
Co-advised by Jonathan Aldrich (CMU) and Luís Caires (UNL).

Thesis Defense

Filipe Militão

Rely-Guarantee Protocols
for Safe Interference
over Shared Memory

December 15, 2015.

Software Defects
Our over reliance on software aggravates the
impact of software defects (“bugs”) on society:

1962 - Mariner 1 Spacecraft (incorrect guidance signal transmission)
1985 - Therac-25 radiation therapy machine (race condition)
1991 - Patriot Missile Error (inaccurate tracking)
1996 - Ariane 5 Flight 501 (overflow in 16-bit register)
1998 - NASA’s Mars Climate Orbiter (imperial to metrics conversion)
2006 - Heathrow Terminal 5 Opening (baggage handling system)
2007 - Microsoft Excel 2007 (wrong result on 850*77.1)
2009 - Toyota vehicles (sudden unintended acceleration)

...

Thus, there is a clear and increasing need for
mechanisms to improve software reliability.

2

Mutable State (I)

We propose a new type-based
technique to detect, at compile-time, a
class of errors related to the unsafe
use of shared mutable state.

3

Mutable state can be useful in certain cases such
as to improve efficiency, clarity, or even to enable
greater extensibility.

We aim to precisely detect and avoid
unsafe interference in the use of mutable state
that is shared through aliasing.

By precisely tracking the properties of mutable
state we can avoid a class of state-related
run-time errors and eliminates the need for
some defensive run-time tests.

4

Mutable State (II)

! File file = new File(“fillet”);
! file.write(“foo”);
! file.close();
! file.write(“bar”);

5

! File file = new File(“fillet”);
! file.write(“foo”);
! file.close();
! file.write(“bar”);

Error: runtime exception!

6

! File file = new File(“fillet”);
! file.write(“foo”);
! file.close();
! file.write(“bar”);

7

8

! File file = new File(“fillet”);
! file.write(“foo”);
! file.close();
! file.write(“bar”);

class File {
FileDescriptor fd;

File(string filename){
 fd = OS.createFile(filename);
}

void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}

void close(){
 fd = null;
}

}

class File {
FileDescriptor fd;
File(string filename){
 fd = OS.createFile(filename);
}
void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}
void close(){
 fd = null;
}

}

9

class File {
FileDescriptor fd;
File(string filename){
 fd = OS.createFile(filename);
}
void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}
void close(){
 fd = null;
}

}

The “flat” abstraction does not precisely
express the changing properties of

File’s internal state (fd).

File

File

File

File

File

class File {
FileDescriptor fd;
File(string filename){
 fd = OS.createFile(filename);
}
void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}
void close(){
 fd = null;
}

}

Open

Closed

10

Unnecessary because we
statically guarantee to only call

write when Open.

Types capture the precise,
changing, type of the state.

Open

Open

Open

Challenge: Interference

Aliasing allows different names to refer to the
same mutable state.

However, uncontrolled aliasing can lead to
interference-related errors, where the actions of
different aliases break each other’s (precise)
assumptions on the contents of the shared state.

11

MyFile
YourFile

TheirFile

12

 x.open(…);

 x.write(…);

 x.read(…);

13

 x.open(…);

 x.write(…);

 x.read(…);

Open

14

 x.open(…);

 x.write(…);

 x.read(…);Open

15

 x.open(…);

 x.write(…);

 x.read(…);Open y.close(…);

16

 x.open(…);

 x.write(…);

 x.read(…);

 y.close(…);

Closed

17

 x.open(…);

 x.write(…);

 x.read(…);Closed

Broken local assumption: interference!

Thesis Statement

Rely-Guarantee Protocols provide
a modular, composable, expressive, and
automatically verifiable mechanism to
control the interference resulting from
the interaction of non-local aliases that
share access to mutable state.

18

Overview

19

Aliasing
Memory
Locations

Typestate
Abstraction

Sharing with
Rely-Guarantee

Protocols

Language

• Polymorphic λ-calculus with mutable references
(and immutable records, tagged sums, ...).

• We use a variant of L3 [Ahmed, Fluet, and Morrisett.
L3: A linear language with locations. Fundam.
Inform. 2007.] adapted for usability and extended
with new constructs, and our sharing mechanism.

20

State as a
Linear Resource

21

ref A

State as a
Linear Resource

21

ref A reference with
contents of type A

State as a
Linear Resource

21

ref A reference with
contents of type A

rw p A

{
ref p

State as a
Linear Resource

21

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

State as a
Linear Resource

21

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

ref p
ref p
ref p
ref p
ref p
ref p

State as a
Linear Resource

21

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

linear read+write
capability of
location p with

contents of type A
ref p
ref p
ref p
ref p
ref p
ref p

State as a
Linear Resource

21

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

linear read+write
capability of
location p with

contents of type Ap links ref to
capability

ref p
ref p
ref p
ref p
ref p
ref p

22

 let y = x in

 delete y;
 x := false

 end

x : ref p rw p string

 x := 1;

23

 let y = x in

 x := 1;
 delete y;
 x := false

 end

x : ref p rw p stringy : ref p

24

 let y = x in

 delete y;
 x := false

 end

x : ref p rw p inty : ref p

 x := 1;

25

 let y = x in

 delete y;

 x := false

 end

x : ref py : ref p

 x := 1;

25

 let y = x in

 delete y;

 x := false

 end

x : ref py : ref p

Type Error: Missing
capability to location p.

 x := 1;

26

 let y = x in

 delete y;

 x := false

 end

x : ref py : ref p

Type Error: Missing
capability to location p.

 x := 1;

How to use capabilities in
functions?

27

fun(i :).

left : ref l

 left := i

int :: rw l []

28

fun(i :).

left : ref l

 left := i

int :: rw l []

i : int rw l []::

29

fun(i :).

left : ref l

 left := i

int :: rw l []

i : int rw l []

30

fun(i :).

left : ref l

 left := i

int :: rw l []

i : int rw l int

31

fun(i :).

 left := i

int :: rw l [] rw l int[] ::⊸)()(

int :: rw l []

32

fun(i :).

 left := i

int :: rw l [] rw l int[] ::⊸)()(

int :: rw l []

How to build
typestate abstractions?

Pair Typestate

33

Pair Typestate

34

RightLeft

Pair Typestate

35

• Initialize each component separately.

• Sum both components, and destroy the pair.

Pair Typestate

36

• Initialize each component separately.

• Sum both components, and destroy the pair.

Pair Typestate

37

initL

• Initialize each component separately.

• Sum both components, and destroy the pair.

Pair Typestate

38

initL

sum

• Initialize each component separately.

• Sum both components, and destroy the pair.

39

 initL : (int :: rw l []) ⊸ ([] :: rw l int)

40

 initL : (int :: rw l []) ⊸ ([] :: rw l int)[,
 initR : (int :: rw r []) ⊸ ([] :: rw r int),

 sum : ([] :: (rw l int * rw r int)) ⊸
 (int :: (rw l int * rw r int)),
 destroy : ([] :: (rw l int * rw r int)) ⊸ [])
]

41

 initL : (int :: rw l []) ⊸ ([] :: rw l int)

:: (rw l [] * rw r [])

[,
 initR : (int :: rw r []) ⊸ ([] :: rw r int),

 sum : ([] :: (rw l int * rw r int)) ⊸
 (int :: (rw l int * rw r int)),
 destroy : ([] :: (rw l int * rw r int)) ⊸ [])
]

42

 initL : (int :: rw l []) ⊸ ([] :: rw l int)

:: (rw l [] * rw r [])

[,
 initR : (int :: rw r []) ⊸ ([] :: rw r int),

 sum : ([] :: (rw l int * rw r int)) ⊸
 (int :: (rw l int * rw r int)),
 destroy : ([] :: (rw l int * rw r int)) ⊸ [])
]

EL

EL

43

 initL : (int :: rw l []) ⊸ ([] :: rw l int)

:: (rw l [] * rw r [])

[,
 initR : (int :: rw r []) ⊸ ([] :: rw r int),

 sum : ([] :: (rw l int * rw r int)) ⊸
 (int :: (rw l int * rw r int)),
 destroy : ([] :: (rw l int * rw r int)) ⊸ [])
]

EL

EL

L

L
L

L

44

 initL : (int :: rw l []) ⊸ ([] :: rw l int)

:: (rw l [] * rw r [])

[,
 initR : (int :: rw r []) ⊸ ([] :: rw r int),

 sum : ([] :: (rw l int * rw r int)) ⊸
 (int :: (rw l int * rw r int)),
 destroy : ([] :: (rw l int * rw r int)) ⊸ [])
]

EL

EL

ER
L

L
L

ER

L

45

 initL : (int :: rw l []) ⊸ ([] :: rw l int)

:: (rw l [] * rw r [])

[,
 initR : (int :: rw r []) ⊸ ([] :: rw r int),

 sum : ([] :: (rw l int * rw r int)) ⊸
 (int :: (rw l int * rw r int)),
 destroy : ([] :: (rw l int * rw r int)) ⊸ [])
]

EL

EL

ER R
L

L
L

R
R

ER

RL

46

∃EL.∃L.∃ER.∃R.([
 initL : !(int :: EL ⊸ [] :: L),
 initR : !(int :: ER ⊸ [] :: R),
 sum : !([] :: L * R ⊸ int :: L * R),
 destroy : !([] :: L * R ⊸ [])

] :: EL * ER)

Pair Typestate

47

newPair :

 !([] ⊸ ∃EL.∃L.∃ER.∃R.(![

 initL : !(int :: EL ⊸ [] :: L),

 initR : !(int :: ER ⊸ [] :: R),

 sum : !([] :: L * R ⊸ int :: L * R),

 destroy : !([] :: L * R ⊸ [])

] :: EL * ER))

• Type expresses the changing properties of the object’s state,
typestate (EmptyLeft, Left, EmptyRight and Right).

• The types states EL/L and ER/R correlate to separate (disjoint)
internal state that can operate independently of the other.

So... Why sharing?
The capability is linear: it cannot be used
simultaneously from two different parts of the
program.

48

So... Why sharing?
The capability is linear: it cannot be used
simultaneously from two different parts of the
program.

48

Sharing

• We want to use state
simultaneously, beyond
linearly.

• We need a typing
mechanism to safely
coordinate access to
shared state and avoid
unsafe interference.

49

Sharing

• We want to use state
simultaneously, beyond
linearly.

• We need a typing
mechanism to safely
coordinate access to
shared state and avoid
unsafe interference.

49

Sharing
• One solution is to have each alias preserve an

initially held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee
reasoning, to enable more precise uses.

50

I I

R G

⇒

⇒

Sharing
• One solution is to have each alias preserve an

initially held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee
reasoning, to enable more precise uses.

50

I I

R G

⇒

⇒

Enter
private use

Sharing
• One solution is to have each alias preserve an

initially held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee
reasoning, to enable more precise uses.

50

I I

R G

⇒

⇒

Enter
private use

Exit
private use

Sharing
• One solution is to have each alias preserve an

initially held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee
reasoning, to enable more precise uses.

50

I I

R G

⇒

⇒Relied state

Enter
private use

Exit
private use

Sharing
• One solution is to have each alias preserve an

initially held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee
reasoning, to enable more precise uses.

50

I I

R G

⇒

⇒Relied state Guaranteed state

Enter
private use

Exit
private use

Shared cell

51

52

Step1 Step2; ; ...

Alias’ Local View

{rely-guarantee protocol

53

Step1 Step2; ; ...

⇒Empty Filled
Relied

type

Guaranteed
type

Alias’ Local View

54

Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled

55

Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled

56

Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled

57

Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled

58

Step1 Step2; ; ...

Alias’ Local View

⇒Empty Filled

59

Step2 ; ...

Alias’ Local View

Disjoint

60

A * B

• Linearity ensured the state was disjoint:
only one capability to some cell may exist.

• Sharing enables the same cell to be used through
seemingly different name.
Types that “look” disjoint, may in fact alias the
same state - i.e. they are fictionally disjoint.

Fictionally

61

A * B

shared

Disjoint
• Linearity ensured the state was disjoint:

only one capability to some cell may exist.

• Sharing enables the same cell to be used through
seemingly different name.
Types that “look” disjoint, may in fact alias the
same state - i.e. they are fictionally disjoint.

62

 x := 1;
 doSomething();
 !x // what do we get?

Alias Interleaving

Alias Interleaving

63

 x := 1;
 doSomething();
 !x // what do we get?

 doSomething :
 [] ⊸ []

64

fun().1

fun().x := false

fun().delete x

doSomething, although fictionally disjoint, may actually interleave
zero or more uses of aliases to the same state as referenced by x.

 x := 1;
 doSomething();
 !x // what do we get?

Alias Interleaving

65

Are the uses done in doSomething compatible
with our local reasoning of how x changes?

 x := 1;
 doSomething();
 !x // what do we get?

Alias Interleaving

Protocol Composition
Checks if combining all local views creates a
globally consistent, i.e. safe, use of the shared state
mutable state independently of interleaving.

66

; ;

Protocol Composition

67

; ;

; ;

; ;

; ;

; ;
{possible

interleaving

Checks if combining all local views creates a
globally consistent, i.e. safe, use of the shared state
mutable state independently of interleaving.

68

Protocol Composition

; ;; ;

; ;;;; ;
Ok!

Checks if combining all local views creates a
globally consistent, i.e. safe, use of the shared state
mutable state independently of interleaving.

Rely-Guarantee
Protocols

69

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

Rely-Guarantee
Protocols

70

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

Protocol Specification

71

Protocol Specification

72

Protocol Specification

73

Protocol Specification

74

Protocol Specification

75

States that it is safe to assume that
shared state satisfies R, and requires the

alias to obey the guarantee P.

Protocol Specification

76

Requires the client to establish
(guarantee) that the shared state
satisfies R before continuing the

use of the protocol as P.

Protocol Specification

77

Shared Pipe

78

Shared by two aliases interacting via a common
buffer, here modeled as a singly linked list.

1. The Producer alias may put new elements in or
close the pipe.

2. The Consumer alias may only tryTake elements
from the buffer.

The result of tryTake is one of the following: either
there was some Result, or NoResult, or the pipe
is fully Depleted.

79

Pipe

80

Consumer

Producer

81

Consumer

Producer

Shared Buffer

Producer Protocol

Consumer Protocol

82

Producer

tail : T

83

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

84

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

85

Producer

tail : none

86

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

87

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

Consumer

head : H

88

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

Consumer

head : (Empty ⇒ Empty ; H)

 ⊕ (Filled ⇒ none) ⊕ (Closed ⇒ none)

89

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

Consumer

head : (Empty ⇒ Empty ; H)

 ⊕ (Filled ⇒ none) ⊕ (Closed ⇒ none)

90

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

Consumer

head : none

91

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

Consumer

head : (Empty ⇒ Empty ; H)

 ⊕ (Filled ⇒ none) ⊕ (Closed ⇒ none)

92

Types

93

Types

94

Types

95

Types

96

Types

97

T[t] = rw t Empty#[] ⇒
 ((rw t Node#[...]) ⊕ (rw t Closed#[]));

none

Producer (tail) Protocol:

Consumer (head) Protocol:
H[h] =
 (rw h Empty#[] ⇒ rw h Empty#[] ; H[h])

 ⊕ (rw h Node#[...] ⇒ none ; none)

 ⊕ (rw h Closed#[] ⇒ none ; none)

Pipe Typestate

98

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

Pipe Typestate

98

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

Pipe Typestate

98

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

rw p ∃p.((!ref p) :: T[p])

Pipe Typestate

98

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

rw p ∃p.((!ref p) :: T[p])

rw c ∃p.((!ref p) :: H[p])

Rely-Guarantee
Protocols

99

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

Rely-Guarantee
Protocols

100

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

Syntax

101

102

2. Protocol Use

• Protocols are used through focus and
defocus constructs.

• They serve two purposes:

a) Hide privates changes from the other
aliases of that shared state.

b) Advance the step of the protocol, by
obeying the constraints on public changes.

103

Focus / Defocus

104

focus Empty

 ...

defocus

Focus / Defocus

104

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

104

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

105

defocus-guarantee

focused state

Empty ⇒ Filled ; Next

Focus / Defocus

106

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

106

Empty , Filled ; Next

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

107

focus Empty

 ...

defocus

PartiallyFilled , Filled ; Next

Empty , Filled ; Next

Focus / Defocus

108

Filled , Filled ; Next

Empty ⇒ Filled ; Next

Empty , Filled ; Next

focus Empty

 ...

defocus

Focus / Defocus

109

Filled , Filled ; Next

Empty ⇒ Filled ; Next

focus Empty

 ...

defocus

Empty , Filled ; Next

Focus / Defocus

109

Filled , Filled ; Next

Empty ⇒ Filled ; Next

focus Empty

 ...

defocus

Empty , Filled ; Next

Focus / Defocus

109

Filled , Filled ; Next

Empty ⇒ Filled ; Next

Next

focus Empty

 ...

defocus

Empty , Filled ; Next

Rely-Guarantee
Protocols

110

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

Rely-Guarantee
Protocols

111

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

112

• Protocols are introduced explicitly, in pairs, through
the share construct:

share A as B || C

“type A (either a capability or an existing protocol)
can be safely split in types B and C (two protocols)”

• Arbitrary aliasing is possible by continuing to split an
existing protocol.

• share type checks only if the protocols compose
safely (i.e. no unsafe interference is possible).

3. Protocol
Composition

113

• We must check that a protocol is aware of all
possible states that may appear due to the
interleaving of the actions of other aliases to that
shared state.

• Checking a split is built from two components:

a) simulating a single use of a protocols, a single
focus-defocus block (i.e. a step of the protocol).

b) ensuring that each protocol considers all possible
protocol interleaving.

Checking share

Protocol
Composition

Example

114

share E as

rec X.(E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none)

|| E ⇒ (N ⊕ C)

Producer

Consumer

Protocol
Composition

Example

114

share E as

rec X.(E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none)

|| E ⇒ (N ⊕ C)

115

PC

E

PC PC

PC PC

Initial state.

116

PC

E

PC PC

PC PC

Initial state.

{possible
interleaving

117

PC

E

PC PC

PC PC

Initial state.

{possible
interleaving Up to this point protocols can only list a

finite number of distinct states, and
each protocol lists a finite number of

distinct protocol steps. Thus, there is a
finite number of different configurations
representing the uses of the protocols.

118

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

118

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕E

none

Configurations:

State:

118

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕E

none

Configurations:

State:

118

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

119

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

CN ⊕

119

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

CN ⊕

119

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕E

none

Configurations:

State:

CN ⊕

119

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

none

Configurations:

State:

CN ⊕

119

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

none

Configurations:

State: CN ⊕

⊕

120

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E

none

Configurations:

State: CN

none

120

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E

none

Configurations:

State: CN

none

120

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E

none

Configurations:

State:

none

none

121

ProducerConsumer

Configurations:

State:

none

none

none

Rely-Guarantee
Protocols

122

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

Rely-Guarantee
Protocols

123

A few more details:

• Improved Locality of Protocol Specification

• Fork/Join Concurrency

• An interference-control mechanism, permission
to mutate the shared state is conditioned on
what actions the protocol allows.

• I will focus on presenting the following:

1. Protocol Specification

2. Protocol Use

3. Protocol Composition

124

H[h] =
 (rw h Empty#[] ⇒ rw h Empty#[] ; H[h])
 ⊕ (rw h Node#[...] ⇒ none ; none)
 ⊕ (rw h Closed#[] ⇒ none ; none)

T[t] = rw t Empty#[] ⇒
 ((rw t Node#[...]) ⊕ (rw t Closed#[]));

none

125

H[h] =
 (rw h Empty#[] ⇒ rw h Empty#[] ; H[h])
 ⊕ (rw h Node#[...] ⇒ none ; none)
 ⊕ (rw h Closed#[] ⇒ none ; none)

T[t] = rw t Empty#[] ⇒
 ((rw t Node#[...]) ⊕ (rw t Closed#[]));

none

From H’s local perspective only the tag is
important, not the tagged type. How can we

model this?

Protocol Specification 2.0

126

H =

127

 ⊕ (Full#int ⇒ none ; none)

 ⊕ (Close#[] ⇒ none ; none)

(Empty# ⇒ Empty# ; H)

[]

[][]

T = Empty# ⇒ Full#int ; none

H =

128

 ⊕ (Full#int ⇒ none ; none)

 ⊕ (Close#[] ⇒ none ; none)

(Empty# ⇒ Empty# ; H)XX

T = Empty# ⇒ Full#int ; none

∃X.

[]

H no longer sees the content of Empty,
and T can now use that part of the state unilaterally.

H =

129

 ⊕ (Full#int ⇒ none ; none)

 ⊕ (Close#[] ⇒ none ; none)

(Empty# ⇒ Empty# ; H)

[]

XX

T =

Empty# ⇒ Full#int ; none

∃X.

Empty# ⇒ []

[]&

(

(

)

)

Empty# ; T

H =

130

 ⊕ (Full#int ⇒ none ; none)

 ⊕ (Close#[] ⇒ none ; none)

(Empty# ⇒ Empty# ; H)

Y

XX

T[Y] =

Empty# ⇒ Full#int ; none

∃X.

Empty# ⇒ Z
Y&

(
(

)
)

∀Z.()Empty# ; T][Z

T remembers the local information.
T is free to unilaterally change tagged type.

Improved Locality

• Protocols can be more “generic” and more
isolated (decoupled) from other protocols’
actions, while remaining free from unsafe
interference.

• Protocol re-splits can take advantage of this
flexibility by means of more flexible
specializations, such as via nested re-splits.

131

132

YT[Y] =

Empty# ⇒ Full#int ; none
Empty# ⇒ Z

Y&
(
(

)
)

∀Z.()Empty# ; T][Z

(Empty#(Wait#[]) ⇒ Empty#(Ready#int) ; none)
⊕ (Empty#(Ready#int) ⇒ Full#int ; none)

Protocol Specialization

re-split

133

YT[Y] =

Empty# ⇒ Full#int ; none
Empty# ⇒ Z

Y&
(
(

)
)

∀Z.()Empty# ; T][Z

(Empty#(Wait#[]) ⇒ Empty#(Ready#int) ; none)
⊕ (Empty#(Ready#int) ⇒ Full#int ; none)

Protocol Specialization

re-split

“Nesting”, the specialization works
within the original interference.

• Configurations are checked
“symbolically”, each
representing a class of
configurations, up to
renaming and weakening.

• Well-formedness conditions
on types ensures the number
of different sub-terms of a
type is bounded, guaranteeing
decidability.

134

Protocol Composition 2.0
S

x ⊢Q[x] y ⊢Q[y]

z ⊢Q[z]

PQ

Concurrency

• Protocol Composition protects against all
possible interleaving that may occur.

• Same static set of possible interleaving, even if
concurrency may non-deterministically pick
different interleaving at run-time.

focus/defocus >> lock/unlock, adds fork e

• Caveat: no deadlock avoidance, nor
termination/liveness guarantees.

135

Overview of Main
Technical Results

• Standard Progress and Preservation results.

• Data race freedom and memory safety (no
dereference of null pointers, etc).

• Stepping of configurations preserves safe
Protocol Composition.

• Protocol Composition is a partial commutative
monoid.

• Protocol Composition is decidable.

136

Thesis also includes
• All technical details such as the axiomatic definition

of Protocol Composition, algorithm, and formal
system for sequential and concurrent settings.

• Additional examples, including:

• Full pipe code example

• Encoding (non-distributed) typeful message-passing
concurrency (buyer-shipper-seller example)

• Soundness proof.

• Prototype implementations.

137

Prototypes
JavaScript-based implementations, run in the browser.

138

Summary
• Typestates using existential abstraction.

[Militão, Aldrich, Caires. Substructural Typestates. PLPV’14.]

• Rely-Guarantee Protocols for handling safe interference:

1. Protocol Specification (“local view on public changes”)

2. Protocol Use (“hidden, private changes”)

3. Protocol Composition (“ensure safe alias interleaving”)

[Militão, Aldrich, Caires. Rely-Guarantee Protocols. ECOOP’14.]

• Safe, decidable composition of protocols even when parts of a
protocol are abstracted.

• Interference control over sequential and concurrent settings.

139

