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Software Defects
Our over reliance on software aggravates the 
impact of software defects (“bugs”) on society:

1962 - Mariner 1 Spacecraft (incorrect guidance signal transmission)
1985 - Therac-25 radiation therapy machine (race condition)
1991 - Patriot Missile Error (inaccurate tracking)
1996 - Ariane 5 Flight 501 (overflow in 16-bit register)
1998 - NASA’s Mars Climate Orbiter (imperial to metrics conversion)
2006 - Heathrow Terminal 5 Opening (baggage handling system)
2007 - Microsoft Excel 2007 (wrong result on 850*77.1)
2009 - Toyota vehicles (sudden unintended acceleration)

...

Thus, there is a clear and increasing need for 
mechanisms to improve software reliability.

2



Mutable State (I)

We propose a new type-based 
technique to detect, at compile-time, a 
class of errors related to the unsafe 
use of shared mutable state.
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Mutable state can be useful in certain cases  such 
as to improve efficiency, clarity, or even to enable 
greater extensibility.



We aim to precisely detect and avoid        
unsafe interference in the use of mutable state 
that is shared through aliasing. 

By precisely tracking the properties of mutable 
state we can avoid a class of state-related     
run-time errors and eliminates the need for 
some defensive run-time tests.
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Mutable State (II)



! File file = new File( “fillet” );
! file.write( “foo” );
! file.close();
! file.write( “bar” ); 
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! File file = new File( “fillet” );
! file.write( “foo” );
! file.close();
! file.write( “bar” );

Error: runtime exception!
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! File file = new File( “fillet” );
! file.write( “foo” );
! file.close();
! file.write( “bar” );

7



8

! File file = new File( “fillet” );
! file.write( “foo” );
! file.close();
! file.write( “bar” );

class File {
FileDescriptor fd;

File( string filename ){
 fd = OS.createFile( filename );
}

void write( string s ){
 if( fd == null ) 

throw Exception(“invalid file descriptor”);
 fd.write( s );
}

void close(){
 fd = null;
}

}

class File {
FileDescriptor fd;
File( string filename ){
 fd = OS.createFile( filename );
}
void write( string s ){
 if( fd == null ) 

throw Exception(“invalid file descriptor”);
 fd.write( s );
}
void close(){
 fd = null;
}

}
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class File {
FileDescriptor fd;
File( string filename ){
 fd = OS.createFile( filename );
}
void write( string s ){
 if( fd == null ) 

throw Exception(“invalid file descriptor”);
 fd.write( s );
}
void close(){
 fd = null;
}

}

The “flat” abstraction does not precisely 
express the changing properties of 

File’s internal state (fd).

File

File

File

File

File



class File {
FileDescriptor fd;
File( string filename ){
 fd = OS.createFile( filename );
}
void write( string s ){
 if( fd == null ) 

throw Exception(“invalid file descriptor”);
 fd.write( s );
}
void close(){
 fd = null;
}

}

Open

Closed
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Unnecessary because we 
statically guarantee to only call 

write when Open.

Types capture the precise, 
changing, type of the state.

Open

Open

Open



Challenge: Interference

Aliasing allows different names to refer to the 
same mutable state.

However, uncontrolled aliasing can lead to 
interference-related errors, where the actions of 
different aliases break each other’s (precise) 
assumptions on the contents of the shared state.
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MyFile
YourFile

TheirFile
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  x.open(…);

  x.write(…);

  x.read(…);
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  x.open(…);

  x.write(…);

  x.read(…);

Open
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  x.open(…);

  x.write(…);

  x.read(…);Open
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  x.open(…);

  x.write(…);

  x.read(…);Open  y.close(…);
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  x.open(…);

  x.write(…);

  x.read(…);

  y.close(…);

Closed
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  x.open(…);

  x.write(…);

  x.read(…);Closed

Broken local assumption: interference!



Thesis Statement

Rely-Guarantee Protocols provide 
a modular, composable, expressive, and 
automatically verifiable mechanism to 
control the interference resulting from 
the interaction of non-local aliases that 
share access to mutable state.
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Overview

19

Aliasing
Memory
Locations

Typestate
Abstraction

Sharing with
Rely-Guarantee

Protocols



Language

• Polymorphic λ-calculus with mutable references 
(and immutable records, tagged sums, ...).

• We use a variant of L3 [Ahmed, Fluet, and Morrisett. 
L3: A linear language with locations. Fundam. 
Inform. 2007.] adapted for usability and extended 
with new constructs, and our sharing mechanism.
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State as a
Linear Resource

21

ref A
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State as a
Linear Resource

21

ref A reference with 
contents of type A

rw p A

{
ref pduplicable 

reference to 
location p 

linear read+write 
capability of 
location p with 

contents of type Ap links ref to
capability

ref p
ref p
ref p
ref p
ref p
ref p
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 let y = x in

  delete y;
  x := false

 end

x : ref p rw p string

  x := 1;
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 let y = x in

  x := 1;
  delete y;
  x := false

 end

x : ref p rw p stringy : ref p
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 let y = x in

  delete y;
  x := false

 end

x : ref p rw p inty : ref p

  x := 1;
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 let y = x in

  delete y;

  x := false

 end

x : ref py : ref p

  x := 1;
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 let y = x in

  delete y;

  x := false

 end

x : ref py : ref p

Type Error: Missing 
capability to location p.

  x := 1;
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 let y = x in

  delete y;

  x := false

 end

x : ref py : ref p

Type Error: Missing 
capability to location p.

  x := 1;

How to use capabilities in 
functions?
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fun( i :                ).

left : ref l

  left := i

int :: rw l []
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fun( i :                ).

left : ref l

  left := i

int :: rw l []

i : int rw l []::
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fun( i :                ).

left : ref l

  left := i

int :: rw l []

i : int rw l []
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fun( i :                ).

left : ref l

  left := i

int :: rw l []

i : int rw l int
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fun( i :                ).

  left := i

int :: rw l [] rw l int[] ::⊸)( )(

int :: rw l []
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fun( i :                ).

  left := i

int :: rw l [] rw l int[] ::⊸)( )(

int :: rw l []

How to build
typestate abstractions?



Pair Typestate
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Pair Typestate

34

RightLeft



Pair Typestate

35

• Initialize each component separately.

• Sum both components, and destroy the pair.



Pair Typestate
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• Sum both components, and destroy the pair.



Pair Typestate
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initL

• Initialize each component separately.

• Sum both components, and destroy the pair.



Pair Typestate

38

initL

sum

• Initialize each component separately.

• Sum both components, and destroy the pair.
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   initL : ( int :: rw l [] ) ⊸ ( [] :: rw l int )
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   initL : ( int :: rw l [] ) ⊸ ( [] :: rw l int )[                                                 ,
   initR : ( int :: rw r [] ) ⊸ ( [] :: rw r int ),

     sum : ( [] :: ( rw l int * rw r int ) ) ⊸ 
                 ( int :: ( rw l int * rw r int ) ),
 destroy : ( [] :: ( rw l int * rw r int ) ) ⊸ [] )
]
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   initL : ( int :: rw l [] ) ⊸ ( [] :: rw l int )

:: ( rw l [] * rw r [] )

[                                                 ,
   initR : ( int :: rw r [] ) ⊸ ( [] :: rw r int ),

     sum : ( [] :: ( rw l int * rw r int ) ) ⊸ 
                 ( int :: ( rw l int * rw r int ) ),
 destroy : ( [] :: ( rw l int * rw r int ) ) ⊸ [] )
]
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   initL : ( int :: rw l [] ) ⊸ ( [] :: rw l int )

:: ( rw l [] * rw r [] )

[                                                 ,
   initR : ( int :: rw r [] ) ⊸ ( [] :: rw r int ),

     sum : ( [] :: ( rw l int * rw r int ) ) ⊸ 
                 ( int :: ( rw l int * rw r int ) ),
 destroy : ( [] :: ( rw l int * rw r int ) ) ⊸ [] )
]

EL

EL
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   initL : ( int :: rw l [] ) ⊸ ( [] :: rw l int )

:: ( rw l [] * rw r [] )

[                                                 ,
   initR : ( int :: rw r [] ) ⊸ ( [] :: rw r int ),

     sum : ( [] :: ( rw l int * rw r int ) ) ⊸ 
                 ( int :: ( rw l int * rw r int ) ),
 destroy : ( [] :: ( rw l int * rw r int ) ) ⊸ [] )
]

EL

EL

L

L
L

L
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   initL : ( int :: rw l [] ) ⊸ ( [] :: rw l int )

:: ( rw l [] * rw r [] )

[                                                 ,
   initR : ( int :: rw r [] ) ⊸ ( [] :: rw r int ),

     sum : ( [] :: ( rw l int * rw r int ) ) ⊸ 
                 ( int :: ( rw l int * rw r int ) ),
 destroy : ( [] :: ( rw l int * rw r int ) ) ⊸ [] )
]

EL

EL

ER
L

L
L

ER

L
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   initL : ( int :: rw l [] ) ⊸ ( [] :: rw l int )

:: ( rw l [] * rw r [] )

[                                                 ,
   initR : ( int :: rw r [] ) ⊸ ( [] :: rw r int ),

     sum : ( [] :: ( rw l int * rw r int ) ) ⊸ 
                 ( int :: ( rw l int * rw r int ) ),
 destroy : ( [] :: ( rw l int * rw r int ) ) ⊸ [] )
]

EL

EL

ER R
L

L
L

R
R

ER

RL
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∃EL.∃L.∃ER.∃R.( [
     initL : !( int :: EL     ⊸   [] :: L ),
     initR : !( int :: ER     ⊸   [] :: R ),
       sum : !(  [] :: L * R  ⊸  int :: L * R ),
   destroy : !(  [] :: L * R  ⊸   [] )

  ] :: EL * ER )



Pair Typestate
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newPair : 

 !( [] ⊸  ∃EL.∃L.∃ER.∃R.( ![

        initL : !( int :: EL     ⊸   [] :: L ),

        initR : !( int :: ER     ⊸   [] :: R ),

          sum : !(  [] :: L * R  ⊸  int :: L * R ),

      destroy : !(  [] :: L * R  ⊸   [] )

     ] :: EL * ER ) )

• Type expresses the changing properties of the object’s state, 
typestate (EmptyLeft, Left, EmptyRight and Right).

• The types states EL/L and ER/R correlate to separate (disjoint) 
internal state that can operate independently of the other.



So... Why sharing?
The capability is linear: it cannot be used 
simultaneously from two different parts of the 
program.
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Sharing

• We want to use state 
simultaneously, beyond 
linearly.

• We need a typing 
mechanism to safely 
coordinate access to 
shared state and avoid 
unsafe interference.
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Sharing

• We want to use state 
simultaneously, beyond 
linearly.

• We need a typing 
mechanism to safely 
coordinate access to 
shared state and avoid 
unsafe interference.
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Sharing
• One solution is to have each alias preserve an 

initially held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee 
reasoning, to enable more precise uses.

50
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Sharing
• One solution is to have each alias preserve an 

initially held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee 
reasoning, to enable more precise uses.
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I I

R G

⇒

⇒Relied state Guaranteed state

Enter 
private use

Exit
private use



Shared cell
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52

Step1 Step2; ; ...

Alias’ Local View

{rely-guarantee protocol
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Step1 Step2; ; ...

⇒Empty Filled
Relied

type

Guaranteed 
type

Alias’ Local View
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Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled
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Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled
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Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled
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Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled
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Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled
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Step2 ; ...

Alias’ Local View



Disjoint

60

A * B

• Linearity ensured the state was disjoint:
only one capability to some cell may exist.

• Sharing enables the same cell to be used through 
seemingly different name.
Types that “look” disjoint, may in fact alias the 
same state - i.e. they are fictionally disjoint.



Fictionally
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A * B

shared

Disjoint
• Linearity ensured the state was disjoint:

only one capability to some cell may exist.

• Sharing enables the same cell to be used through 
seemingly different name.
Types that “look” disjoint, may in fact alias the 
same state - i.e. they are fictionally disjoint.
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  x := 1;
  doSomething();
  !x // what do we get?

Alias Interleaving



Alias Interleaving
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  x := 1;
  doSomething();
  !x // what do we get?

 doSomething :
   [] ⊸ []
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fun().1

fun().x := false

fun().delete x

doSomething, although fictionally disjoint, may actually interleave 
zero or more uses of aliases to the same state as referenced by x.

  x := 1;
  doSomething();
  !x // what do we get?

Alias Interleaving



65

Are the uses done in doSomething compatible 
with our local reasoning of how x changes?

  x := 1;
  doSomething();
  !x // what do we get?

Alias Interleaving



Protocol Composition
Checks if combining all local views creates a 
globally consistent, i.e. safe, use of the shared state 
mutable state independently of interleaving.
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; ;



Protocol Composition
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; ;

; ;

; ;

; ;

; ;
{possible 

interleaving

Checks if combining all local views creates a 
globally consistent, i.e. safe, use of the shared state 
mutable state independently of interleaving.
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Protocol Composition

; ;; ;

; ;;;; ;
Ok!

Checks if combining all local views creates a 
globally consistent, i.e. safe, use of the shared state 
mutable state independently of interleaving.



Rely-Guarantee 
Protocols

69

• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition



Rely-Guarantee 
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• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition



Protocol Specification
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Protocol Specification
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Protocol Specification

74



Protocol Specification

75

States that it is safe to assume that 
shared state satisfies R, and requires the 

alias to obey the guarantee P.



Protocol Specification
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Requires the client to establish 
(guarantee) that the shared state 
satisfies R before continuing the 

use of the protocol as P.



Protocol Specification
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Shared Pipe
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Shared by two aliases interacting via a common 
buffer, here modeled as a singly linked list.

1. The Producer alias may put new elements in or 
close the pipe.

2. The Consumer alias may only tryTake elements 
from the buffer. 

The result of tryTake is one of the following: either 
there was some Result, or NoResult, or the pipe 
is fully Depleted. 
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Pipe
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Consumer

Producer
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Consumer

Producer

Shared Buffer

Producer Protocol

Consumer Protocol
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Producer

tail : T
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none



84

Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none
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Producer

tail : none
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none



87

Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

Consumer

head :  H
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

Consumer

head :  ( Empty ⇒ Empty ;  H )

         ⊕ ( Filled ⇒ none ) ⊕ ( Closed ⇒ none )
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

Consumer

head :  ( Empty ⇒ Empty ;  H )

         ⊕ ( Filled ⇒ none ) ⊕ ( Closed ⇒ none )
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

Consumer

head :  none
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

Consumer

head :  ( Empty ⇒ Empty ;  H )

         ⊕ ( Filled ⇒ none ) ⊕ ( Closed ⇒ none )
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Types



93

Types
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Types
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Types
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Types
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T[t] = rw t Empty#[] ⇒ 
  ( ( rw t Node#[...] ) ⊕ ( rw t Closed#[] ) ); 

none

Producer (tail) Protocol:

Consumer (head) Protocol:
H[h] = 
  ( rw h Empty#[] ⇒ rw h Empty#[] ; H[h] )

 ⊕ ( rw h Node#[...] ⇒ none ; none )

 ⊕ ( rw h Closed#[] ⇒ none ; none )



Pipe Typestate

98

∃P.∃C.( ![

      put : !( ( !int :: P ) ⊸ ( ![] :: P ) ) ,
    close : !( ( ![] :: P ) ⊸ ![] ) ,
  tryTake : !( ( ![] :: C ) ⊸ Depleted#![] +

  NoResult#(![] :: C) + Result#(!int :: C) )
] :: ( C * P ) )



Pipe Typestate

98

∃P.∃C.( ![

      put : !( ( !int :: P ) ⊸ ( ![] :: P ) ) ,
    close : !( ( ![] :: P ) ⊸ ![] ) ,
  tryTake : !( ( ![] :: C ) ⊸ Depleted#![] +

  NoResult#(![] :: C) + Result#(!int :: C) )
] :: ( C * P ) )



Pipe Typestate
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∃P.∃C.( ![

      put : !( ( !int :: P ) ⊸ ( ![] :: P ) ) ,
    close : !( ( ![] :: P ) ⊸ ![] ) ,
  tryTake : !( ( ![] :: C ) ⊸ Depleted#![] +

  NoResult#(![] :: C) + Result#(!int :: C) )
] :: ( C * P ) )

rw p ∃p.((!ref p) :: T[p])



Pipe Typestate
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∃P.∃C.( ![

      put : !( ( !int :: P ) ⊸ ( ![] :: P ) ) ,
    close : !( ( ![] :: P ) ⊸ ![] ) ,
  tryTake : !( ( ![] :: C ) ⊸ Depleted#![] +

  NoResult#(![] :: C) + Result#(!int :: C) )
] :: ( C * P ) )

rw p ∃p.((!ref p) :: T[p])

rw c ∃p.((!ref p) :: H[p])



Rely-Guarantee 
Protocols
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• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition



Rely-Guarantee 
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• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition



Syntax
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2. Protocol Use

• Protocols are used through focus and 
defocus constructs. 

• They serve two purposes:

a) Hide privates changes from the other 
aliases of that shared state.

b) Advance the step of the protocol, by 
obeying the constraints on public changes.
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Focus / Defocus
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focus Empty

   ...

defocus



Focus / Defocus
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focus Empty

   ...

defocus

Empty ⇒ Filled ; Next



Focus / Defocus
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focus Empty

   ...

defocus

Empty ⇒ Filled ; Next



focus Empty

   ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus
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defocus-guarantee

focused state



Empty ⇒ Filled ; Next

Focus / Defocus
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focus Empty

   ...

defocus



Empty ⇒ Filled ; Next

Focus / Defocus
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Empty ,   Filled ; Next

focus Empty

   ...

defocus



Empty ⇒ Filled ; Next

Focus / Defocus
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focus Empty

   ...

defocus

PartiallyFilled , Filled ; Next

Empty ,   Filled ; Next



Focus / Defocus
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Filled ,   Filled ; Next

Empty ⇒ Filled ; Next

Empty ,   Filled ; Next

focus Empty

   ...

defocus



Focus / Defocus
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Filled ,   Filled ; Next

Empty ⇒ Filled ; Next

focus Empty

   ...

defocus

Empty ,   Filled ; Next



Focus / Defocus
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Filled ,   Filled ; Next

Empty ⇒ Filled ; Next

focus Empty

   ...

defocus

Empty ,   Filled ; Next



Focus / Defocus
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Filled ,   Filled ; Next

Empty ⇒ Filled ; Next

Next

focus Empty

   ...

defocus

Empty ,   Filled ; Next



Rely-Guarantee 
Protocols
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• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition
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• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition
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• Protocols are introduced explicitly, in pairs, through 
the share construct:

share A as B || C

“type A (either a capability or an existing protocol) 
can be safely split in types B and C (two protocols)”

• Arbitrary aliasing is possible by continuing to split an 
existing protocol.

• share type checks only if the protocols compose 
safely (i.e. no unsafe interference is possible).

3. Protocol 
Composition
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• We must check that a protocol is aware of all 
possible states that may appear due to the 
interleaving of the actions of other aliases to that 
shared state.

• Checking a split is built from two components:

a) simulating a single use of a protocols, a single    
focus-defocus block (i.e. a step of the protocol).

b) ensuring that each protocol considers all possible 
protocol interleaving.

Checking share



Protocol
Composition

Example
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share E as 

rec X.( E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none )

|| E ⇒ ( N ⊕ C )



Producer

Consumer

Protocol
Composition

Example
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share E as 

rec X.( E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none )

|| E ⇒ ( N ⊕ C )
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PC

E

PC PC

PC PC

Initial state.
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PC

E

PC PC

PC PC

Initial state.

{possible 
interleaving
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PC

E

PC PC

PC PC

Initial state.

{possible 
interleaving Up to this point protocols can only list a 

finite number of distinct states, and 
each protocol lists a finite number of 

distinct protocol steps. Thus, there is a 
finite number of different configurations 
representing the uses of the protocols.
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ProducerConsumer
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State:
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• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition



Rely-Guarantee 
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A few more details:

• Improved Locality of Protocol Specification

• Fork/Join Concurrency

• An interference-control mechanism, permission 
to mutate the shared state is conditioned on 
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition
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H[h] = 
  ( rw h Empty#[] ⇒ rw h Empty#[] ; H[h] )
 ⊕ ( rw h Node#[...] ⇒ none ; none )
 ⊕ ( rw h Closed#[] ⇒ none ; none )

T[t] = rw t Empty#[] ⇒ 
  ( ( rw t Node#[...] ) ⊕ ( rw t Closed#[] ) ); 

none
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H[h] = 
  ( rw h Empty#[] ⇒ rw h Empty#[] ; H[h] )
 ⊕ ( rw h Node#[...] ⇒ none ; none )
 ⊕ ( rw h Closed#[] ⇒ none ; none )

T[t] = rw t Empty#[] ⇒ 
  ( ( rw t Node#[...] ) ⊕ ( rw t Closed#[] ) ); 

none

From H’s local perspective only the tag is 
important, not the tagged type. How can we 

model this?



Protocol Specification 2.0
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H = 

127

     ⊕ ( Full#int ⇒ none ; none )

     ⊕ ( Close#[] ⇒ none ; none )

( Empty#   ⇒ Empty#   ; H )

[]

[][]

T = Empty#   ⇒ Full#int ; none



H = 
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     ⊕ ( Full#int ⇒ none ; none )

     ⊕ ( Close#[] ⇒ none ; none )

( Empty#   ⇒ Empty#   ; H )XX

T = Empty#   ⇒ Full#int ; none

∃X.

[]

H no longer sees the content of Empty, 
and T can now use that part of the state unilaterally.



H = 
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     ⊕ ( Full#int ⇒ none ; none )

     ⊕ ( Close#[] ⇒ none ; none )

( Empty#   ⇒ Empty#   ; H )

[]

XX

T =

Empty#   ⇒ Full#int ; none

∃X.

Empty#   ⇒ []

[]&

(

(

)

)

Empty#   ; T



H = 
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     ⊕ ( Full#int ⇒ none ; none )

     ⊕ ( Close#[] ⇒ none ; none )

( Empty#   ⇒ Empty#   ; H )

Y

XX

T[Y] =

Empty#   ⇒ Full#int ; none

∃X.

Empty#   ⇒    Z
Y&

(
(

)
)

∀Z.( )Empty#   ; T ][Z

T remembers the local information. 
T is free to unilaterally change tagged type.



Improved Locality

• Protocols can be more “generic” and more 
isolated (decoupled) from other protocols’ 
actions, while remaining free from unsafe 
interference.

• Protocol re-splits can take advantage of this 
flexibility by means of more flexible 
specializations, such as via nested re-splits.
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YT[Y] =

Empty#   ⇒ Full#int ; none
Empty#   ⇒    Z

Y&
(
(

)
)

∀Z.( )Empty#   ; T ][Z

( Empty#(Wait#[]) ⇒ Empty#(Ready#int) ; none )
⊕ ( Empty#(Ready#int) ⇒ Full#int ; none )

Protocol Specialization

re-split
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YT[Y] =

Empty#   ⇒ Full#int ; none
Empty#   ⇒    Z

Y&
(
(

)
)

∀Z.( )Empty#   ; T ][Z

( Empty#(Wait#[]) ⇒ Empty#(Ready#int) ; none )
⊕ ( Empty#(Ready#int) ⇒ Full#int ; none )

Protocol Specialization

re-split

“Nesting”, the specialization works 
within the original interference.



• Configurations are checked 
“symbolically”, each 
representing a class of 
configurations, up to 
renaming and weakening.

• Well-formedness conditions 
on types ensures the number 
of different sub-terms of a 
type is bounded, guaranteeing 
decidability.
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Protocol Composition 2.0
S

x ⊢Q[x] y ⊢Q[y]

z ⊢Q[z]

PQ



Concurrency

• Protocol Composition protects against all 
possible interleaving that may occur.

• Same static set of possible interleaving, even if 
concurrency may non-deterministically pick 
different interleaving at run-time.

focus/defocus >> lock/unlock, adds fork e

• Caveat: no deadlock avoidance, nor 
termination/liveness guarantees.
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Overview of Main
Technical Results

• Standard Progress and Preservation results.

• Data race freedom and memory safety (no 
dereference of null pointers, etc).

• Stepping of configurations preserves safe 
Protocol Composition.

• Protocol Composition is a partial commutative 
monoid.

• Protocol Composition is decidable.
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Thesis also includes
• All technical details such as the axiomatic definition 

of Protocol Composition, algorithm, and formal 
system for sequential and concurrent settings.

• Additional examples, including:

• Full pipe code example

• Encoding (non-distributed) typeful message-passing 
concurrency (buyer-shipper-seller example)

• Soundness proof.

• Prototype implementations.
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Prototypes
JavaScript-based implementations, run in the browser.
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Summary
• Typestates using existential abstraction.

[Militão, Aldrich, Caires. Substructural Typestates. PLPV’14.]

• Rely-Guarantee Protocols for handling safe interference:

1. Protocol Specification (“local view on public changes”)

2. Protocol Use (“hidden, private changes”)

3. Protocol Composition (“ensure safe alias interleaving”)

[Militão, Aldrich, Caires. Rely-Guarantee Protocols. ECOOP’14.]

• Safe, decidable composition of protocols even when parts of a 
protocol are abstracted. 

• Interference control over sequential and concurrent settings.
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