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Motivation

! File file = new File( “out.txt” );
! file.write( “stuff” );
! file.close();
! file.write( “more stuff” ); 

Note: consider a simplified File object, similar to Java’s FileOutputStream.
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Motivation

! File file = new File( “out.txt” );
! file.write( “stuff” );
! file.close();
! file.write( “more stuff” );

FAILS with runtime exception
(“invalid file descriptor”)
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Motivation
class File {

FileDescriptor fd;
File( string filename ){
 fd = OS.createFile( filename );
}
void write( string s ){
 if( fd == null ) 

throw Exception(“invalid file descriptor”);
 fd.write( s );
}
void close(){
 fd = null;
}

}
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The File type abstraction does not precisely 
express the changing properties of 

File’s internal state (fd).
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Superfluous if statically ensured to 
only be used when File is open.
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Superfluous if statically ensured to 
only be used when File is open.

Open and Close are typestates.



Contributions
1. Reconstruct typestate features from standard     

type-theoretic programming language primitives.
We focus on the following set of typestate features:
a) state abstraction, hiding an object representation 

while expressing the type of the state;
b) state “dimensions”, enabling multiple orthogonal 

typestates over the same object;
c) “dynamic state tests”, allowing a case analysis over 

the abstract state.

2. We show how to idiomatically support both state-based 
(typestate) and transition-based (behavioral types) 
specifications of abstract state evolution.
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Language

• Polymorphic λ-calculus with mutable references 
(and immutable records, tagged sums, ...).

• Technically, we use a variant of L3 adapted for 
usability (by simplifying the handling of capabilities, 
adding support for sum types, universal/existential 
type quantification, alternatives, labeled records, ...).
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Ahmed, Fluet, and Morrisett. L3: A linear language with 
locations. Fundam. Inform. 2007.



Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.
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- use location-dependent types to link both.
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ref A

type of contents of cell

becomes
ref p          rw p A

location p links ref to read+write capability 
that tracks the contents of that cell

can be freely copied (pure)
type of contents of cell p

(linear - cannot be duplicated)
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• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.



Language

9

x : ref p
y : ref p

z : ref q

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.
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y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.



Language

9

!x
(“de-reference x”)

x : ref p
y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
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!x
(“de-reference x”)

A

x : ref p
y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.
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• Capabilities are (linear) typing artifacts (not values) 
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system. 

• Typing judgement format:
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Lexical Typing Environment

Initial Linear Typing Environment Type of Expression

• Capabilities are (linear) typing artifacts (not values) 
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Lexical Typing Environment

Initial Linear Typing Environment Type of Expression

Resulting Effects

• Capabilities are (linear) typing artifacts (not values) 
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system. 

• Typing judgement format:
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Pair Example
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• Function that creates stateful Pair objects.

• The Pair’s components (left and right) are private, 
not accessible to clients.

• The state of Pair is changed indirectly by calling 
functions contained in a labeled record (which are 
technically closures).



let newPair = fun( _ : [] ).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
  {
   initL = fun( i : int :: rw pl [] ). l := i,
   initR = fun( i : int :: rw pr [] ). r := i,
   sum = fun( _ : [] :: rw pl int * rw pr int ). !l+!r,
   destroy = fun( _ : [] :: rw pl int * rw pr int ).
                     delete l; delete r
  } 
 end 
 end
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Γ = pl : loc, l : ref pl
Δ = rw pl []
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!( ( int :: rw pl [] ) ⊸ ( [] :: rw pl int ) )
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The object’s 
representation is 

exposed!



let newPair = fun( _ : [] ).
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∃EL.∃L.∃ER.∃R.( [
     initL : !( int :: EL     ⊸   [] :: L ),

     initR : !( int :: ER     ⊸   [] :: R ),

       sum : !(  [] :: L * R  ⊸  int :: L * R ),

   destroy : !(  [] :: L * R  ⊸   [] )

  ] :: EL * ER )



Pair Typestate
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newPair : 
 !( [] ⊸  ∃EL.∃L.∃ER.∃R.([
            initL : !( int :: EL     ⊸   [] :: L ),
            initR : !( int :: ER     ⊸   [] :: R ),
              sum : !(  [] :: L * R  ⊸  int :: L * R ),
          destroy : !(  [] :: L * R  ⊸   [] )
          ] :: EL * ER ) )

• Type expresses the changing properties of the object’s state, 
typestate (EmptyLeft, Left, EmptyRight and Right).

• Orthogonal typestates, “state dimensions” (EL/L and ER/R), 
correlate to separate internal state that operates independently.



Stack Typestate
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• Type of a function (polymorphic in the contents to 
be stored in the stack) that creates stack objects.

• Each stack has two states: Empty and NonEmpty.

• Imprecision in the exact state of the stack is typed 
with E⨁NE (alternative): we either have the E 
typestate or NE the typestate. 
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• Type of a function (polymorphic in the contents to 
be stored in the stack) that creates stack objects.

• Each stack has two states: Empty and NonEmpty.

• Imprecision in the exact state of the stack is typed 
with E⨁NE (alternative): we either have the E 
typestate or NE the typestate. 

Typestates do not exist at runtime. How can 
client code distinguish between different 
states without breaking the abstraction? 



newStack : 
  ∀T.( [] ⊸
    ∃E.∃NE.[
       push :  T :: E⨁NE ⊸ [] :: NE,

        pop : [] :: NE   ⊸ T :: E⨁NE, 

    isEmpty : [] :: E⨁NE ⊸ Empty#([]::E) + NonEmpty#([]::NE),

        del : [] :: E     ⊸ []
    ] :: E )
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Note:   !‘s omitted from the type for brevity.



newStack : 
  ∀T.( [] ⊸
    ∃E.∃NE.[
       push :  T :: E⨁NE ⊸ [] :: NE,

        pop : [] :: NE   ⊸ T :: E⨁NE, 

    isEmpty : [] :: E⨁NE ⊸ Empty#([]::E) + NonEmpty#([]::NE),

        del : [] :: E     ⊸ []
    ] :: E )

32

Note:   !‘s omitted from the type for brevity.



newStack : 
  ∀T.( [] ⊸
    ∃E.∃NE.[
       push :  T :: E⨁NE ⊸ [] :: NE,

        pop : [] :: NE   ⊸ T :: E⨁NE, 

    isEmpty : [] :: E⨁NE ⊸ Empty#([]::E) + NonEmpty#([]::NE),

        del : [] :: E     ⊸ []
    ] :: E )

32

Note:   !‘s omitted from the type for brevity.

Clients can use case analysis to determine precisely 
in which state the stack is at, “dynamic state test”, 

anchoring values to the abstract stack states.
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Back to Pair...
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The evolution of the abstract state can be specified 
using a state-machine/automaton/protocol.

EL LinitL

ER RinitR

sum destroy

L

R

none* *
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EL LinitL

ER RinitR

sum destroy

L

R

none

Typestates focus on the states that model the 
abstracted changes of the mutable state.

The evolution of the abstract state can be specified 
using a state-machine/automaton/protocol.

* *



Back to Pair...

36

EL LinitL

ER RinitR

sum destroy

L

R

none

Behavioral Types focus on the transitions 
(“behavior”) keeping the states anonymous.

* *

The evolution of the abstract state can be specified 
using a state-machine/automaton/protocol.



Abstracting and 
Hiding State
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• In our system, the notion of typestates is related 
to state abstraction, while the notion of 
behavior is related to hiding state.

• With typestates, states are named which can be 
convenient when there are multiple paths through 
the protocol.

• With behavioral types, states are implicit which 
simplifies descriptions of linear usages and makes it 
easier to provide structural equivalences.

Caires and Seco. The type discipline of behavioral separation. POPL 2013. 
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• We have already seen how to model typestates 
through standard existential abstraction.

• Interestingly, the notion of “behavior” can be 
modeled with what was already shown!

• However, it requires using an idiom to capture the 
typestate inside a function effectively hiding it.

Abstracting and 
Hiding State
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• A typestate can be borrowed by a function if that 
function requires the typestate as an argument but 
the function returns the typestate as a result.

Borrowing and 
Capturing

initL : !( int :: EL ⊸ [] :: L )
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• Alternatively, a function may depend on state that 
was captured from the enclosing linear environment 
(similar to a closure, but with state).
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• Alternatively, a function may depend on state that 
was captured from the enclosing linear environment 
(similar to a closure, but with state).

Borrowing and 
Capturing

fun( x : int ).(initL x)Δ = EL Δ = .

int ⊸ [] :: L

Γ = initL : !( int :: EL ⊸ [] :: L )



Hiding (Type)state
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• Capturing the typestate enables us to hide the 
typestate needed by the function’s argument.

• Hiding the typestate from the result is not 
immediately possible. However, we can define a 
complete sequence of uses (“behavior”) that ends in 
a function that destroys the (type)state.

• One possible linear  “behavior” for the Pair is:

EL LinitL

ER RinitR
sum destroy none

EL

R

L

R
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fun( a : int ).
 {
   initR(a)
 ,
   fun( b : int ).
!  {
!    initL(b)
    ,
!    fun( _ : [] ). 
! !  { 
        sum(_)
       ,
        fun( _ : [] ).destroy(_) 
       }
    }
 }
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    }
 }

[] :: L * R ⊸ []

[] ⊸ []



45

fun( a : int ).
 {
   initR(a)
 ,
   fun( b : int ).
!  {
!    initL(b)
    ,
!    fun( _ : [] ). 
! !  { 
        sum(_)
       ,
        fun( _ : [] ).destroy(_) 
       }
    }
 }

[] :: L * R ⊸ []

[] ⊸ []

[] :: L * R ⊸ int :: L * R



46

fun( a : int ).
 {
   initR(a)
 ,
   fun( b : int ).
!  {
!    initL(b)
    ,
!    fun( _ : [] ). 
! !  { 
        sum(_)
       ,
        fun( _ : [] ).destroy(_) 
       }
    }
 }

[] :: L * R ⊸ []

[] :: L * R ⊸ int :: L * R

int :: EL ⊸ [] :: L

int :: ER ⊸ [] :: R

[] ⊸ []



46

fun( a : int ).
 {
   initR(a)
 ,
   fun( b : int ).
!  {
!    initL(b)
    ,
!    fun( _ : [] ). 
! !  { 
        sum(_)
       ,
        fun( _ : [] ).destroy(_) 
       }
    }
 }

[] :: L * R ⊸ []

[] :: L * R ⊸ int :: L * R

int :: EL ⊸ [] :: L

int :: ER ⊸ [] :: R

[] ⊸ []

Δ = EL, ER
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Clients never see the underlying typestates. They 
only see the usage requirement (“behavior”).



Technical Results
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• They support many advanced uses (method dispatch, inheritance, 
sharing mechanisms, concurrency, etc).

• We focus on reconstructing a smaller set of typestate features 
from type-theoretic primitives (separation and linear logic). Which 
enables combining abstracting and hiding state.
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Paper includes additional Related Work.

• Abstract predicates can represent a richer domain of abstract state 
(not limited to a finite number, can be parametric, etc).

• Typestates encode a simpler notion of abstraction, generally 
targets a more lightweight verification.

• We extend their work with usability related changes (implicitly 
threaded capabilities, alternatives, etc).



Summary
1. Encoding typestates using existential types in a 

substructural type-and-effect system.

2. Support both state-based and transition-based 
specifications of abstract state evolution.

• Experimental Prototype Implementation:
https://code.google.com/p/dead-parrot

• Future Work:
Sharing of resources through disconnected variables.
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https://code.google.com/p/dead-parrot/
https://code.google.com/p/dead-parrot/


Prototype
JavaScript-based implementation, runs in browser.
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