either lower = n
or A[lower ] 6= x. Since lower = upper by the assertion on line (17), we are allowed to ignore
the first case, by the problem statement. Therefore A[upper ] = A[lower ] 6= x.

By loop invariant on line (12), A[upper ] ≥ x and, since also A[upper ] 6= x, we have
A[upper ] > x. Also, A[lower − 1] < x by invariant on line (11) and assumption lower 6= 0.

Since the array is sorted and lower = upper , x cannot be in array: A[lower − 1] < x and
x < A[upper ] = A[lower ].
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Task 4 (10 pts). The merge function employed by mergesort as discussed in lecture allocates some
fresh temporary space each time it is called. If we call mergesort with an array of size n, how
much temporary space does mergesort allocate, overall? Give your answer in big-O notation and
briefly explain your reasoning.

The size of the temporary array is the size of the result of the merge. During mergesort of
a list of length n, we have O(log(n)) levels of recursion, and at each level we perform a merge
of n elements (either one merge of size n, or two merges each of size n/2, etc.). Therefore we
allocate O(n ∗ log(n)) temporary space.
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2 Stacks and Queues (50 pts)

Consider the following interface to stacks, as introduced in class.

typedef struct stack* stack;
stack s_new(); /* O(1); create new, empty stack */
bool s_empty(stack S); /* O(1); check if stack is empty */
void push(int x, stack S); /* O(1); push element onto stack */
int pop(stack S); /* O(1); pop element from stack */

In these problem you do not need to write annotations, but you are free to do so if you wish. You
may assume that all function arguments of type stack are non-NULL.

Task 1 (10 pts). Write a function rev(stack S, stack D). We require that D is originally empty.
When rev returns, D should contain the elements of S in reverse order, and S should be empty.

void rev(stack S, stack D)
//@requires s_empty(D);
//@ensures s_empty(S);
{

while (!s_empty(S))
push(pop(S),D);

}
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Now we design a new representation of queues. A queue will be a pair of two stacks, in and
out. We always add elements to in and always remove them from out. When necessary, we can
reverse the in queue to obtain out by calling the function you wrote above.

struct queue {
stack in;
stack out;

};
typedef struct queue* queue;

Task 2 (10 pts). Write the enq function.

void enq(queue Q, int x) {

push(x, Q->in);

}

Task 3 (10 pts). Write the deq function. Make sure to abort the computation using an appropriate
assert(_,_) statement if deq is called incorrectly.

int deq(queue Q) {

assert(!s_empty(Q->in) || !s_empty(Q->out)
"cannot dequeue from empty queue");

if (s_empty(Q->out)) { rev(Q->in, Q->out); }
return pop(Q->out);

}
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Now we analyze the complexity of this data structure. We are counting the total number of push
and pop operations on the underlying stack.

Task 4 (10 pts). What is the worst-case complexity of a single enq? What is the worst-case com-
plexity of a single deq? Phrase your answer in terms of big-O of m, where m is the total number
of elements already in the queue.

O(1) for enq and O(m) for deq.

Task 5 (10 pts). What is the worst-case complexity of a sequence of n operations, each of which
could be enq or deq? Justify your answer using amortized analysis, if appropriate.

The complexity is O(n), that is, the amortized complexity of a single enq or deq is O(1). We
prove this by setting aside 2 tokens for every enq, and spending 2 tokens when we move an
element from the input queue to the output queue.
Claim: We always have exactly 2 ∗ i tokens, if i is the number of elements in the input stack.

It is true initially, since i = 0 and we have no tokens.
On every enq we add one element and two tokens, so the invariant remains true.
On every deq with a non-empty output stack, neither the tokens nor the input stack are

affected, so the invariant remains true.
On a deq where the output stack is empty, we have 2 ∗ i tokens for the i elements in the

input stack. During the reverse, we perform one pop and one push for each of the i elements,
spending all 2 ∗ i tokens. We end up with 0 tokens and 0 elements on in the input stack,
preserving our invariant.

So during n operations, the total number of stack operations is bounded by the number e
of enq’s, plus the number d of deq’s, plus the number of tokens which is 2 ∗ e. In total, this
gives us O(3 ∗ e + d) = O(n), since n = e + d.
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3 Linked Lists (30 pts)

Recall the definition of linked lists with integer data.

struct list {
int data;
struct list* next;

};
typedef struct list* list;

An alternative to terminating lists with NULL is to terminate them with a self-loop. We call such a
list a sloop. For example, the following is a sloop of length 3.

1  3 2  X 

data  next 

Task 1 (10 pts). Write a function is_sloop(list p) to test if p is a sloop, that is, a linked list
terminated by a self-loop. You should assume that there are no other cycles in the list.

bool is_sloop (list p) {

while (p != NULL) {
if (p == p->next) return true;
p = p->next;

}
return false;

}
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Task 2 (10 pts). The following program is supposed to add an element to the end of a sloop,
but it contains three bugs. Fix the bugs by clearly modifying a given statement or adding new
statements.

list addend (list p, int k)

//@requires is_sloop(p);

//@ensures is_sloop(p);

{ list q = alloc(list);

while (p != p->next)
//@loop_invariant is_sloop(p);

{
p = p->next;

}

p->data = k;

p->next = q;

}

1. The function should return void. Alternatively, it could return either p or q.

2. The allocation should be list q = alloc(struct list);

3. We need to create the self-loop. Add after the last line in the function body:
q->next = q;
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Task 3 (10 pts). Explain in detail how to use the idea behind the tortoise-and-the-hare algorithm
to write a stronger is_sloop function than you wrote in Task 1. It should terminate with false
on lists containing a cycle, unless the cycle has only one node. Your description should be concise
and complete. If you wish, you can write code to support the explanation, but that is not required.

We start the tortoise and the hare both at the beginning of the list, the tortoise stepping by
ones and hare by twos. If the hare hits NULL, it is not a valid sloop and we return false. If the
hare catches the tortoise, they must be in a cycle. At that point, the tortoise moves forward by
one and checks if it is still at the same place as the hare. If so we have a valid sloop and return
true. Otherwise we return false since we have a longer cycle.
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4 Modular Arithmetic and JVM (30 pts)

Task 1 (5 pts). Implement a function iushr(n, k) which is like n >> k except that it fills the
highest bits with zeros instead of copying the sign bit. iushr stands for integer unsigned shift right.

int iushr(int n, int k) {

return (n >> k) & ~(((1<<31)>>k)<<1)

}

// or, as a loop:
int iushr(int n, int k) {
int i;
k = k & 0x1F;
for (i = 0; i < k; i++)

n = (n>>1) & ~(1<<31);
return n;

}

Task 2 (5 pts). Implement a function oadd(x, y) which is like x + y except that it aborts the
computation with an appropriate assert(_,_) statement if we have an overflow. Here, overflow
means that the result would be less than the minimal representable negative number or greater
than the maximal representable positive number, assuming 32-bit two’s complement arithmetic.
Your code does not need to be particularly efficient.

int oadd(int x, int y) {

int result = x+y;
if (x > 0 && y > 0) assert(result > 0, "overflow");
if (x < 0 && y < 0) assert(result < 0, "overflow");
return result;

}
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Now recall the inner loop of the JVM00 implementation we developed in class, reduced here to
just two instructions to show the overall structure.

// P[pc], 0 <= pc < max_pc is the program code
// V[i], 0 <= i < max_local are the local variables
// S is the operand stack
while (true) {

int inst = P[pc];
if (inst == 0x60) { push(pop(S)+pop(S),S) ; pc+=1; } // iadd
else if (inst == 0x15) { push(V[P[pc+1]],S); pc+=2; } // iload <i>
... your instructions should go here ...
else assert(false, "unrecognized instruction");

}

Task 3 (5 pts). Implement the instruction iushr (0x7C). It should transform the operand stack
S, x, y to S, iushr(x, y), where iushr is the function defined in Task 1. You may use the iushr
function.

else if (inst == 0x7C) {

int y = pop(S);
int x = pop(S);
push(iushr(x,y),S);
pc += 1;

}

Task 4 (5 pts). Implement the hypothetical instruction oadd (0xBA) which transforms the stack
S, x, y to S, oadd(x, y), where oadd is the function defined in Task 2. You may use the oadd func-
tion. The JVM should abort with an appropriate assert(_,_) statement if there is an overflow as
defined in Task 2.

else if (inst == 0xBA) {

push(oadd(pop(S),pop(S)),S);
pc += 1;

}
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Task 5 (10 pts). Implement the instruction iinc <i>,<c> (0x84) which has two more bytes: the
index i of a local variable and a byte-size constant c which is interpreted according to 8-bit two’s
complement representation. It increments V [i] by c and does not affect the operand stack.

if (inst == 0x84) {

int i = P[pc+1];
int c = P[pc+2];
if (c > 127) c = c-256;
V[i] += c;
pc += 3;

}
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You may tear off this sheet and use it for reference while working on Problem 1.

1 int binsearch_smallest(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A,n);
4 /*@ensures (\result == -1 && !is_in(x, A, n))
5 || (A[\result] == x && (\result == 0 || A[\result-1] < x));
6 @*/
7 { int lower = 0;
8 int upper = n;
9 while (lower < upper)
10 //@loop_invariant 0 <= lower && lower <= upper && upper <= n;
11 //@loop_invariant lower == 0 || A[lower-1] < x;
12 //@loop_invariant upper == n || A[upper] >= x;
13 { int mid = lower + (upper-lower)/2;
14 if (A[mid] < x) lower = mid+1;
15 else /*@assert(A[mid] >= x);@*/ upper = mid;
16 }
17 //@assert lower == upper;

18 if ( )

19 return lower;
20 else
21 return -1;
22 }

14


