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1 Three-Dimensional Homogeneous Coordinates (15 pts)

If we are interested only in two-dimensional graphics, we can use three-dimensional homogeneous
coordinates by representing a point P by [x y 1]T and a vector v by [α β 0]T .

1. Find the matrix representation of a counter-clockwise rotation by θ degrees about the origin.

The matrix for counter-clockwise rotation by θ is given by cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

As a check, consider the point p =

 1
1
1

.

When rotated by 45◦ counter-clockwise, we’d expect p to be translated to

 0√
2

1

.

We have  cos 45◦ − sin 45◦ 0
sin 45◦ cos 45◦ 0

0 0 1


 1

1
1

 =


√

2
2 −

√
2

2√
2

2 +
√

2
2

1



=

 0√
2

1

 ,
as expected.

2. Find the translation matrix for given displacement vector [δx δy 0]T
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The matrix for translation by displacement vector

 δx
δy
0

 is given by

 1 0 δx
0 1 δy
0 0 1

 .
3. Find the scaling matrix for factors αx and αy.

The scaling matrix for factors αx and αy is given by αx 0 0
0 αy 0
0 0 1

 .
4. Find the x-shear matrix for shear angle θ.

The x-shear matrix for shear angle θ is given by 1 cot θ 0
0 1 0
0 0 1

 .
5. Derive the explicit transformation matrix for a reflection about the axis specified by a point

p0 = [x0 y0 1]T and a unit vector u = [αx αy 0]T .

To derive the reflection matrix, begin with the identity matrix, translate the point p0

to the origin, rotate until the line given by u coincides with the x axis, flip everything
across the x axis with a scaling matrix, rotate back to the original orientation, and
finally translate the origin to the location p0. The final result is displayed below. α2

x − α2
y 2αxαy x0(α2

y − α2
x + 1)− 2αyαxy0

2αxαy α2
y − α2

x y0(α2
x − α2

y + 1)− 2αyαxx0

0 0 1


6. Show how the x-shear matrix can be represented as a composition of rotations, scalings, and

translations.

The x-shear operation for a shearing angle Ψ reduces to rotations and scalings as
follows:

(a) Rotate by θ = 1
2Ψ counter-clockwise. Call this matrix M1.

(b) Scale with αx = sin θ and αy = cos θ. Call this matrix M2.

(c) Rotate by 45◦ clockwise. Call this matrix M3.

(d) Scale with αx =
√

2
sin Ψ and αy =

√
2. Call this matrix M4.
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Intuitively, we want to rotate and then scale so we can “stretch” the world along an
arbitrary orthogonal axis. Then, we want to rotate back so that the original x-axis
line again coincides with the true x-axis. Finally, we have to scale the world to
clean up scaling.

To see that this works, we compute the matrix given by these transformations.

M4M3M2M1 = M4M3

 sin θ
cos θ

1


 cos θ − sin θ

sin θ cos θ
1


= M4M3

 sin θ cos θ − sin2 θ

sin θ cos θ cos2 θ

1


=

√
2

2
M4

 1 1
−1 1 √

2


 sin θ cos θ − sin2 θ

sin θ cos θ cos2 θ

1


=

√
2

2
M4

 2 sin θ cos θ cos2 θ − sin2 θ

0 sin2 θ + cos2 θ √
2


=

√
2

2
M4

 sin (2θ) cos (2θ)
0 1 √

2


=

√
2

2


√

2
sin Ψ √

2
1


 sin (2θ) cos (2θ)

0 1 √
2


=


1

sin Ψ
1 √

2
2


 sin (2θ) cos (2θ)

0 1 √
2


=

 1 cos Ψ
sin Ψ

1
1


=

 1 cot Ψ
1

1

 .
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2 Rigid Body Transformations (20 pts)

A rigid body transformation may rotate and move, but not reflect, re-scale, or otherwise distort an
object. We first investigate these in two dimensions (see Problem 1) and then generalize to three
dimensions. Your tests should avoid trigonometric functions or their inverses.

1. Devise a test whether a given 3 × 3 transformation matrix in homogeneous coordinates is a
rigid body transformation in 2 dimensions.

We can test whether a given matrix M is a rigid body transformation in 2 dimen-
sions by observing the action on the basis vectors and the origin. First, the resulting
vectors must be of unit length, and second, they must be orthogonal, and third they
must be “right-handed”. Finally, the origin should be translated to a new origin.

Mux = M

 1
0
0

 =

 x1

x2

x3

 = x

Muy = M

 0
1
0

 =

 y1

y2

y3

 = y

MP0 = M

 0
0
1

 =

 q1

q2

q3

 = Q0

Then we check

(a) x is a unit vector: x3 = 0 and |x| = 1 (that is, x2
1 + x2

2 = 1)

(b) y is a unit vector: y3 = 0 and |y| = 1 (that is, y2
1 + y2

2 = 1)

(c) Q0 is a point: q3 6= 0

(d) x and y are orthogonal: x · y = 0 (that is, x1y1 + x2y2 = 0)

(e) x and y must be “right-handed”:∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣ = x1y2 − y1x2 = 1

2. Generalize your test to check if a given 4× 4 transformation matrix in homogeneous coordi-
nates is a rigid body transformation in 3 dimensions.

We proceed as in part 1, except that tests for orthogonality and right-handedness is
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slightly more complicated.

Mux = M


1
0
0
0

 =


x1

x2

x3

x4

 = x

Muy = M


0
1
0
0

 =


y1

y2

y3

y4

 = y

Muz = M


0
0
1
0

 =


z1

z2

z3

z4

 = z

MP0 = M


0
0
0
1

 =


q1

q2

q3

q4

 = Q0

Then we check

(a) x is a unit vector: x4 = 0 and |x| = 1

(b) y is a unit vector: y4 = 0 and |y| = 1

(c) z is a unit vector: z4 = 0 and |z| = 1

(d) Q0 is a point: q4 6= 0

(e) x and y are orthogonal: x · y = 0

(f) y and z are orthogonal: y · z = 0

(g) x and z are orthogonal: z · x = 0

(h) The basis vectors form a right-handed frame: x× y = z

We do not write out here the standard ways to compute |u|, u · v, and u×v similar
to part 1.

3 Viewing Transformations (15 pts)

Assume the function void earth (); draws a three dimensional model of the earth with the south
pole at the origin, the north pole at the point (0, 1, 0), and the Greenwich meridian (0o longitude)
pointing in the z-direction. We are interested in drawing the earth as seen from a point in space
with a given longitude and latitude (specified in degrees) and given distance from the surface of
the earth. We want to be looking down into the direction of the earth’s center and have a square
viewport that should cover a field of vision of 30o degrees. We are assuming the earth is a perfect
sphere.

1. Does the specification above uniquely determine the perspective viewing transformation?
Explain if there are additional degrees of freedom.

The specification above does not uniquely determine the perspective viewing trans-
formation. First of all, after we position the camera, we can choose which direction
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is up. We also have some freedom to determine the aspect ratio of the frustum as
well as where we’ll place the near and far clipping planes.

2. Give code for a function

void viewEarth (float longitude, float latitude, float distance);

and carefully explain the reasoning behind your solution. If there are additional degrees of
freedom, set them to some reasonable values. Your function should call earth (); to draw
the earth.

void viewEarth (float longitude, float latitude, float distance)

{

/* first, reset the projection matrix */

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

/*

* 30 degree field of view, 1.0 aspect ratio.

* We know we’re ’distance’ away from the surface of the

* earth, and that the earth has a diameter of 1.0, so we

* can set the near and far clipping planes accordingly

*/

gluPerspective(30.0, 1.0, distance, distance + 1.0);

glMatrixMode(GL_MODELVIEW);

/*

* reset the modelview matrix

*/

glLoadIdentity();

/*

* look at the earth from far away. be sure to remember that

* there is 0.5 distance between the surface of the earth and the

* origin

*/

gluLookAt(0.0, 0.0, distance + 0.5, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0);

/*

* rotate the earth to the correct latitude and longitude

*/

glRotatef(latitude, 1.0, 0.0, 0.0);

glRotatef(-longitude, 0.0, 1.0, 0.0);

/*

* translate the earth so it’s center is at the origin

*/

glTranslatef(0.0, -0.5, 0.0);

earth();

glutSwapBuffers();

}
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