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Abstract
Finding simple, yet expressive, verification techniques to reason
about both aliasing and mutable state has been a major challenge
for static program verification. One such approach, of practical
relevance, is centered around a lightweight typing discipline where
types denote abstract object states, known as typestates.

In this paper, we show how key typestate concepts can be pre-
cisely captured by a substructural type-and-effect system, exploit-
ing ideas from linear and separation logic. Building on this foun-
dation, we show how a small set of primitive concepts can be com-
posed to express high-level idioms such as objects with multiple
independent state dimensions, dynamic state tests, and behavior-
oriented usage protocols that enforce strong information hiding.
By exploring the relationship between two mainstream modularity
concepts, state abstraction and hiding, we also provide new insights
on how they naturally fit together and complement one another.

Technically, our results are based on a typed lambda calculus
with mutable references, location-dependent types, and second-
order polymorphism. The soundness of our type system is shown
through progress and preservation theorems. We also describe a
prototype implementation of a type checker for our system, which
is available on the web and can be used to experiment with the
examples in the paper.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Abstract Data Types; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

Keywords Typestate; Aliasing; Linearity; Capabilities

1. Introduction
In typical typed programming languages, the use of mutable state
is restricted by invariant types, so that a memory cell is constrained
to hold a single type of content during its entire lifetime. As a con-
sequence, mutable state variables are deliberately assigned overly
conservative types, leading to excessive, error-prone reliance on de-
fensive run-time tests to analyze the actual state of a cell at each rel-
evant program point—instead of accurately tracking the type of the
state as the program executes. This limitation is present in main-
stream languages [5] where violations of state-sensitive usage pro-
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tocols, of the kind captured by typestate systems [6, 16, 40, 41], are
a considerable obstacle to producing reliable code. For instance,
in Java a FileOutputStream type represents both the open and
closed states of that abstraction by relying on dynamic tests to de-
tect incorrect uses (such as writing to a closed stream) instead of
statically tracking the changing properties of the type.

A diverse set of techniques (such as alias types [2, 13, 15, 39],
typestate [6, 16, 34], behavioral types [10], and others [20, 26, 44,
45, 47]; discussed in more detail in Section 4) have been proposed
to tackle this problem, with various degrees of expressiveness.
In this work, we reconstruct several core concepts introduced in
practical typestate systems (e.g., [6]), by modeling them in a
substructural type theory. In particular, we show how key typestate
concepts (namely state abstraction, dynamic state tests, and state
dimensions) can be captured by a substructural type-and-effect
system, exploiting ideas from linear [22] and separation [11, 36]
logic.

Typestate approaches expose to clients of an abstract data type
object a type-like specification of the abstract state, so that the in-
ternal representation of the state is not visible, providing informa-
tion hiding and modularity. Note that the notion of abstract state re-
fines, and should not be confused with, the notion of abstract type.
While an abstract type hides a representation type, an abstract state
goes beyond it by not being (necessarily) limited to abstracting a
representation invariant, and being instead able to abstract a par-
ticular state of the representation type, or set of concrete states of
the representation type, that are meaningful to express the dynamic
behavior of the data type. For example, an ADT for stack objects
could expose two abstract states: empty and non-empty.

Furthermore, if an object statically falls into an imprecise state,
client code may inspect the statically known state using dynamic
state tests [6] (or similar techniques, such as keyed variants [15]),
which correspond to using observer ADT operations. For instance,
each stack object offers push and pop operations, but the latter
requires the non-empty state as a pre-condition. Therefore, when
a stack’s actual representation state is unknown, clients may rely
on an isEmpty function, which performs a run-time test on the
representation, without exposing the representation to clients. It is
well-known how existential quantification may be used to model
abstract data types [29], abstracting the representation type. In
our case, our type system is able to express the various abstract
(type)states using existential quantification on the (substructural)
state representation, thus abstracting over various concrete states
of the representation type. It turns out that we may also express
indirect dynamic tests of abstracted state by leveraging standard
mechanisms of case analysis and sum types, rather than relying on
ad-hoc methods.

Another interesting insight coming out of our development
is a clarification of the relationship between typestate-based ap-
proaches, and approaches based on behavioral types [10] (we use
here “behavioral types” in the sense of types that describe “tem-
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poral” usage protocols, not in the sense as Liskov and Wing used
in [25]). As we will show in the paper, by exploiting linearity
and higher-order functional types, our type structure is expres-
sive enough to represent object usage protocols akin to behavioral
types, which ensure soundness of object usage without revealing
the abstract state, in fact completely hiding it from client code.

In this work, we do not address arbitrary sharing of state (which
may lead to interference) since that topic is the subject of ongo-
ing work, discussed in the conclusion section. However, we already
show how independent abstract views of an object, manipulated by
independent aliases (in the spirit of [17, 27, 46]), can be expressed
in our framework, by imposing a monoidal structure on the sub-
structural type structure by the separation operator A ∗ B. The way
this separation interacts with existential quantification is also inter-
esting because it offers a simple way of expressing so-called state
dimensions [6, 42], so that an object may be shared according to
several different usage protocols separately as long as the internal
part of the (abstracted) representation is orthogonal.

The main contribution of this paper is to show how key concepts
introduced in lightweight typestate-based verification of stateful
programs can be precisely reconstructed from lower-level standard
programming language constructs. The concepts we reconstruct in-
clude the ability to model abstract states, expressing case analysis
on those abstract states, combining separation with abstraction to
represent orthogonal state dimensions; as well as a novel, yet sim-
ple, technique that enables the complete hiding of abstract state
through behavioral-types like usage protocols. Our core language
is based on a fairly canonical substructural type-and-effect system,
based on the core calculus of L3 [2], but extending it with higher-
order quantifiers, sum types, recursive types, and some key techni-
cal improvements, crucially the implicit threading of capabilities,
which are not run-time values in our approach, but compile-time
entities belonging to the static verification context. The harmo-
nious combination of all these ingredients leads to a simple typed
core language in which general mechanisms of state abstraction
and controlled aliasing of stateful objects can be used and mixed
to build high-level, flexible, stateful programming abstractions. Fi-
nally, the type system is firmly rooted in the core language’s opera-
tional semantics, for which standard preservation and progress the-
orems are provided, leading to a soundness result for the approach.
Although we do not discuss algorithmic issues in this presentation,
we have already implemented a working prototype (available on
the web [1]), in which all examples in this paper have been me-
chanically checked.

In the next section, we introduce the core aspects of the lan-
guage and leave all technical details to Section 3. The final sections
discuss related work, conclusions and future work. Some additional
details, such as the unabridged proof of soundness, are relegated to
the appendix [28].

2. Overview of Language and Type System
In this section, we introduce and motivate our language and type
system in general terms, providing basic intuitions, and discussing
several examples. The complete technical presentation of the sys-
tem is developed further below in Section 3. Our language is based
on the polymorphic λ-calculus with mutable references, immutable
records (in the style of the language Reynolds used to investi-
gate intersection types [35]), tagged sums and recursive types. In
this presentation, we do not address sharing of state through stati-
cally disconnected aliases, and focus instead on issues of protocol
conformance, abstraction and information hiding, and fully sepa-
rate uses of stateful objects. We build on techniques developed by
Ahmed, Fluet and Morrisett for the system L3 [2], more specifi-
cally, we make use of static knowledge about what references must
alias (when such knowledge exists) to reason about aliasing in a

particular static context, useful for dealing with strong updates, and
in general with stateful objects subject to complex usage protocols.
Therefore, and as in that work, by separating references (which
may be freely duplicated) from capabilities (which are linear and
resource-like), we can track the state of memory cells indirectly,
enabling multiple aliases to one same heap location without addi-
tional mechanisms when this particular scenario holds. Separating
references from capabilities allows the permission to use some state
to be granted only when both the reference and its capability are
present at hand in the typing context. However, our system threads
capabilities in a more implicit way, as proof-time objects: the type
discipline is flexible enough to support stacking of capabilities ei-
ther on top of a value or to thread them instead. This contrasts with
the explicit capability-passing approach explored in other substruc-
tural systems [2, 24, 44], which require capabilities to be explicitly
manipulated as first class values.

We now present our language through a series of examples, all
checkable in our type-checker prototype implementation [1].

2.1 A Datatype for Pairs
We consider a stateful pair object, using two private memory cells
(l and r) to store the left and right components, defined using
the familiar idiom of representing “objects” as records of closures.
The components are private in the sense that references to them
are never exposed outside the closures that represent the object’s
methods — only the type of the components is visible to clients.
Abstracting the two components under the same typestate would
be unnecessarily coarse-grained, since invoking functions that are
limited to using a single cell individually would statically require
a larger footprint than operationally necessary. Instead, our sys-
tem supports individually abstracting multiple separate, orthogonal
states enabling fine-grained abstractions of the object’s state such
that each component of the pair can be used in isolation if a func-
tion does not require access to the full typestate footprint.

1 let newPair = fun( _ : [] ).
2 open <pl,l> = new {} in // location variable ’pl’, variable (reference) ’l’
3 open <pr,r> = new {} in // location variable ’pr’, variable (reference) ’r’
4 { // RW capability to location variable ’pl’ (that has contents of type ’[]’)
5 initL = fun( i : int :: rw pl [] ). l := i,
6 initR = fun( i : int :: rw pr [] ). r := i,
7 sum = fun( _ : [] :: ( rw pl int * rw pr int ) ). !l+!r,
8 destroy = fun ( _ : [] :: ( rw pl int * rw pr int ) ).
9 delete l; delete r

10 } // end of (labeled) record value
11 end end

The code above defines a function newPair, which creates a
new pair object. Clients can only use the pair through the functions
in the record that newPair returns. The two local memory cells
are created using the new primitive. In our language newly created
memory cells have an existential dependent type value packing a
capability (linear) together with a location (pure value). For exam-
ple, the new expression on line 2 has the type:

∃t.( ref t :: rw t [] )

which means that there exists some fresh location t, and the new
expression evaluates to a reference to t (“ref t”). Locations can be
freely passed around and duplicated, while capabilities are manipu-
lated linearly, and are used as permissions for actually accessing the
state. To statically relate run-time locations, our type system uses
location variables (a static name, or key [15, 19]). Consequently,
our types encode a “must-alias” relation where if two location vari-
ables are statically equal then they must alias the same memory
cell. Therefore, the new construct is assigned a type that abstracts
the concrete location just created. This reference comes together
with a capability to access it, associated to the reference type by a
stacking operator ::. In our example, the capability is rw t [], repre-
senting read and write capability to the location t, which currently
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contains a value of type [] (an empty record, or unit type). We recall
that capabilities are subject to a linear disciple, and only play a role
at the level of typing.

Also in line 2, we then open the existential by giving it a loca-
tion variable (pl) and a regular variable (l) to refer that reference
value. The capability is automatically unstacked and from there on
is implicitly threaded through the program as necessary. Thus, on
line 3 the type system carries the assumptions:

Γ = : [] , pl : loc , l : ref pl ; ∆ = rw pl []

where Γ is the lexical environment (of persistent/pure resources),
and ∆ is a linear typing environment that contains all linear capa-
bilities. Each linear capability must either be used up or passed on
through the program (e.g. by returning it from a function). The type
of the content of the reference l is known statically by looking up
the capability for the location pl to which l refers.

Capabilities can also be stacked in a function’s arguments, as is
the case on line 5 with the initL function. An argument capability
of this form does not need to be present when the function is de-
fined, but rather must be provided by the caller when the function is
invoked. Consequently, and since capabilities are threaded implic-
itly (i.e. the resulting type has capabilities automatically stacked on
top), initL has type:

!( int :: rw pl [] ( [] :: rw pl int )

where the enclosing ! signals that the linear function (() is pure
— its definition does not capture any enclosing linear resources
(capabilities), and so the function is safe to be invoked multiple
times. Instead, function initL borrows [7, 30] the linear resources
it requires (the capability to pl), returning them together with the
result of the function. Primitive values and the unit type ([]) are also
pure, but we will later show why these can be left unbanged due to
subtyping (see Section 3). Thus, the newPair function has type:

!( []( !Result :: rw pl [] ∗ rw pr [] )

where Result is an abbreviation for the record type:

[ initL : !( int :: rw pl [] ( [] :: rw pl int ),
initR : !( int :: rw pr [] ( [] :: rw pr int ),
sum : !( [] :: rw pl int ∗ rw pr int ( int :: rw pl int ∗ rw pr int ),
destroy : !( [] :: rw pl int ∗ rw pr int ( [] ) ]

When we need to stack multiple capabilities, the use of the :: type
constructor becomes a technical burden since it does not allow for
reordering of capabilities. With this in mind, we introduce ∗ to
form an unordered bundle of separate capabilities. Such a group
of disjoint state models the notion of state dimensions such that
the global state of the pair object obeys several, orthogonal, usage
protocols (or typestates) that can be used independently in certain
functions (such as initL and initR) but are required together on
others (such as sum and destroy).

Our design differentiates the two basic type checking operations
of moving a capability on top of some other type (::) and grouping
sets of capabilities together (∗), so that each operation is orthogonal
to the other and, although frequently used together, they are mod-
eling separate typing aspects. However, other systems [23] do not
make such distinction.

The type above is technically not free to leave the scope of the
open constructs, since it depends on local names for the pl and
pr locations. A first attempt to fix this issue is to provide location
polymorphism [39] to abstract those location variables once again.
If we change the previous code so that we pack both locations using
the following construct to wrap the previous record definition:

4 <pl,<pr, { /∗ same functions ∗/ } > >

we now obtain the following version of the newPair function type
(where pl is replaced by l and pr by r):

!( []( ∃l.∃r.( !Result’ :: rw l [] ∗ rw r [] ) )

where Result’ is the record type where all location variables now
refer the packed names (l and r):

[ initL : !( int :: rw l [] ( [] :: rw l int ),
initR : !( int :: rw r [] ( [] :: rw r int ),
sum : !( [] :: rw l int ∗ rw r int ( int :: rw l int ∗ rw r int ),
destroy : !( [] :: rw l int ∗ rw r int ( [] ) ]

With this version of the newPair type, the result can now safely
leave the scope of the function’s definition. However, it still exposes
the internal representation of the pair object’s state to client code.
To fully abstract that representation, we can use traditional type
abstraction mechanisms, using existential types, but to pack the
types of the capabilities by wrapping the record with the following
constructs:

4 < rw pl [], // hides capability as ”Empty Left” (EL)
5 < rw pr [], // ”Empty Right” (ER)
6 < rw pl int, // ”Left initialized” (L)
7 < rw pr int, // ”Right initialized” (R)
8 { /∗ same functions ∗/ } > > > >

This expression will produce a type that completely abstracts
the representation of the pair object’s state, exposing only the re-
quirements for using the pair in terms of abstracted linear capabil-
ities (i.e. typestates). To provide some intuition on the meaning of
the abstracted types, we choose names such as EL to represent the
abstracted capability for the Left part of the pair when that part is
Empty, etc. Therefore, the final version of our newPair function is
simply:

!( []( ∃EL.∃ER.∃L.∃R.( !Result’’ :: EL ∗ ER ) )

where Result’’ is the next record type:

[ initL : !( int :: EL ( [] :: L ),
initR : !( int :: ER ( [] :: R ),
sum : !( [] :: L ∗ R ( int :: L ∗ R ),

destroy : !( [] :: L ∗ R ( [] ) ]

The following client code exemplifies how calling initL and
initR only affects the parts of the state that the respective functions
require.

1 open < EL, ER, L, R, x > = newPair({}) in // sugared open ∆ = EL, ER

2 x.initL(12); ∆ = L, ER

3 x.initR(34); ∆ = L, R

4 x.sum({}); ∆ = L, R

5 x.destroy({}) ∆ = ·

where the typing environments at the beginning of line 2 contain:
Γ = x : [...] , EL : type , ER : type , L : type , R : type ; ∆ = EL , ER

Observe how the left and right typestates of the pair operate over
independent dimensions of the complete state of the pair making
each change separate [11, 36] up until they are required together
(such as for invoking sum or destroy). In those cases, the type
system implicitly stacks both types on top of the {} value (grouped
together as ∗) and unstacks them if returned.

Perhaps a clearer use of this separation is exemplified by the
following (untyped) function:

1 fun( x , y ).( x.initL(12); y.initR(34) )

where initL and initR are called over seemingly unrelated
names. In our system we can give that function the type:
∀A.∀B.∀C.∀D.( [initL : int :: A( [] :: B](

[initR : int :: C( [] :: D]( [] :: B ∗ D )

Such that the two function calls work completely independently, re-
gardless if the state involved is or not referring the same underlying
pair object—thus exploiting the disjointness of the pair’s state.
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2.2 Modularity
The previous example motivates the issue of how to expose the type
constraints to clients without compromising safety, but also with-
out revealing implementation details. We now show how our model
supports code modularity by focusing on two intuitive concepts of
abstracting and hiding state.

State abstraction With the last type representation of the pair ob-
ject, we never exposed the internal details of the implementation
and instead its type showed only the type of the state as in tradi-
tional typestate [6, 40, 41] approaches. Therefore, by adding tra-
ditional type abstraction mechanisms, we can abstract the actual
(internal) type representation by only allowing client code to be
aware of the type it must correctly use even though the actual state
values are private — enabling implementation independence while
ensuring that all stateful changes are respected and expressed in
the types the client must obey. Since our capabilities are a purely
static artifact, used by the type system to track type information on
the state, the run-time of the client code remains isolated and com-
pletely decoupled from handling anything related to the internal
state of objects (as would not be the case with manually threaded,
value-based, capabilities).

Hiding state The alternative approach favors exposing the behav-
ior of the state so that the state is completely hidden to clients—as
if it were not there. Instead, stateful changes are expressed through
usage constraints that enforce a specific sequence of types that will
transparently thread the capabilities (“under the hood”), encapsu-
lating their effects. Such perspective encodes a more “temporal”
notion of usage, since there is a clear focus on what types will be
available in future steps of a usage protocol. Therefore, behavioral
types offer a complementary view to typestates since their main
motivation is in offering less information about the state to clients
so that it is only indirectly noticeable by the sequence of actions
that are permitted to be invoked on a value. To exemplify how a
type akin to a behavioral type [10] can be encoded in our model,
consider the following sequential behavior of the pair object:

initR ; initL ; sum ; destroy

This behavioral type for the pair’s resulting record expresses that
such a value initially (only) offers the field initR (we are omitting
the function’s type for brevity) and, after that call returns, it then
(only) has the initL field available, and so on. After destroy is
invoked, the value no longer has any remaining behavior meaning
it finished its usage. Such a behavioral type completely hides the
underlying capabilities of that state, favoring instead to expose a
fixed sequence of function calls (accessible through the fields of
the record) that threads the relevant capabilities completely trans-
parently to clients.

The simplest way to express the behavior above is by using a
type that returns the remainder of the usage protocol together with
the return of a function (thus dodging the use of records), as in the
following type:

initR︷                                                            ︸︸                                                            ︷
int( [ [] ,

initL︷                                        ︸︸                                        ︷
int( [ [] ,

sum︷                     ︸︸                     ︷
[]( [ int , []( []︸  ︷︷  ︸

destroy

] ] ]

The type uses immutable pairs (of the form [A, A]) to express the re-
sult of a function and the next behavior/type that must be respected
(sidestepping the more verbose use of records, but retaining the
same behavioral meaning). In contrast to the “typestate” style in-
terface given above, this “behavioral type” does not just abstract,
but rather completely hides the underlying capabilities of the state-

ful pair. The above type describes only one usage for using the
object; others could have been assigned instead, for example ini-
tializing the left element of the pair before the right element. The
implementation code is straightforward since it wraps the previous
code to provide a result that also includes the following function of
the described usage.

Mixing behavior and typestate Typestates and behavioral types
offer complimentary views of the same phenomena. With types-
tates, the states are named, which can be a convenient abstraction,
especially when there are multiple possible paths though the type-
state/usage protocol. With behavioral types, the states are implicit,
which simplifies the description of linear usages and makes it easy
to provide structural equivalences. The two formalisms are inter-
changable and have equivalent expressiveness, so which one is pre-
ferred depends on the details of the particular situation.

Fortunately, the choice between typestate and behavioral types
does not need to be fixed as, in our system, we can have a typestate
object go through a behavioral phase and back. With such a scheme
we can hide the state temporarily in a behavioral type and then
later return to using abstract typestates — allowing the exchange or
mixing of the two different code modularity approaches.

We illustrate this expressiveness by revisiting the pair example.
Here we use an alternative encoding of behavior by storing the re-
maining behavior in a cell (similar to how the this pointer works in
most object-oriented languages) so that the result of each function
is unobstructed by the required continuation of behavior and more
closely resembles object-based behavioral types. Likewise, for clar-
ity, the usage of the object is encoded in a record so that the next
behavior is accessible by field selection (also unlike in our previous
example). In our illustration, the definition of the newPair func-
tion is unchanged, and returns an object with a state-based type.
The client code—which knows nothing of the implementation de-
tails of the pair—then creates a behaviorally-typed wrapper for the
object, as follows:
open < EL, ER, L, R, o > = newPair({}) in
let behavioral = // the behavioral version of pair

// ’this’ reference to store the next behavior
open <self,this> = new {} in

// tags of record carefully picked to help readability
this := {
initLeft = fun( i : int :: rw self [] ).
let result = o.initL(i) in

// set the next behavior
this := {
initRight = fun( i : int :: rw self [] ).
let result = o.initR(i) in
this := { // note that it returns the captured capability
addBoth = fun( _ : [] :: rw self [] ).
( delete self ; o.sum({}) )

};
result
end

};
result
end

};
<self, this>
end
in
... // client code that uses the behavior

Here the behavioral object has the type:
behavioral : ∃t.( ref t :: rw t initLType )

initLType , [ initLeft : int :: rw t [] ( [] :: rw t initRType ]
initRType , [ initRight : int :: rw t [] ( [] :: rw t addType ]
addType , [ addBoth : [] :: rw t [] ( int :: L ∗ R ]

Note how the capabilities to the original pair typestate object are
only returned after the specific sequence of behaviors is completed.
Therefore, with this type, we support a client that is more specific
in the kind of uses it makes of the state but oblivious to how those
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uses are correlated with the object’s capabilities. In fact, by adding
a polymorphic type we can express a behavioral type entirely in
terms of the functions that are called, so that the final resulting
typestate (U) is an abstracted type:

Behavioral , ∃t.( ref t :: rw t initLType )
initLType , [ initLeft : int :: rw t [] ( [] :: rw t initRType ]
initRType , [ initRight : int :: rw t [] ( [] :: rw t addType ]
addType , [ addBoth : [] :: rw t [] ( int :: U ]

This type allows clients to be abstract over the resulting capa-
bility U, while only needing to concern themselves with obeying
the sequence of types that is encoded in such behavioral type. For
instance, it enables the following client code:

<U>fun( o : Behavioral ). // polymorphic function on type U
open <ind,ptr> = o in
!ptr.initLeft(1);
!ptr.initRight(2);
!ptr.addBoth({})
end

with maximum reuse since it only depends on that specific se-
quence of calls to be available, not on any particular number or
kinds of typestates. Note that its return type would then be the ca-
pability U that is abstract, meaning it could be a set of capabilities,
or even the result of combining several objects together to offer
such behavior. Other practical applications of such behavioral gen-
eralization could be to model iterators that, once closed, return the
(abstracted) capability to the collection from which they were ex-
tracted from without depending on specific kinds or numbers of
abstract states of that collection.

In the remainder of the presentation, we focus on a typestate-
based discussion since the conversion to behavioral types is gener-
ally straightforward to encode, even if potentially lengthy.

2.3 A Stack ADT
We now consider the stack example discussed in the introduction.
The stack object is coded using a linear singly-linked list as rep-
resentation type, the only private state that the stack uses. This ex-
ample illustrates many prominent features of our approach namely
how we are able to use case analysis on sums to indirectly test for
capabilities to different abstract states—i.e. perform a dynamic test
over the abstracted state of the object. Remember that capabilities
are not values, and therefore if there are multiple possible alterna-
tive capabilities there is no direct way of distinguishing between
them. However, a case analysis over tags in a value (using the syn-
tax tag#v) can provide ways of deciding which of the different
alternatives the abstraction’s state must be in, and we can leverage
this to learn about the capabilities that are available.

In the following code block we omit Γ and other parts of the
typing environments when they are not relevant to express the
intuition for how type checking proceeds.

1 let newStack = <T>fun( _ : [] ) .

Γ = : [] , T : type ; ∆ = ·

2 open <h,head> = new E#{} in //’head’ contains tagged unit
Γ = ... , h : loc , head : ref h ; ∆ = rw h E#[]

3 {
4 push = fun( e : T :: EMPT[h] ⊕ ELEM[h] ).

Γ = ... ; ∆ = e : T , EMPT[h] ⊕ ELEM[h]
[a] ∆ = e : T , EMPT[h] [b] ∆ = e : T , ELEM[h]

5 open <n,next> = new !head in

Γ = ... , n : loc , next : ref n
[a] ∆ = e : T , rw h [] , EMPT[n] [b] ∆ = e : T , rw h [] , ELEM[n]
[a] [b] ∆ = e : T , rw h [] , EMPT[n] ⊕ ELEM[n]

6 head := N#{ e , <n,next> } //tagged next node
[a] [b] ∆ = rw h N#[T,∃p.( ref p :: EMPT[n] ⊕ ELEM[n] )]
∆ = ELEM[h]

7 end,
8 pop = fun( _ : [] :: ELEM[h] ).

Γ = ... , : [] ; ∆ = ELEM[h]

∆ = rw h N#[T,∃p.( ref p :: EMPT[n] ⊕ ELEM[n] )]
9 case !head of

10 N#[e,n] → // sugared pair open
∆ = rw h [] , e : T , n : ∃p.( ref p :: EMPT[n] ⊕ ELEM[n] )

11 open <t,ptr> = n in

Γ = ... , t : loc , ptr : ref t ; ∆ = rw h [] , e : T , EMPT[t] ⊕ ELEM[t]
[a] ∆ = rw h [] , e : T , EMPT[t] [b] ∆ = rw h [] , e : T , ELEM[t]

12 head := !ptr;

[a] ∆ = rw t [] , e : T , EMPT[h] [b] ∆ = rw t [] , e : T , ELEM[h]
∆ = rw t [] , e : T , EMPT[h] ⊕ ELEM[h]

13 delete ptr;

∆ = e : T , EMPT[h] ⊕ ELEM[h]
14 e

∆ = EMPT[h] ⊕ ELEM[h]
15 end
16 end,
17 isEmpty = fun( _ : [] :: EMPT[h] ⊕ ELEM[h] ).

Γ = ... , : [] ; ∆ = EMPT[h] ⊕ ELEM[h]
[a] ∆ = EMPT[h] [b] ∆ = ELEM[h]

18 case !head of // linear content (destructive read) thus
19 E#v → // requires (conservatively) reassigning the cell
20 head := E#v; [a] ∆ = EMPT[h]
21 Empty#{} : Empty#([] :: EMPT[h]) [a] ∆ = ·

22 | N#n →

23 head := N#n; [b] ∆ = ELEM[h]
24 NonEmpty#{} : NonEmpty#([] :: ELEM[h]) [b] ∆ = ·

25 end, ∆ = ·

26 del = fun( _ : [] :: EMPT[h] ). Γ = ... , : [] ; ∆ = rw h E#[]
27 delete head ∆ = ·

28 }
29 end

In the code above, we used the following type definitions1:
EMPT , ∀p.( rw p E#[] )
ELEM , rec X.( ∀p.(rw p N#[T,∃p′.( ref p′ :: EMPT[p′] ⊕ X[p′] )] )

Thus, EMPT encodes an empty node, while ELEM is a non-empty
node whose successor may or may not be empty (note the recursive
definition on the type of the non-empty node). Alternatives (⊕) ex-
press the set of different capabilities that the following node may
have. The necessity of such a type is directly linked to the fact that
since capabilities are not values they also cannot be simply wrapped
around a sum type to provide a distinctive tag that identifies each
separate case, as otherwise we would fall into a system where capa-
bilities must be manually threaded. Instead the type system is able
to account for this uncertainty in the program state through the dif-
ferent alternatives listed in ⊕. The use of alternatives means that
the type checker knows that we have one of several different capa-
bilities, and consequently (to be safe) the expression must consider
all those cases individually. Therefore, on line 5, to be able to use
the different alternatives, we typecheck the expression considering
each separate case individually (the cases are marked [a] and [b]
in the typing environments). After analyzing each alternative, we
can merge them back into a single program state that expresses the
effects of both alternatives. Note that before line 6 we are weaken-
ing the typing environment (through subtyping as will be explained
in Section 3) so that both alternatives then have the same typing
context.

The newStack function has the non-abstracted type:

∀T.[](

[ push : T :: (EMPT[h] ⊕ ELEM[h])( [] :: ELEM[h],
pop : [] :: ELEM[h]( T :: (EMPT[h] ⊕ ELEM[h]),

isEmpty : [] :: (EMPT[h] ⊕ ELEM[h])(
Empty#([] :: EMPT[h]) + NonEmpty#([] :: ELEM[h]),

del : [] :: EMPT[h]( [] ] :: EMPT[h]

(Note that we are omitting ! for brevity, but all these functions,
and the returned record, are pure since none of them captures
capabilities in their scope.) By abstracting the capabilities we can

1 T , ∀p.A is a type definition/abbreviation, therefore we can apply it to a
location variable, such as T [q], without requiring ∀ to be a value.
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construct a typestate abstraction for the stack object, with E (empty)
and NE (non-empty) states, typed thus:

∀T.[]( ∃E.∃NE.

[ push : T :: (E ⊕ NE)( [] :: NE,
pop : [] :: NE( T :: (E ⊕ NE),

isEmpty : [] :: (E ⊕ NE)(
Empty#([] :: E) + NonEmpty#([] :: NE),

del : [] :: E( [] ] :: E

The most interesting aspect of using alternatives and sum types
is shown in the isEmpty function. In it, we see that the result re-
turns a sum type where the capabilities of the different alternatives
are separated. Therefore, this function enables clients to test which
case they are in, even though the state is abstracted and not imme-
diately accessible—i.e. perform a dynamic state test—and with it
tying the typing artifact with a value that can be tested. The imple-
mentation of this function distinguishes the alternatives indirectly
based on the case branch that is taken as a result of the run-time
value contained in the capability. Our system gains precision by
ignoring effects of branches that are statically known to never be
used. Therefore, on line 18, when the type checker is case ana-
lyzing the contents of head on alternative [a] it obtains the type
E#[]. Instead of weakening such type to consider all the remaining
branches of that case, we simply ignore the case branches that the
type does not list (similar to ideas employed in [14, 18]). Conse-
quently, for that alternative, type checking only takes into account
the E tag and the respective branch.

Also note the subtle necessity in reassigning the head refer-
ence (lines 20 and 23) to restore its initial types after inspection.
Since the contents of head include linear types, which cannot be
duplicated, the de-reference of line 18 must leave the capability for
h with the unit type so that the linear type can be bounded to the
branch’s variable without incurring in duplication. Therefore, the
apparent redundant assignment operations are necessary to counter
the destructive read that occurs at the type-level by refreshing the h
cell with the same value as before.

The significance of our (slightly) non-standard case is perhaps
clearer to understand in the following example where multiple
alternatives also have different sets of available states. Consider the
following code snippet:

1 Γ = x : ref l , l : loc , y : ref t , t : loc , z : ref u , u : loc
2 ∆ = ( rw u HasX#[] ∗ rw l [] ) ⊕ ( rw u HasY#[] ∗ rw t [] )
3 [a] ∆ = rw u HasX#[] , rw l [] [b] ∆ = rw u HasY#[] , rw t []
5 case !z of [a] ∆ = rw u [] , rw l [] [b] ∆ = rw u [] , rw t []
7 HasX#_ → [a] ∆ = rw u [] , rw l []
9 delete x [a] ∆ = rw u []

11 | HasY#_ → [b] ∆ = rw u [] , rw t []
13 delete y [b] ∆ = rw u []
15 end ∆ = rw u []

In the situation above, each branch deletes state that the other
branch does not touch. This means that, although both branches
know the same set of locations, their actions over the heap are
distinct. The particularity of the static semantics of our case en-
ables these seemingly incompatible alternative program states to
be obeyed simultaneously by the same case expression as each
program alternative does not need to respect those irreconcilable
branches. Consequently, our type checking procedure is less con-
servative than traditional approaches that simply weaken the type to
be case analyzed forcing it to use all available branches. However,
our solution may leave “dead” branches since we do not ensure that
each branch is used by at least one program alternative.

3. Technical Development
In this section, we carry out the full technical development of
the system discussed. The appendix [28] includes the complete

ρ ∈ Location Constants (Addresses) t ∈ Location Variables p ::= ρ | t

l ∈ Labels (Tags) f ∈ Fields x ∈ Variables X ∈ Type Variables

v ∈ Values ::= ρ (address)
| x (variable)
| fun(x : A).e (function)
| 〈t〉 e (universal location)
| 〈X〉 e (universal type)
| 〈p, v〉 (pack location)
| 〈A, v〉 (pack type)
| {f = v} (record)
| l#v (tagged value)

e ∈ Exprs. ::= v (value)
| v[p] (location application)
| v[A] (type application)
| v.f (field)
| v v (application)
| let x = e in e end (let)
| open 〈t, x〉 = v in e end (open location)
| open 〈X, x〉 = v in e end (open type)
| new v (cell creation)
| delete v (cell deletion)
| !v (dereference)
| v := v (assign)
| case v of l#x→ e end (case)

Note that ρ is not source-level.

Figure 1. Expressions and values.

proof and a few additional constructs (such as pairs), encoded as
abbreviations in our core language.

3.1 Core Language and Operational Semantics
In Figure 1 we introduce the syntax of our core language, which
uses let-expanded form [38], for the sake of convenience. Note that
capabilities are not present as values in the language, but just used
at the level of types. Also note that we use p to range over positions,
which include both location variables t and location constants ρ.

Our small step semantics (Figure 2) uses judgments of the form:

〈 H0 || e0 〉 7→ 〈 H1 || e1 〉

where a program execution is given by: 〈 ∅ || e 〉
?
7→ 〈 H || v 〉, which

states that starting from the empty heap (∅) and an initial expression
(e), we reach a final configuration of value v with heap H (after an
arbitrary number of steps, 7→). The heap (H) binds addresses (ρ) to
values (v) using the following format:

H ::= ∅ (empty)
| H , ρ ↪→ v (binding)

The semantics definition is fairly standard, except for a few small
differences: the (d:New) and (d:Delete) reduction rules, as in [2],
manipulate existential values that abstract the underlying location
that was created or will be deleted, in order for the type system
to properly handle such location abstractions (i.e. for the value to
match the desired existential type).

3.2 Type System
The type structure, depicted in Figure 3, includes pure (!) types to
express values that can be freely copied, linear functions (functions
that can only be used once) and a few less familiar types. We use a
stacked type (of the form A0 :: A1) to mean that type A1 (actually,
a capability) is stacked on top of A0 (notice that the construct :: is
not commutative). Similarly, we have the separation type (A0 ∗ A1),
which disjointly aggregates several types, in the spirit of separation
logic (thus ∗ is commutative). We assume without explicitly stating
that sum types are associative and commutative, and likewise for
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〈 H0 || e0 〉 7→ 〈 H1 || e1 〉 Dynamics, (d:*)

(d:New)
ρ fresh

〈 H || new v 〉 7→ 〈 H , ρ ↪→ v || 〈ρ, ρ〉 〉

(d:Delete)

〈 H , ρ ↪→ v || delete 〈ρ, ρ〉 〉 7→ 〈 H || 〈ρ, v〉 〉

(d:Dereference)

〈 H , ρ ↪→ v || !ρ 〉 7→ 〈 H , ρ ↪→ v || v 〉

(d:Assign)

〈 H , ρ ↪→ v0 || ρ := v1 〉 7→ 〈 H , ρ ↪→ v1 || v0 〉

(d:Application)

〈 H || (fun(x : A).e) v 〉 7→ 〈 H || e{v/x} 〉

(d:Selection)〈
H || {f = v}.fi

〉
7→ 〈 H || vi 〉

(d:LocApp)

〈 H || (〈t〉 e)[ρ] 〉 7→ 〈 H || e{ρ/t} 〉

(d:TypeApp)

〈 H || (〈X〉 e)[A] 〉 7→ 〈 H || e{A/X} 〉

(d:Case)〈
H || case li#vi of l#x→ e end

〉
7→ 〈 H || ei{vi/xi} 〉

(d:LocOpen)

〈 H || open 〈t, x〉 = 〈ρ, v〉 in e end 〉 7→ 〈 H || e{v/x}{ρ/t} 〉

(d:TypeOpen)

〈 H || open 〈X, x〉 = 〈A, v〉 in e end 〉 7→ 〈 H || e{v/x}{A/X} 〉

(d:Let)

〈 H || let x = v in e end 〉 7→ 〈 H || e{v/x} 〉

(d:LetCong)
〈 H0 || e0 〉 7→ 〈 H1 || e1 〉

〈 H0 || let x = e0 in e2 end 〉 7→ 〈 H1 || let x = e1 in e2 end 〉

{v/x} is the (capture avoiding) substitution of variable x for value v, and analogous meaning for location and type variables variants.

Figure 2. Operational semantics.

A ::= !A (pure/persistent)
| A( A (linear function)
| A :: A (stacking)
| A ∗ A (separation)
| X (type variable)
| ∀X.A (universal type quantification)
| ∃X.A (existential type quantification)
| [f : A] (record)
| ∀t.A (universal location quantification)
| ∃t.A (existential location quantification)
| ref p (reference type)
| rec X.A (recursive type)
|
∑

i li#Ai (tagged sum)
| A ⊕ A (alternative)
| rw p A (read-write capability to p)
| none (empty capability)

Figure 3. Types (including capabilities) grammar.

alternatives (we only state that explicitly for the ∗ type). Our refer-
ence type only refers to the pure pointer, not to its usage capability,
which is specified by a different construct. A capability describes
the access kind (read-write, rw), the location it refers to (p) and the
type of the value it currently holds (A); or is the empty capability
(none). Finally, we include universal and existential types, both as
location-dependent types and as a second order type quantifiers. Al-
though our type structure presents capabilities and value inhabited
types together, our type system ensures that those will be properly
combined in complex type expressions, for instance, a none type
is not inhabited by any value, and only capabilities will be stacked
via ::. Alternatively, capabilities and value-inhabited types could
also be presented separately. With our type grammar we simplify
the syntax (by avoiding some redundancy in types that overlap as
capabilities and as standard types) since such separation is techni-
cally not relevant because even if types that are not inhabited by a
value are assumed (such as in a function’s argument) they can never
be created/introduced which effectively means that such value/type
will never be usable anyway.

Our typing rules (Figure 4) use typing judgments of the form:

Γ; ∆0 ` e : A a ∆1

stating that with lexical environment Γ and linear resources ∆0 (e.g.,
capabilities) we assign the expression e a type A and produce effects
that result in ∆1 (along the lines of a type and effect system [21]).

The typing environments are defined by:

Γ ::= · (empty)
| Γ, x : A (variable binding)
| Γ, p : loc (location variable assertion)
| Γ, X : type (type assertion)

∆ ::= · (empty)
| ∆, x : A (linear binding)
| ∆, A (capability)

We now discuss the main typing rules (shown in Figure 4).
(t:Ref) types any location constant as long as it refers a known

location. Note that a location is more like a pointer or memory ad-
dress, not a traditional reference since it still lacks the capability to
actually access that location. (t:Pure) blesses as pure values that do
not depend on any linear resources. (t:Unit) allows any value to be
assigned a unit type since the unit type forbids any actual use of that
value, so a unit usage is always safe. We support reading variables
from the lexical environment (t:Pure-Read) requiring the type to
be preceded by !. Destructive reads from the linear environment
(t:Linear-Read) make a variable unavailable for further use. If a
variable is of pure type then (t:Pure-Elim) allows it to be moved to
the linear environment with its type explicitly tagged with !.

In (t:New) capabilities are threaded implicitly through the ex-
pression that will be assigned to the new cell. Since owning the
rw capability implies uniqueness of access, deleting (t:Delete) is
only allowed for a type that includes both the reference and the
non-shared capability for that value. Our examples use an idiom
for delete that avoids packing the location to be deleted (encoded
as an idiom in the appendix), but for consistency with the new rule
we use the packed reference version in here.

We allow two kinds of pointer dereference: a linear version
(t:Dereference-Linear) that destroys the contents of the capability,
and a pure version, (t:Dereference-Pure), which leaves the same
(pure) type behind. Note that although (t:Dereference-Linear) is
destructive, operationally it will not destroy the contents of that
cell. In this case, preservation of typing is ensured through the
use of (t:Unit) so that the leftover value is effectively unusable
“junk” from the type system’s perspective when read from that
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Γ; ∆0 ` e : A a ∆1 Typing rules, (t:*)

(t:Ref)

Γ, ρ : loc; · ` ρ : ref ρ a ·

(t:Pure)
Γ; · ` v : A a ·

Γ; · ` v : !A a ·

(t:Unit)

Γ; · ` v : [] a ·

(t:Pure-Read)

Γ, x : A; · ` x : !A a ·

(t:Linear-Read)

Γ; x : A ` x : A a ·

(t:Pure-Elim)
Γ, x : A0; ∆0 ` e : A1 a ∆1

Γ; ∆0, x : !A0 ` e : A1 a ∆1

(t:New)
Γ; ∆0 ` v : A a ∆1

Γ; ∆0 ` new v : ∃t.(ref t :: rw t A) a ∆1

(t:Delete)
Γ; ∆0 ` v : ∃t.(ref t :: rw t A) a ∆1

Γ; ∆0 ` delete v : ∃t.A a ∆1

(t:Assign)
Γ; ∆0 ` v1 : A0 a ∆1

Γ; ∆1 ` v0 : ref p a ∆2, rw p A1

Γ; ∆0 ` v0 := v1 : A1 a ∆2, rw p A0

(t:Dereference-Linear)
Γ; ∆0 ` v : ref p a ∆1, rw p A

Γ; ∆0 ` !v : A a ∆1, rw p []

(t:Dereference-Pure)
Γ; ∆0 ` v : ref p a ∆1, rw p !A

Γ; ∆0 ` !v : !A a ∆1, rw p !A

(t:Record)
Γ; ∆ ` v : A a ·

Γ; ∆ ` {f = v} : [f : A] a ·

(t:Selection)
Γ; ∆0 ` v : [f : A] a ∆1

Γ; ∆0 ` v.fi : Ai a ∆1

(t:Function)
Γ; ∆, x : A0 ` e : A1 a ·

Γ; ∆ ` fun(x : A0).e : A0 ( A1 a ·

(t:Application)
Γ; ∆0 ` v1 : A0 a ∆1

Γ; ∆1 ` v0 : A0 ( A1 a ∆2

Γ; ∆0 ` v0 v1 : A1 a ∆2

(t:Let)
Γ; ∆0 ` e0 : A0 a ∆1

Γ; ∆1, x : A0 ` e1 : A1 a ∆2

Γ; ∆0 ` let x = e0 in e1 end : A1 a ∆2

(t:Forall-Loc)
Γ, t : loc; ∆ ` e : A a ·

Γ; ∆ ` 〈t〉 e : ∀t.A a ·

(t:Loc-App)
p : loc ∈ Γ

Γ; ∆0 ` v : ∀t.A a ∆1

Γ; ∆0 ` v[p] : A{p/t} a ∆1

(t:Loc-Pack)
Γ; ∆ ` v : A{p/t} a ·

Γ; ∆ ` 〈p, v〉 : ∃t.A a ·

(t:Loc-Open)
Γ; ∆0 ` v : ∃t.A0 a ∆1

Γ, t : loc; ∆1, x : A0 ` e : A1 a ∆2

Γ; ∆0 ` open 〈t, x〉 = v in e end : A1 a ∆2

(t:Forall-Type)
Γ, X : type; ∆ ` e : A a ·

Γ; ∆ ` 〈X〉 e : ∀X.A a ·

(t:Type-App)
Γ ` A1 type

Γ; ∆0 ` v : ∀X.A0 a ∆1

Γ; ∆0 ` v[A1] : A0{A1/X} a ∆1

(t:Type-Pack)
Γ; ∆ ` v : A0{A1/X} a ·

Γ; ∆ ` 〈A1, v〉 : ∃X.A0 a ·

(t:Type-Open)
Γ; ∆0 ` v : ∃X.A0 a ∆1

Γ, X : type; ∆1, x : A0 ` e : A1 a ∆2

Γ; ∆0 ` open 〈X, x〉 = v in e end : A1 a ∆2

(t:Cap-Elim)
Γ; ∆0, x : A0, A1 ` e : A2 a ∆1

Γ; ∆0, x : A0 :: A1 ` e : A2 a ∆1

(t:Cap-Stack)
Γ; ∆0 ` e : A0 a ∆1, A1

Γ; ∆0 ` e : A0 :: A1 a ∆1

(t:Cap-Unstack)
Γ; ∆0 ` e : A0 :: A1 a ∆1

Γ; ∆0 ` e : A0 a ∆1, A1

(t:Alternative-Left)
Γ; ∆0, A0 ` e : A2 a ∆1
Γ; ∆0, A1 ` e : A2 a ∆1

Γ; ∆0, A0 ⊕ A1 ` e : A2 a ∆1

(t:Alternative-Right)
Γ; ∆0 ` e : A0 a ∆1, A1

Γ; ∆0 ` e : A0 a ∆1, A1 ⊕ A2

(t:Subsumption)
∆0 <: ∆1 Γ; ∆1 ` e : A0 a ∆2

A0 <: A1 ∆2 <: ∆3

Γ; ∆0 ` e : A1 a ∆3

(t:Frame)
Γ; ∆0 ` e : A a ∆1

Γ; ∆0,∆2 ` e : A a ∆1,∆2

(t:Tag)
Γ; ∆ ` v : A a ·

Γ; ∆ ` l#v : l#A a ·

(t:Case)
Γ; ∆0 ` v :

∑
i li#Ai a ∆1

Γ; ∆1, xi : Ai ` ei : A a ∆2 i ≤ j

Γ; ∆0 ` case v of l j#x j → e j end : A a ∆2

Note: all bound variables of a construct must be fresh in the respective rule’s conclusion (i.e. x must be fresh in (t:Let) conclusion, etc.).

Figure 4. Static semantics.

capability after such dereference. Assigning (t:Assign) requires
both the reference and the respective capability.

A record, (t:Record), contains a set of labeled choices, its
fields. Since selection, (t:Selection), will pick one and discard the
rest, we requires each field to produce the same effect. Therefore,
even if such fields contain a linear type, they can be safely discarded
as their effects would be equal to those produced by the selected
field. Thus, a record type is akin to a linear (labeled) intersection
type.

Since a function, (t:Function), depends on the linear resources
inside of ∆ (which it captures), it must be linear (although it can be
rendered exponential/pure (!), using (t:Pure) if that environment
is empty). We rely on the combination with (t:Pure-Elim) to use
non-linear arguments, so that they can all initially be assumed to
be of linear kind. (t:Application) is the traditional rule. The fact
that our basic function type is linear is not an actual restriction
to the language expressiveness, since it may be combined with
other type constructors which break linearity, namely !, in a fine-
grained way. Observe how values (which includes functions, tagged
values, etc.) have no resulting effects (·) since they have no pending
computations.

(t:Alternative-Left) encodes the uses of the alternative type.
Note that it does not require the resulting type to distinguish be-
tween the different alternatives; we just require that each case is

considered. This means that an alternative type is only usable when
there exists an expression that satisfy all its cases, as otherwise
such type can only be threaded and never inspected. Also note that
(t:Alternative-Right) is derivable through subtyping, but is shown
for consistency of the presentation.

(t:Forall-Loc), (t:Loc-App), (t:Loc-Open) and (t:Loc-pack)
provide location variable abstraction, while their -Type counter-
parts do the same for types. Existential quantification means that
we can hide the underlying location (aliasing) relation, so that it
can be renamed and reused in different contexts through the open
construct. Note that p must either be in Γ if it occurs in A or, if it
does not occur in A, then abstracting such location has no real con-
sequence since the substitution has no impact in A (it remains well-
formed regardless of whether p is valid or not). As with (t:Loc-
Pack), the absence of a Γ ` A1 type premise in (t:Type-Pack) is re-
lated to the fact that, for A1 to occur in A0 it must be a proper type,
or if it does not occur in A0 then it is of no consequence whether A1
is or not a type.

(t:Tag) and (t:Case) provide the introduction and elimination
of tagged sum types. Carefully notice that the later rule is not
completely standard. In order to rule out potential conservative
inclusions of effects, we do not require the sum type to consider
all tags listed in the case and instead allow the construct to have
other “extra” branches that are ignored if they are not listed in the
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sum type. Although they are statically known to never be executed,
alternative program states may still need to consider them. The
alternative and case typing rules interact in our language in a rather
interesting way: by ignoring these “extra” branches we are able
to have the same case expression obey seemingly incompatible
alternatives that otherwise would not be possible to type check,
adding extra flexibility.

The (t:Subsumption) rule allows an expression to rely on weaker
assumptions while ensuring a stronger result than needed by its
context (the subtyping rules are detailed in the next sub-section).
Our (t:Frame) accounts for simple disjoint separation [11, 36]
so that parts of the heap that are not needed to type check an
expression cannot be changed by that expression either.

(t:Cap-Elim), (t:Cap-Stack) and (t:Cap-Unstack) manage our
valueless capabilities through non-syntax-directed elimination,
stacking, and unstacking of these non-indexed elements of the lin-
ear typing environment.

We impose the expected global constraint on all constructs with
bound variables (such as let, functions, etc.): such variables must
be fresh in the conclusion of the respective typing rule.

3.3 Subtyping

A0 <: A1 Subtyping on types, (st:*)

(st:Symmetry)

A <: A

(st:ToLinear)

!A <: A

(st:Pure)
A0 <: A1

!A0 <: !A1

(st:Top)

!A <: ![]

(st:Ref)

ref p <: !(ref p)

(st:Function)
A1 <: A3 A2 <: A0

A0 ( A1 <: A2 ( A3

(st:Sum)∑
i li#Ai <: l′#A′ +

∑
i li#Ai

(st:Loc-Exists)
A0 <: A1

∃t.A0 <: ∃t.A1

(st:Loc-Forall)
A0 <: A1

∀t.A0 <: ∀t.A1

(st:Type-Exists)
A0 <: A1

∃X.A0 <: ∃X.A1

(st:Type-Forall)
A0 <: A1

∀X.A0 <: ∀X.A1

(st:Record)
Ai <: A′i

[f : A , fi : Ai] <: [f : A , fi : A′i ]

(st:Discard)
i > 0

[f : A , fi : Ai] <: [f : A]

(st:PurifyRec)

[f : !A] <: ![f : !A]

(st:Stack)
A0 <: A1 A2 <: A3

A0 :: A2 <: A1 :: A3

(st:Cap)
A0 <: A1

rw p A0 <: rw p A1

(st:Com)

A0 ∗ A1 <: A1 ∗ A0

(st:Cong)
A1 <: A2

A0 ∗ A1 <: A0 ∗ A2

(st:Assoc)

(A1 ∗ A2) ∗ A3 <: A1 ∗ (A2 ∗ A3)

(st:Unfold)

rec X.A <: A{rec X.A/X}

(st:Fold)

A{X/rec X.A} <: rec X.A

(st:Rec)
A0 <: A1

rec X.A0 <: rec X.A1

∆0 <: ∆1 Subtyping on deltas, (sd:*)

(sd:Star)

∆, A0, A1 <:> ∆, A0 ∗ A1

(sd:Var)
∆0 <: ∆1 A0 <: A1

∆0, x : A0 <: ∆1, x : A1

(sd:Type)
∆0 <: ∆1 A0 <: A1

∆0, A0 <: ∆1, A1

(sd:Symmetry)

∆ <: ∆

(sd:None)

∆ <:> ∆,none

(sd:Alternative-R)

∆, A0 <: ∆, A0 ⊕ A1

(sd:Alternative-L)
∆0, A0 <: ∆1
∆0, A1 <: ∆1

∆0, A0 ⊕ A1 <: ∆1

Figure 5. Subtyping rules.

Our subtyping rules are defined in Figure 5 using the subtyping
judgment of the form A0 <: A1 that states A0 is a subtype of A1,
meaning that A0 can be used wherever A1 is expected. Similarly,
we also define subtyping on the linear typing environment ∆ with

Γ; ∆ ` H Store typing, (str:*)

(str:Empty)

·; · ` ·

(str:Loc)
Γ; ∆ ` H

Γ, ρ : loc; ∆ ` H

(str:Star)
Γ; ∆, A0, A1 ` H

Γ; ∆, A0 ∗ A1 ` H

(str:None)
Γ; ∆ ` H

Γ; ∆,none ` H

(str:Alternative)
Γ; ∆, A0 ` H

Γ; ∆, A0 ⊕ A1 ` H

(str:Binding)
Γ; ∆,∆v ` H Γ; ∆v ` v : A a ·

Γ; ∆, rw ρ A ` H, ρ ↪→ v

Figure 6. Store typing.

an analogous judgment of equivalent meaning. We highlight the
less obvious rules: unlike in traditional non-linear systems, our
linear capabilities only need to be read-consistent (not write) which
yields the additional flexibility shown in (st:Cap) (i.e. due to their
linearity they are covariant, as in other linear/affine systems [12]);
(st:Unfold), (st:Fold) are used to fold and unfold a recursive type;
(sd:Star) allows to bundle several linear resources together using
∗, or break this type into its components (when the rule is read
right to left). Also note (st:Ref) that enables us to not have to bang
every reference since the type system can handle such through this
subtyping rule, and similarly occurs for other primitive values.

3.4 Technical Results
We proved our system sound through progress and preservation
theorems (detailed proofs shown in [28]). These results rely on the
definition of store typing (Figure 6) which relates well-formed en-
vironments with heaps. Store typing uses judgments of the form
Γ; ∆ ` H stating that the heap H conforms with the elements con-
tained in Γ and ∆. Although typing rules such as the frame rule may
appear to potentially extend our linear resources in arbitrary ways,
our theorems show that when starting from a properly typed store
we will never reach invalid store states. Note that (str:Alternative)
assumes that ⊕ is commutative, so we introduce a single store typ-
ing rule. We now state our main theorems:

Theorem 1 (Progress). If e0 is a closed expression (and where Γ
and ∆0 are also closed) such that:

Γ; ∆0 ` e0 : A a ∆1

then either:

• e0 is a value, or;
• if exists H0 such that Γ; ∆0 ` H0 then 〈 H0 || e0 〉 7→ 〈 H1 || e1 〉.

The progress statement ensures that all well-typed expressions
are either values or, if there is a heap that obeys the typing assump-
tions, the expression can step to some other program state — i.e. a
well-typed programs never gets stuck.

Theorem 2 (Preservation). If e0 is a closed expression such that:

Γ0; ∆0 ` e0 : A a ∆ Γ0; ∆0 ` H0 〈 H0 || e0 〉 7→ 〈 H1 || e1 〉

then, for some ∆1,Γ1:

Γ0,Γ1; ∆1 ` H1 Γ0,Γ1; ∆1 ` e1 : A a ∆

The theorem above requires the initial expression e0 to be closed
so that it is ready for evaluation. The preservation statement ensures
that the resulting effects (∆) and type (A) of the expression remains
the same throughout the execution so that the initial typing is pre-
served by the dynamics of the language. Heap modifications may
occur (such as on delete or new) but these preserve the previously
known locations and are a consequence of the operational seman-
tics (i.e. of the resulting H1).

Note that no instrumentation of the operational semantics is
necessary since in our system the presence of a memory cell in the
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heap must also have its respective capability in ∆ (our capabilities
are linear). Any kind of wrong use of state can be reduced to a stuck
condition in the language (for instance deleting a cell too early will
cause the program to become stuck when an alias tries to access
that location later on), and similar situations occur when accessing
unique memory cells due to protocol violations, since the language
supports strong updates. Therefore such two theorems are enough
to ensure that state is properly used even if done through multiple
aliases of the same underlying location. Through both theorems
we ensure traditional type safety in the sense that correct programs
do not go wrong since every well-typed program either terminates
with a value of the expected type or will just run forever.

4. Related Work
We have shown how key concepts related to the general idea of
typestate can be extended to a substructural setting and precisely
captured by a fairly canonical substructural type-and-effect system,
building on linearity, second order-polymorphism, and location-
dependent types. We provide technical type safety results for our
language, which give a solid foundation for somewhat ad-hoc
mechanisms appearing in the typestate literature. Our type sys-
tem is also distinctive in its use of implicitly threaded capabili-
ties (in a completely substructural setting), in its characterization
of typestates through existential abstraction, and in establishing a
preliminary formal bridge between intuitively related approaches,
such as state-based type systems (as in typestate) and behavior-
based type systems (as in behavioral types). We now discuss some
recent closely related work.

Permissions [7], a type mechanism to constrain the access to
aliased mutable objects, have been actively explored, with systems
based on linear logic [22] being the closest to our own. In [47]
Wadler proposed the use of linear types to handle effects. Although
such system still tied references with their content, it also sup-
ports a let! block to temporarily, but safely, relax linearity enabling
multiple reads of the same cell in a scoped block where writes to
that cell are forbidden until uniqueness is restored. More practical
uses of typestates [40, 41] were pioneered by Fähndrich and De-
Line, where they employed permissions to control aliasing through
mechanisms such as adoption and focus [16, 19] to enable tempo-
rary breaks from linearity (a technique that was later further im-
proved in [9]), and pack/unpack [15, 16] to distinguish when an
object is or not consistent with its internal invariant, and where
both inconsistency states should not be visible to other program
contexts. Bierhoff and Aldrich further improved the practicality of
such systems by combining it with fractional permissions [8] to
defined access permissions [6], a flexible sharing mechanism cen-
tered around bucketing the kind of accesses an alias is allowed to
perform into a fixed set of permission primitives, each modeling a
specific type of interaction with the shared state. Subsequent work
with Beckman [3] showed that this permission system is also ade-
quate, and efficient [4], to express concurrent uses of shared state
through atomic blocks. Masked types [34] adapts the typestate idea
into a system that is specially targeted to solve the problem of ob-
ject initialization, while allowing complex pointer topologies such
as cyclic dependencies to remain safe.

From a technical perspective, we believe our system captures,
in a uniform and integrated way, many of the somehow seem-
ingly fragmentary features of the systems above, reconstructing
them from a smaller set of fairly canonical type-theoretic primi-
tives, based on a combination of linear location capabilities (intro-
duced by [2]), second-order polymorphism, and implicit threading
of capabilities via the stacking mechanism. Still, we omit from this
work any sharing mechanism for statically disconnected aliases,
meaning that many advanced uses of shared state that are possible
in the works listed above are not feasible in ours. This limitation

is being addressed in future work, building on the basic foundation
shown here, and following the same design principles.

Our language also builds on the work of alias types [39, 48]
in the way that it expresses aliasing information within the types;
while our separation of pure reference types from linear capabili-
ties was pioneered by L3 [2]. L3 targets a lower-level of abstraction,
with manually-threaded capabilities and no mechanism for abstrac-
tion beyond location variables. It also lacks support for more prac-
tical types such as recursive and sum types. However, their core
system goes beyond our work by reasoning about program termi-
nation, and also enabling invariant-based sharing mechanisms sim-
ilar to adoption/focus (here called thaw/freeze/refreeze). Techni-
cally, our development expands on basic L3 concepts, extending
them to the context of a type-and-effect system allowing for im-
plicitly threaded capabilities, sum types and polymorphism. Our
use of sum types, and the specific typing discipline for our case
construct is also distinctive from [48] (although similar ideas also
appear at least in [14, 18]) by adding extra flexibility in typing, and
in particular by being expressive enough to lift, in a robust type safe
way, dynamically checking variant values to dynamically checking
abstract (type)states.

Krishnaswami et al. [24] develop a type system that is superfi-
cially substructural, since it employs a “fiction of disjointness” to
allow sharing of mutable cells to occur underneath that layer. They
also adapt L3, but in an affine variant. Our system simply does not
handle the sharing problem in the generic terms that they describe,
and our focus is instead in providing interfaces that represents ab-
stract states and the problems that arise from it (such as supporting
dynamic state tests). Although there are many similarities in the
use of a substructural type system (although ours is technically a
type-and-effect system with linear capabilities), our encoding of al-
ternative program states is distinctive.

Alms [44] is an affine system with support for, among other
things, manually threaded capabilities that can be used to “deco-
rate” mutable state enabling a mechanism similar to the separation
of pure references and linear capabilities that we use. However, ca-
pabilities do not express the contents of cell and instead are used as
a token to manage access to abstract affine types. This distinction
makes it not immediately obvious if their system could encode a
more complex resource-aware abstraction as we provide with type-
states. Regardless, our distinctive setting with valueless capabilities
enables additional expressiveness that is not possible there.

In [20], Gay, et al. model (object) protocols through the use of
session types [43], both locally and in a distributed environment,
by generalizing the notion of channels to include method calls to
an object. In such model all forms of aliasing are forbidden. Mazu-
rak et al. [26] use linear types in an extension to System F that
has no direct support for state. Yet, through the flexibility of their
linear kinds they enable sufficient expressiveness to encode regu-
lar protocols. Caires and Seco [10], following ideas from process
algebras, introduce the notion of behavioral separation where be-
havioral types are used to model complex usage protocols with the
possibility of aliasing and where separation ensures safety in the
use of aliased state. Our typestate focus means that this work em-
phasis state abstraction, and therefore we lack the expressiveness
to encode all above mentioned kinds of usage protocols (such as
the concurrency related type constructs of [10]) that express the be-
havior of hidden state, but our language does offer the distinctive
feature of supporting both modularity approaches.

In [33] Parkinson and Bierman introduce the notion of ab-
stract predicates which enriches a logical framework with predi-
cates whose representation is only known inside a module, and use
it to prove functional properties of programs. Abstract predicates
encode a similar notion to typestates that are, however, not lim-
ited to a finite number of abstract states (since predicates can be
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parametric on some variables). Consequently, typestates generally
target a more lightweight verification. Beyond that distinction, the
main technical difference resides in that we built our system out
of type-theoretic primitives showing how these building blocks are
enough to encode similar (albeit simpler) notions of abstraction.

Hoare Type Theory [31, 32] is a very expressive dependent type
theory, enabling types to express specification details, and support-
ing reasoning about full functional correctness properties of a pro-
gram. In our case, we investigate a much simpler and less expres-
sive substructural system with the goal to provide lightweight type-
like verification, focusing on the distillation of basic typing con-
structs to disciplined state usage, and potentially more amenable to
automation.

In [37] Rondon et al. propose a static refinement type system
to verify state in low-level C programs, where type inference sig-
nificantly reduces the annotation burden. Their approach tackles
pointer arithmetic and a series of issues related to their handling
of low-level code, while supporting a form of predicate abstraction
for their refinement types. By relying on typed heaps, this work
constitutes an alternative, low-level, approach to handling state by
fitting it into an existing languages. Our approach differs in that it is
instead centered in rooting the type system directly on the core lan-
guage, so that verification is a direct process, closely modeled by
a substructural type theory, and backed by formal type soundness
results.

5. Conclusions and Future Work
By focusing on a small set of primitive and type-theoretic concepts,
we have developed a practical substructural type-and-effect system
where valueless capabilities are threaded implicitly. Although close
to classical type-theoretic concepts, our system is able to model
fairly complex practical typestate aspects, namely state abstraction,
dynamic state tests and state dimensions. Finally, we also showed
how, by supporting mechanisms for abstracting and hiding state,
our language is naturally able to combine in a uniform way some
core concepts of typestates and behavioral types.

In this work, we only addressed aliasing in contexts where they
either refer fully disjoint parts of an object’s abstracted state space,
or are “statically” connected (in the sense that the type system stat-
ically knows that they reference the same memory location). We
are, however, investigating in ongoing work some very natural ex-
tensions to the current model which will allow much more flexible
ways of sharing, exploiting state protocols at the shared (but coor-
dinated) state level, rather than at the uniquely or disjointly owned
level, as we have done in here.

A prototype implementation of this system, able to type check
all the examples used in this paper (and others), is publicly avail-
able at [1]. It relies on a few minimal additional type annotations to
direct type checking and make it decidable. The type checking al-
gorithm for our language is not however to be seen as a contribution
of this paper, and will be described in a separate publication. The
implementation runs directly in a modern web browser with the in-
tent to make it easy to use and facilitate experimentation (although
Google Chrome is recommended, due to its efficient JavaScript en-
gine).
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