
Substructural
Typestates

Filipe Militão (CMU & UNL)
Jonathan Aldrich (CMU) Luís Caires (UNL)

Programming Languages meets Program Verification 2014

Motivation

! File file = new File(“out.txt”);
! file.write(“stuff”);
! file.close();
! file.write(“more stuff”);

Note: consider a simplified File object, similar to Java’s FileOutputStream.

2

Motivation

! File file = new File(“out.txt”);
! file.write(“stuff”);
! file.close();
! file.write(“more stuff”);

FAILS with runtime exception
(“invalid file descriptor”)

3

Motivation
class File {

FileDescriptor fd;
File(string filename){
 fd = OS.createFile(filename);
}
void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}
void close(){
 fd = null;
}

}

4

Motivation
class File {

FileDescriptor fd;
File(string filename){
 fd = OS.createFile(filename);
}
void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}
void close(){
 fd = null;
}

}

4

The File type abstraction does not precisely
express the changing properties of

File’s internal state (fd).

File

File

File

File

File

class File {
FileDescriptor fd;
File(string filename){
 fd = OS.createFile(filename);
}
void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}
void close(){
 fd = null;
}

}

Motivation

Open

Open

Open

Closed

Open

5

Superfluous if statically ensured to
only be used when File is open.

class File {
FileDescriptor fd;
File(string filename){
 fd = OS.createFile(filename);
}
void write(string s){
 if(fd == null)

throw Exception(“invalid file descriptor”);
 fd.write(s);
}
void close(){
 fd = null;
}

}

Motivation

Open

Open

Open

Closed

Open

5

Superfluous if statically ensured to
only be used when File is open.

Open and Close are typestates.

Contributions
1. Reconstruct typestate features from standard

type-theoretic programming language primitives.
We focus on the following set of typestate features:
a) state abstraction, hiding an object representation

while expressing the type of the state;
b) state “dimensions”, enabling multiple orthogonal

typestates over the same object;
c) “dynamic state tests”, allowing a case analysis over

the abstract state.

2. We show how to idiomatically support both state-based
(typestate) and transition-based (behavioral types)
specifications of abstract state evolution.

6

Language

• Polymorphic λ-calculus with mutable references
(and immutable records, tagged sums, ...).

• Technically, we use a variant of L3 adapted for
usability (by simplifying the handling of capabilities,
adding support for sum types, universal/existential
type quantification, alternatives, labeled records, ...).

7

Ahmed, Fluet, and Morrisett. L3: A linear language with
locations. Fundam. Inform. 2007.

Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

8

Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

8

ref A

Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

8

ref A

type of contents of cell

Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

8

ref A

type of contents of cell

becomes
ref p rw p A

Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

8

ref A

type of contents of cell

becomes
ref p rw p A

location p links ref to read+write capability
that tracks the contents of that cell

Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

8

ref A

type of contents of cell

becomes
ref p rw p A

location p links ref to read+write capability
that tracks the contents of that cell

type of contents of cell p
(linear - cannot be duplicated)

Language

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

8

ref A

type of contents of cell

becomes
ref p rw p A

location p links ref to read+write capability
that tracks the contents of that cell

can be freely copied (pure)
type of contents of cell p

(linear - cannot be duplicated)

Language

9

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

Language

9

x : ref p
y : ref p

z : ref q

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

Language

9

x : ref p
y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

Language

9

!x
(“de-reference x”)

x : ref p
y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

Language

9

!x
(“de-reference x”)

x : ref p
y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

Language

9

!x
(“de-reference x”)

x : ref p
y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

Language

9

!x
(“de-reference x”)

A

x : ref p
y : ref p

z : ref q rw p A

rw q B

• Mutable state handled as a linear resource:
- split in pure references and linear capabilities.
- use location-dependent types to link both.

Language

10

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

10

Lexical Typing Environment

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

10

Lexical Typing Environment

Initial Linear Typing Environment

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

10

Lexical Typing Environment

Initial Linear Typing Environment Type of Expression

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

10

Lexical Typing Environment

Initial Linear Typing Environment Type of Expression

Resulting Effects

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

11

resources are
either consumed

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

11

resources are
either consumed

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

12

or, threaded
through

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

12

or, threaded
through

• Capabilities are (linear) typing artifacts (not values)
that are threaded and stacked implicitly.

• For that, we use a Type-and-Effect system.

• Typing judgement format:

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

Language

13

• Capabilities can be stacked and unstacked on top of
some type, allowing them to accompany that type.

14

Types

15

Syntax

15

let-expanded

Syntax

15

let-expanded

Syntax

Pair Example

16

• Function that creates stateful Pair objects.

• The Pair’s components (left and right) are private,
not accessible to clients.

• The state of Pair is changed indirectly by calling
functions contained in a labeled record (which are
technically closures).

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

17

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

18

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

18

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

18

Γ = pl : loc, l : ref pl
Δ = rw pl []

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

19

Γ = pl : loc, l : ref pl,
 pr : loc, r : ref pr
Δ = rw pl [], rw pr []

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

20

Γ = pl : loc, l : ref pl,
 pr : loc, r : ref pr
Δ = rw pl [], rw pr []

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

21

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

22

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

22

Δ = rw pl []

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

23

Δ = rw pl int

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

24

!((int :: rw pl []) ⊸ ([] :: rw pl int))

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

24

!((int :: rw pl []) ⊸ ([] :: rw pl int))

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

25

[
 initL : !((int :: rw pl []) ⊸ ([] :: rw pl int)),

 initR : !((int :: rw pr []) ⊸ ([] :: rw pr int)),

 sum : !(([] :: rw pl int * rw pr int) ⊸
 (int :: rw pl int * rw pr int)),
 destroy : !(([] :: rw pl int * rw pr int) ⊸ [])
]

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

25

[
 initL : !((int :: rw pl []) ⊸ ([] :: rw pl int)),

 initR : !((int :: rw pr []) ⊸ ([] :: rw pr int)),

 sum : !(([] :: rw pl int * rw pr int) ⊸
 (int :: rw pl int * rw pr int)),
 destroy : !(([] :: rw pl int * rw pr int) ⊸ [])
]

Δ = rw pl [], rw pr []

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }
 end
 end

26

[
 initL : !((int :: rw pl []) ⊸ ([] :: rw pl int)),

 initR : !((int :: rw pr []) ⊸ ([] :: rw pr int)),

 sum : !(([] :: rw pl int * rw pr int) ⊸
 (int :: rw pl int * rw pr int)),
 destroy : !(([] :: rw pl int * rw pr int) ⊸ [])
] :: (rw pl [] * rw pr [])

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 <pl, <pr,{
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }> >
 end
 end

27

∃ll.∃lr.([
 initL : !((int :: rw ll []) ⊸ ([] :: rw ll int)),

 initR : !((int :: rw lr []) ⊸ ([] :: rw lr int)),

 sum : !(([] :: rw ll int * rw lr int) ⊸
 (int :: rw ll int * rw lr int)),
destroy : !(([] :: rw ll int * rw lr int) ⊸ [])
] :: (rw ll [] * rw lr []))

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 <pl, <pr,{
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }> >
 end
 end

27

∃ll.∃lr.([
 initL : !((int :: rw ll []) ⊸ ([] :: rw ll int)),

 initR : !((int :: rw lr []) ⊸ ([] :: rw lr int)),

 sum : !(([] :: rw ll int * rw lr int) ⊸
 (int :: rw ll int * rw lr int)),
destroy : !(([] :: rw ll int * rw lr int) ⊸ [])
] :: (rw ll [] * rw lr []))

The object’s
representation is

exposed!

let newPair = fun(_ : []).
 open <pl,l> = new {} in
 open <pr,r> = new {} in
 < rw pl [], < rw pl int, < rw pr [], < rw pr int {
 initL = fun(i : int :: rw pl []). l := i,
 initR = fun(i : int :: rw pr []). r := i,
 sum = fun(_ : [] :: rw pl int * rw pr int). !l+!r,
 destroy = fun(_ : [] :: rw pl int * rw pr int).
 delete l; delete r
 }> > > >
 end
 end

28

∃EL.∃L.∃ER.∃R.([
 initL : !(int :: EL ⊸ [] :: L),

 initR : !(int :: ER ⊸ [] :: R),

 sum : !([] :: L * R ⊸ int :: L * R),

 destroy : !([] :: L * R ⊸ [])

] :: EL * ER)

Pair Typestate

29

newPair :
 !([] ⊸ ∃EL.∃L.∃ER.∃R.([
 initL : !(int :: EL ⊸ [] :: L),
 initR : !(int :: ER ⊸ [] :: R),
 sum : !([] :: L * R ⊸ int :: L * R),
 destroy : !([] :: L * R ⊸ [])
] :: EL * ER))

• Type expresses the changing properties of the object’s state,
typestate (EmptyLeft, Left, EmptyRight and Right).

• Orthogonal typestates, “state dimensions” (EL/L and ER/R),
correlate to separate internal state that operates independently.

Stack Typestate

30

• Type of a function (polymorphic in the contents to
be stored in the stack) that creates stack objects.

• Each stack has two states: Empty and NonEmpty.

• Imprecision in the exact state of the stack is typed
with E⨁NE (alternative): we either have the E
typestate or NE the typestate.

Stack Typestate

30

• Type of a function (polymorphic in the contents to
be stored in the stack) that creates stack objects.

• Each stack has two states: Empty and NonEmpty.

• Imprecision in the exact state of the stack is typed
with E⨁NE (alternative): we either have the E
typestate or NE the typestate.

Typestates do not exist at runtime. How can
client code distinguish between different
states without breaking the abstraction?

newStack :
 ∀T.([] ⊸
 ∃E.∃NE.[
 push : T :: E⨁NE ⊸ [] :: NE,

 pop : [] :: NE ⊸ T :: E⨁NE,

 isEmpty : [] :: E⨁NE ⊸ Empty#([]::E) + NonEmpty#([]::NE),

 del : [] :: E ⊸ []
] :: E)

31

Note: !‘s omitted from the type for brevity.

newStack :
 ∀T.([] ⊸
 ∃E.∃NE.[
 push : T :: E⨁NE ⊸ [] :: NE,

 pop : [] :: NE ⊸ T :: E⨁NE,

 isEmpty : [] :: E⨁NE ⊸ Empty#([]::E) + NonEmpty#([]::NE),

 del : [] :: E ⊸ []
] :: E)

32

Note: !‘s omitted from the type for brevity.

newStack :
 ∀T.([] ⊸
 ∃E.∃NE.[
 push : T :: E⨁NE ⊸ [] :: NE,

 pop : [] :: NE ⊸ T :: E⨁NE,

 isEmpty : [] :: E⨁NE ⊸ Empty#([]::E) + NonEmpty#([]::NE),

 del : [] :: E ⊸ []
] :: E)

32

Note: !‘s omitted from the type for brevity.

Clients can use case analysis to determine precisely
in which state the stack is at, “dynamic state test”,

anchoring values to the abstract stack states.

Contributions
1. Reconstruct typestate features from standard

type-theoretic programming language primitives.
We focus on the following set of typestate features:
a) state abstraction, hiding an object representation

while expressing the type of the state;
b) state “dimensions”, enabling multiple orthogonal

typestates over the same object;
c) “dynamic state tests”, allowing a case analysis over

the abstract state.

2. We show how to idiomatically support both state-based
(typestate) and transition-based (behavioral types)
specifications of abstract state evolution.

33

Back to Pair...

34

The evolution of the abstract state can be specified
using a state-machine/automaton/protocol.

EL LinitL

ER RinitR

sum destroy

L

R

none* *

Back to Pair...

35

EL LinitL

ER RinitR

sum destroy

L

R

none

Typestates focus on the states that model the
abstracted changes of the mutable state.

The evolution of the abstract state can be specified
using a state-machine/automaton/protocol.

* *

Back to Pair...

36

EL LinitL

ER RinitR

sum destroy

L

R

none

Behavioral Types focus on the transitions
(“behavior”) keeping the states anonymous.

* *

The evolution of the abstract state can be specified
using a state-machine/automaton/protocol.

Abstracting and
Hiding State

37

• In our system, the notion of typestates is related
to state abstraction, while the notion of
behavior is related to hiding state.

• With typestates, states are named which can be
convenient when there are multiple paths through
the protocol.

• With behavioral types, states are implicit which
simplifies descriptions of linear usages and makes it
easier to provide structural equivalences.

Caires and Seco. The type discipline of behavioral separation. POPL 2013.

38

• We have already seen how to model typestates
through standard existential abstraction.

• Interestingly, the notion of “behavior” can be
modeled with what was already shown!

• However, it requires using an idiom to capture the
typestate inside a function effectively hiding it.

Abstracting and
Hiding State

39

• A typestate can be borrowed by a function if that
function requires the typestate as an argument but
the function returns the typestate as a result.

Borrowing and
Capturing

initL : !(int :: EL ⊸ [] :: L)

40

• Alternatively, a function may depend on state that
was captured from the enclosing linear environment
(similar to a closure, but with state).

Borrowing and
Capturing

40

• Alternatively, a function may depend on state that
was captured from the enclosing linear environment
(similar to a closure, but with state).

Borrowing and
Capturing

fun(x : int).(initL x)

40

• Alternatively, a function may depend on state that
was captured from the enclosing linear environment
(similar to a closure, but with state).

Borrowing and
Capturing

fun(x : int).(initL x)

Γ = initL : !(int :: EL ⊸ [] :: L)

40

• Alternatively, a function may depend on state that
was captured from the enclosing linear environment
(similar to a closure, but with state).

Borrowing and
Capturing

fun(x : int).(initL x)Δ = EL

Γ = initL : !(int :: EL ⊸ [] :: L)

40

• Alternatively, a function may depend on state that
was captured from the enclosing linear environment
(similar to a closure, but with state).

Borrowing and
Capturing

fun(x : int).(initL x)Δ = EL

Γ = initL : !(int :: EL ⊸ [] :: L)

40

• Alternatively, a function may depend on state that
was captured from the enclosing linear environment
(similar to a closure, but with state).

Borrowing and
Capturing

fun(x : int).(initL x)Δ = EL Δ = .

Γ = initL : !(int :: EL ⊸ [] :: L)

40

• Alternatively, a function may depend on state that
was captured from the enclosing linear environment
(similar to a closure, but with state).

Borrowing and
Capturing

fun(x : int).(initL x)Δ = EL Δ = .

int ⊸ [] :: L

Γ = initL : !(int :: EL ⊸ [] :: L)

Hiding (Type)state

41

• Capturing the typestate enables us to hide the
typestate needed by the function’s argument.

• Hiding the typestate from the result is not
immediately possible. However, we can define a
complete sequence of uses (“behavior”) that ends in
a function that destroys the (type)state.

• One possible linear “behavior” for the Pair is:

EL LinitL

ER RinitR
sum destroy none

EL

R

L

R

Hiding (Type)state

42

• Capturing the typestate enables us to hide the
typestate needed by the function’s argument.

• Hiding the typestate from the result is not
immediately possible. However, we can define a
complete sequence of uses (“behavior”) that ends in
a function that destroys the (type)state.

• One possible linear “behavior” for the Pair is:

EL LinitL

ER RinitR
sum destroy none

EL

R

L

R

43

fun(a : int).
 {
 initR(a)
 ,
 fun(b : int).
! {
! initL(b)
 ,
! fun(_ : []).
! ! {
 sum(_)
 ,
 fun(_ : []).destroy(_)
 }
 }
 }

44

fun(a : int).
 {
 initR(a)
 ,
 fun(b : int).
! {
! initL(b)
 ,
! fun(_ : []).
! ! {
 sum(_)
 ,
 fun(_ : []).destroy(_)
 }
 }
 }

[] :: L * R ⊸ []

[] ⊸ []

45

fun(a : int).
 {
 initR(a)
 ,
 fun(b : int).
! {
! initL(b)
 ,
! fun(_ : []).
! ! {
 sum(_)
 ,
 fun(_ : []).destroy(_)
 }
 }
 }

[] :: L * R ⊸ []

[] ⊸ []

[] :: L * R ⊸ int :: L * R

46

fun(a : int).
 {
 initR(a)
 ,
 fun(b : int).
! {
! initL(b)
 ,
! fun(_ : []).
! ! {
 sum(_)
 ,
 fun(_ : []).destroy(_)
 }
 }
 }

[] :: L * R ⊸ []

[] :: L * R ⊸ int :: L * R

int :: EL ⊸ [] :: L

int :: ER ⊸ [] :: R

[] ⊸ []

46

fun(a : int).
 {
 initR(a)
 ,
 fun(b : int).
! {
! initL(b)
 ,
! fun(_ : []).
! ! {
 sum(_)
 ,
 fun(_ : []).destroy(_)
 }
 }
 }

[] :: L * R ⊸ []

[] :: L * R ⊸ int :: L * R

int :: EL ⊸ [] :: L

int :: ER ⊸ [] :: R

[] ⊸ []

Δ = EL, ER

47

47

Clients never see the underlying typestates. They
only see the usage requirement (“behavior”).

Technical Results

48

Related Work
DeLine and Fähndrich. Typestates for objects. ECOOP 2004.

DeLine and Fähndrich. Enforcing high-level protocols in low-level
software. PLDI 2001.

Bierhoff and Aldrich. Modular typestate checking of aliased objects.
OOPSLA 2007.

Beckman, Bierhoff, and Aldrich. Verifying correct usage of atomic blocks
and typestate. OOPSLA 2008.

Sunshine, Naden, Stork, Aldrich, and Tanter. First-class state change in Plaid.
OOPSLA 2011.

49

• They support many advanced uses (method dispatch, inheritance,
sharing mechanisms, concurrency, etc).

• We focus on reconstructing a smaller set of typestate features
from type-theoretic primitives (separation and linear logic). Which
enables combining abstracting and hiding state.

Related Work
Ahmed, Fluet, and Morrisett. L3: A linear language with locations. Fundam.
Inform. 2007.

 Walker and Morrisett. Alias types for recursive data structures. TIC 2001.

Smith, Walker, and Morrisett. Alias types. ESOP 2000.

Parkinson and Bierman. Separation logic and abstraction. POPL 2005.

50

Paper includes additional Related Work.

• Abstract predicates can represent a richer domain of abstract state
(not limited to a finite number, can be parametric, etc).

• Typestates encode a simpler notion of abstraction, generally
targets a more lightweight verification.

• We extend their work with usability related changes (implicitly
threaded capabilities, alternatives, etc).

Summary
1. Encoding typestates using existential types in a

substructural type-and-effect system.

2. Support both state-based and transition-based
specifications of abstract state evolution.

• Experimental Prototype Implementation:
https://code.google.com/p/dead-parrot

• Future Work:
Sharing of resources through disconnected variables.

51

https://code.google.com/p/dead-parrot/
https://code.google.com/p/dead-parrot/

Prototype
JavaScript-based implementation, runs in browser.

52

Summary
1. Encoding typestates using existential types in a

substructural type-and-effect system.

2. Support both state-based and transition-based
specifications of abstract state evolution.

• Experimental Prototype Implementation:
https://code.google.com/p/dead-parrot

• Future Work:
Sharing of resources through disconnected variables.

53

https://code.google.com/p/dead-parrot/
https://code.google.com/p/dead-parrot/

