Assignment 4: Curves and Surfaces

15-462 Graphics I
Spring 2002
Frank Pfenning
Out February 22
Due February 28 before lecture
50 points

- The work must be all your own.
- The assignment is due before lecture on Thursday, February 28.
- Be explicit, define your symbols, and explain your steps. This will make it a lot easier for us to assign partial credit.

1 Bezier Curves (20 pts)

1. Under which conditions do we have C^{1} continuity for two joined Bezier curves? Write out the condition explicitly as a test on the control points $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ and $\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$ of the two curves.
2. Under which conditions do we have G^{1} continuity for two joined Bezier curves? Again, write out the condition explicitly as in part 1.
3. It is possible for a single segment Bezier curve to intersect itself. Give four control points with all coordinates between 0 and 1 that yield a self-intersecting Bezier curve.
4. Include a printed image of a self-intersecting Bezier curve with your assignment. You can capture an X window with xwd -out bezier. xwd and convert it to JPEG format with convert bezier.xwd bezier.jpg.

2 Bezier Surfaces (15 pts)

1. Compute the normal vector of a Bezier surface patch at the four corners and at the center ($u=v=0.5$) for a given set of control points.
2. Discuss how you would define the normals for a surface created from joined Bezier patches using Gouraud shading.

3 Cubic B-Splines (15 pts)

1. Analyze the effect of four collinear control points on a cubic B-spline.
2. Verify the C^{2} continuity of the cubic spline at the join points.
