Substructural Typestates (Technical Appendix)

Filipe Militão

Carnegie Mellon University & Universidade Nova de Lisboa filipe.militao@cs.cmu.edu

Jonathan Aldrich

Carnegie Mellon University jonathan.aldrich@cs.cmu.edu

Luís Caires

Universidade Nova de Lisboa luis.caires@di.fct.unl.pt

Contents

A	Abbı	reviations	1
В	Proo	fs	3
	B.1	Well-Formed Types and Environments	3
	B.2	Subtyping Inversion Lemma	3
	B.3	Store Typing	4
	B.4	Values Inversion Lemma	6
	B.5	Substitution	9
	B.6	Free Variables Lemma	12
	B.7	Well-Form Lemmas	15
	B.8	Substitution Lemma	15
	B.9	Values Lemma	23
	B.10	Preservation	25
	B.11	Progress	29

A. Abbreviations

We define a few convenient abbreviations that were used in the examples and can be encoded into the core language without the need for additional constructs.

• Let "compressed" expressions are encoded as:

$$!e \triangleq let x = e in !x end$$

and similar to the remaining constructs (such as assignment, open, etc).

- Sequence: e_0 ; $e_1 \triangleq \text{let } x = e_0 \text{ in } e_1 \text{ end}$ Where x is not free in e_1 and e_0 . Note that e_0 must have a pure type since the value will be discarded. However, it can have capabilities stacked on top of it since those get automatically threaded to e_1 .
- Unlabeled pairs (and their generalization, tuples), which can be encoded as function and application.

Our core language only includes choice labeled products, so that the programmer must pick one (and only one) of a set of available fields — all of which produce the same effect in the Δ environment. The alternative would be to require all fields to be used, so that it is a linear labeled pair (where the order matters).

We now show how unlabeled pairs can be encoded in the language, and leave out the generalization for arbitrary (but fixed length) tuples since it is straightforward.

$$\begin{split} \frac{\Gamma; \Delta_0 \vdash e_0 : A_0 \dashv \Delta_1 \qquad \Gamma; \Delta_1 \vdash e_1 : A_1 \dashv \Delta_2}{\Gamma; \Delta_0 \vdash \{e_0, e_1\} : [A_0, A_1] \dashv \Delta_2} \\ \\ \frac{\Gamma; \Delta_0 \vdash e_0 : [A_0, A_1] \dashv \Delta_1}{\Gamma; \Delta_1, x_0 : A_0, x_1 : A_1 \vdash e_1 : A_2 \dashv \Delta_2} \\ \frac{\Gamma; \Delta_0 \vdash \text{let} \left[x_0, x_1\right] = e_0 \text{ in } e_1 \text{ end } : A_2 \dashv \Delta_2}{\Gamma; \Delta_0 \vdash \text{let} \left[x_0, x_1\right] = e_0 \text{ in } e_1 \text{ end } : A_2 \dashv \Delta_2} \\ \end{split}$$

Can be encoded as:

1

$$\{e_0,e_1\} \triangleq \quad \begin{array}{l} \text{let } x_0 = e_0 \text{ in} \\ \text{let } x_1 = e_1 \text{ in} \\ < R > \text{fun}(\texttt{f}: A_0 \multimap A_1 \multimap R).(\texttt{f} \ x_0 \ x_1 \) \\ \text{end} \\ \text{end} \\ \end{array}$$

$$\begin{array}{ll} \mathsf{let}\,[x_0,x_1] = e_p \;\mathsf{in}\; e_f \;\mathsf{end} \triangleq & \;\; \mathsf{let}\; p = e_p \;\mathsf{in} \\ & \;\; p[A_f] \;(\; \mathsf{fun}(x_0:A_0).\mathsf{fun}(x_1:A_1).e_f \;) \\ & \;\; \mathsf{end} \end{array}$$

where $e_0 : A_0, e_1 : A_1 \text{ and } e_f : A_f$.

• **Recursion:** We use the traditional *call-by-value Y-combinator* encoded in our core language to provide recursion without using additional typing rules or reductions.

Note that using a special construct, such as "rec x.e" would require changing the subtitution lemma since if rec is a value,

then no further reductions can occur, and if it is not a value, then the *substitution lemma* must account for expressions, not just values.

Noting that *x* in line 3 has types:

```
!( \operatorname{rec} X.!( X \multimap (A \multimap B) ) \multimap (A \multimap B) ) (function)

\operatorname{rec} X.!( X \multimap (A \multimap B) ) (argument
```

Making the argument of f in that line to be $A \multimap B$, and r to be of type:

$$\mathbf{rec} \ X.!(\ X \multimap (\ A \multimap B\)\) \multimap (\ A \multimap B\)$$

which, applied to itself, yields the type of the function without the recursive argument visible $(A \multimap B)$.

Therefore, to use recursion, we must create a function that takes the recursive function as argument as shown in the literature.

In the examples, we make use of the construct "rec x.e" to define a recursive function (with body e), without having to use the expanded notation, and that automatically threads all location variables through its argument(s).

• Shorter delete rule.

In the examples, we use a shorter (and more limited) delete typing rule to avoid having to carry existential types around.

$$delete_{examples} x \triangleq open < t_y, y >= (delete < t_x, x >) in y end$$

where $x : \mathbf{ref} \ t_x$ and y : A where t_y does not occur in A (and therefore does not need to be packed to leave that scope).

Similar functionality could be achieved with the following typing rule (that is used in the prototype):

(T:Delete-Prototype)
$$\frac{\Gamma; \Delta_0 \vdash e : \mathbf{ref} \ p \dashv \Delta_1, \mathbf{rw} \ p \ A}{\Gamma; \Delta_0 \vdash \mathbf{delete} \ e : A \dashv \Delta_1}$$

• Girards' encoding of existential types.

However, this abbreviation is not used since it makes the use of existential types slightly more complex and less clear. Nonetheless, we leave it here as an observation on how it could be achieved.

An existential type can be encoded into an universal type by consider the packed type to be hidden inside an universally quantified function that is not directly usable to client:

$$\exists X.A \triangleq \forall \mathbf{R}.(\ \forall X.(\ A \multimap \mathbf{R}\) \multimap \mathbf{R}\)$$

where \mathbf{R} is the result of the expression that *uses* the packed existential and where X cannot occur in \mathbf{R} .

Pack if we have:

$$\langle A_0, e \rangle : \exists X.A_1$$

then it can be encoded as:

$$\langle \mathbf{R} \rangle (\text{ fun(} x : \forall X \! . (A_1 \multimap \mathbf{R} \,) \,) . (x[A_0](e)) \,)$$

so that it is a polymorphic function on \mathbf{R} , i.e. the result of *opening* the packed existential.

Open if we have:

open
$$\langle X, x \rangle = e_0$$
 in e_1 end : A_1

where e_0 : $\exists X.A_0$, then it can be encoded as:

$$e_0[A_1](\langle X \rangle (\operatorname{fun}(x:A_0).e_1))$$

provided the resulting types A_0 , A_1 are known.

It works in identical ways to abstract *locations*:

$$\exists t. A \triangleq \forall \mathbf{R}. (\forall t. (A \multimap \mathbf{R}) \multimap \mathbf{R})$$

but the result must always be a type (not a location) since that is the type of the expression that is used on the *open/pack* constructs.

B. Proofs

B.1 Well-Formed Types and Environments

Our well-formed definition ensures that types are properly formed (i.e. type formation), be it in the environments or just in a regular type. Therefore, each type must have all the location variables it depends on declared in the corresponding Γ environment so that all location variables must be known in the same scope as the capability that refers a certain location variable. An analogous condition must hold for type variables.

Definition 1 (Well-Formed). We have the following cases (defined by induction on the structure of the type/environment):

Note that well-formed conditions are not explicitly mentioned and are assumed to be present whenever they are relevant.

B.2 Subtyping Inversion Lemma

Lemma 1 (Subtyping Inversion Lemma). We have the following cases for *types* (*A*) and for the *linear typing environment* (Δ):

- (Type) If A <: A' then one of the following holds:
 - 1. A' = A.
 - 2. if $A = !A_0$ then either:
 - (a) $A' = A_0$, or;
 - (b) $A' = !A_1$ and $A_0 <: A_1$, or;
 - (c) A' = ![].
 - 3. if $A = A_0 \multimap A_1$ then $A' = A_2 \multimap A_3$ and $A_1 <: A_3$ and $A_2 <: A_0$.
 - 4. if $A = A_0 :: A_2$ then $A' = A_1 :: A_3$ and $A_0 <: A_1$ and $A_2 <: A_3$.
 - 5. if $A = [\overline{f : A}]$ then either:
 - (a) $A = [\overline{f} : A, f_i : A_i]$ and $A' = [\overline{f} : A]$ and i > 0.
 - (b) $A = [\overline{f:A}, f_i: A_0]$ and $A' = [\overline{f:A}, f_i: A_1]$ and $A_0 <: A_1$.
 - (c) $A = [\overline{f} : \underline{!A}]$ and $A' = \underline{!}[\overline{f} : \underline{!A}]$.
 - 6. if $A = \mathbf{rw} \ p \ A_0$ then $A' = \mathbf{rw} \ p \ A_1$ and $A_0 <: A_1$.
 - 7. if $A = \exists t.A_0$ then $A' = \exists t.A_1$ and $A_0 <: A_1$.
 - 8. if $A = \forall t.A_0$ then $A' = \forall t.A_1$ and $A_0 <: A_1$.
 - 9. if $A = \exists X.A_0$ then $A' = \exists X.A_1$ and $A_0 <: A_1$.
 - 10. if $A = \forall X.A_0$ then $A' = \forall X.A_1$ and $A_0 <: A_1$.
 - 11. if $A = \operatorname{ref} p$ then $A' = !(\operatorname{ref} p)$.
 - 12. if $A = A_0 * A_1$ then either:
 - (a) $A' = A_1 * A_0$, or;
 - (b) $A' = A_0 * A_2$ and $A_1 <: A_2$.
 - (c) if $A_0 = (A_0' * A_0'')$ then $A' = A_0' * (A_0'' * A_1)$.
 - 13. if $A = \sum_{i} 1_{i} \# A_{i}$ then $A' = 1' \# A' + \sum_{i} 1_{i} \# A_{i}$.
 - 14. if $A = A_0\{X/\text{rec } X.A_0\}$ then $A' = \text{rec } X.A_0$.
 - 15. if $A = \mathbf{rec} X.A_0$ the either:
 - (a) $A' = \mathbf{rec} X.A_1 \text{ and } A_0 <: A_1, \text{ or;}$
 - (b) $A' = A_1\{X/\text{rec } X.A_1\}.$
- (Delta) If $\Delta <: \Delta'$ then one of the following holds:

 - 2. if $\Delta = \Delta_0, x : A_0$ then $\Delta' = \Delta_1, x : A_1$ and $\Delta_0 <: \Delta_1 \text{ and } A_0 <: A_1.$
 - 3. if $\Delta = \Delta_0, A_0$ then either:
 - (a) $\Delta' = \Delta_1, A_1$ and $\Delta_0 <: \Delta_1$ and $A_0 <: A_1$.
 - (b) $\Delta' = \Delta_0, A_0 \oplus A_1$.
 - 4. if $\Delta = \Delta_0, A_0, A_1$ then either:
 - (a) $\Delta' = \Delta_0, A_0 * A_1, \text{ or};$
 - (b) case (3) with A_0 , or;
 - (c) case (3) with A_1 .
 - 5. if $\Delta = \Delta_0$, $A_0 * A_1$ then $\Delta' = \Delta_0$, A_0 , A_1 .
 - 6. if $\Delta = \Delta_0$, **none** then $\Delta' = \Delta_0$.
 - 7. $\Delta' = \Delta$, none.
 - 8. if $\Delta = \Delta_0, A_0 \oplus A_1$ then $\Delta_0, A_0 <: \Delta'$ and $\Delta_0, A_1 <: \Delta'$.

Proof. We only very informally sketch the proof, without going into detail on each case since they are straightforward to show.

1. (Type) By induction on the derivation of A <: A'.

Case (ST:SYMMETRY) Case 1 of the definition.

Case (ST:ToLINEAR) Case 2 (a) of the definition.

Case (ST:PURE) Case 2 (b) of the definition.

Case (sr:Top) Case 2 (c) of the definition.

Case (st: Ref) Case 11 of the definition.

Case (sr:Function) Case 3 of the definition.

Case (sr:Loc-Exists) Case 7 of the definition.

Case (st:Loc-Forall) Case 8 of the definition.

Case (st:Type-Exists) Case 9 of the definition. Case (ST:Type-FORALL) Case 10 of the definition

Case (ST:RECORD) Case 5 (b) of the definition.

Case (ST:DISCARD) Case 5 (a) of the definition.

Case (st:PurifyRec) Case 5 (c) of the definition.

Case (ST:STACK) Case 4 of the definition.

3

Case (st:CAP) Case 6 of the definition.

Case (ST:COM) Case 12 (a) of the definition.

Case (sr:Cong) Case 12 (b) of the definition.

Case (sr:Assoc) Case 12 (c) of the definition.

Case (ST:SUM) Case 13 of the definition.

Case (ST:FOLD) Case 14 of the definition.

Case (ST:UNFOLD) Case 15 (a) of the definition.

Case (sr:Rec) Case 15 (b) of the definition.

2. (Delta) By induction on the derivation of $\Delta <: \Delta'$.

Case (SD:SYMMETRY) - Case 1 of the definition. Case (SD: VAR) - Case 2 of the definition.

Case (SD: TYPE) - Case 3 (a), 4 (b) and 4 (c) of the definition.

Case (SD:STAR), right - Case 4 of the definition.

Case (SD:STAR), left - Case 5 of the definition.

Case (SD:NONE) - Cases 7 (for <:, right) and 6 (for :>, left) of the definition.

Case (sp:Alternative-R) - Case 3 (b) of the definition.

Case (sp:Alternative-L) - Case 8 of the definition.

B.3 Store Typing

We use the notation $\widehat{\Gamma}$ to mean that Γ is closed in the sense of only containing (ρ : **loc**) elements and nothing else. Therefore, it only lists the known location *constants*. Similarly, we use Δ to mean that Δ is closed, so that it only includes capabilities (of the form: **rw** ρ A — note the location constant ρ). There is no inconsistency with the notation of A since if such type can only depend on closed environments (in order to be well-formed), then it too must be closed or it would not be well-formed.

Definition 2 (Store Typing).

$$(STR:EMPTY) \qquad \overbrace{\widehat{\Gamma}; \widehat{\Delta} \vdash H} \qquad \overbrace{\widehat{\Gamma}; \widehat{\Delta}, A_0, A_1 \vdash H} \qquad \overbrace{\widehat{\Gamma}; \widehat{\Delta}, A_0, A_1 \vdash H} \qquad \overbrace{\widehat{\Gamma}; \widehat{\Delta}, A_0 * A_1 \vdash H} \qquad \overbrace{\widehat{\Gamma}; \widehat{\Delta}, A_0 * A_1 \vdash H} \qquad \overbrace{\widehat{\Gamma}; \widehat{\Delta}, A_0 * A_1 \vdash H} \qquad \overbrace{\widehat{\Gamma}; \widehat{\Delta}, A_0 \vdash H} \qquad \widehat{\Gamma}; \widehat{\Gamma}; \widehat{\Delta}, \widehat{\Gamma}; \widehat{\Gamma}; \widehat{\Delta}, \widehat{\Gamma}; \widehat$$

Note that, since the added capability on (STR:BINDING) must still be well-formed, such implies that $\widehat{\Gamma}$ must contain ρ . For the same reason, ρ must also *not* appear in $\widehat{\Delta}$ or H. On (str:Alternative), we only need one rule because such type is assumed to be commutative.

Lemma 2 (Store Typing Inversion Lemma). If

$$\widehat{\Gamma}$$
: $\widehat{\Delta} \vdash H$

then one of the following holds:

1
$$\widehat{\Gamma} = \cdot$$
 and $\widehat{\Lambda} = \cdot$ and $H = \cdot$

1.
$$\widehat{\Gamma} = \cdot$$
 and $\widehat{\Delta} = \cdot$ and $H = \cdot$.
2. if $\widehat{\Gamma} = \widehat{\Gamma'}$, ρ : **loc** then $\widehat{\Gamma'}$; $\widehat{\Delta} \vdash H$.

3. if
$$\widehat{\Delta} = \widehat{\Delta}'$$
, $A_0 * A_1$ then $\widehat{\Gamma}$; $\widehat{\Delta}'$, $A_0, A_1 \vdash H$.

4. if
$$\widehat{\Delta} = \widehat{\Delta'}$$
, $\mathbf{rw} \ \rho \ A$ and $H = H'$, $\rho \hookrightarrow \nu$ then $\widehat{\Gamma}$; $\widehat{\Delta'}$, $\widehat{\Delta_{\nu}} \vdash H'$ and $\widehat{\Gamma}$; $\widehat{\Delta_{\nu}} \vdash \nu : A \dashv \cdot$.

5. if
$$\widehat{\Delta} = \widehat{\Delta}'$$
, none then $\widehat{\Gamma}: \widehat{\Delta}' \vdash H$.

6. if
$$\widehat{\Delta} = \widehat{\Delta}', A_0 \oplus A_1$$
 then either:

•
$$\widehat{\Gamma}$$
; $\widehat{\Delta}$, $A_0 \vdash H$, or;

•
$$\widehat{\Gamma}$$
; $\widehat{\Delta}$, $A_1 \vdash H$.

4

(note that \oplus is commutative)

Proof. Straightforward induction on the derivation of $\widehat{\Gamma}$; $\widehat{\Delta} \vdash H$.

2013/11/3

Lemma 3 (Subtyping Store Typing). If $\widehat{\Gamma}$; $\widehat{\Delta} \vdash H$ and $\widehat{\Delta} <: \widehat{\Delta'}$ then $\widehat{\Gamma}; \widehat{\Delta'} \vdash H.$

Proof. By induction on the derivation of $\widehat{\Gamma}$; $\widehat{\Delta} \vdash H$.

Case (STR:EMPTY) We have:

-; - ⊦ -(1) $\cdot <: \widehat{\Delta'}$ (2)

by hypothesis By (Subtyping Inversion Lemma) on (2), we have that either:

• [1] $\widehat{\Delta'} = \cdot$

(1.1)Thus, we conclude by (1).

• [7] $\widehat{\Delta'} = \cdot$, none (2.1)·; ·, none ⊦ · (2.2)

by (STR: NONE) on (1). Thus, we conclude.

Case (STR:Loc) We have:

 $\widehat{\Gamma}, \rho : \mathbf{loc}; \widehat{\Delta} \vdash H$ (1)

 $\widehat{\Delta} <: \widehat{\Delta'}$ (2)

by hypothesis.

 $\widehat{\Gamma}$; $\widehat{\Delta} \vdash H$ by inversion on (str:Loc) with (1).

 $\widehat{\Gamma}$: $\widehat{\Delta'} \vdash H$

by induction hypothesis with (3) and (2). $\widehat{\Gamma}, \rho : \mathbf{loc}; \widehat{\Delta'} \vdash H$

by (str:Loc) with ρ and (4).

Thus, we conclude.

Case (STR:BINDING) We have:

 $\widehat{\Gamma}$; $\widehat{\Delta}$, **rw** $\rho A \vdash H$, $\rho \hookrightarrow v$ (1)

 $\widehat{\Delta}$, rw $\rho A <: \widehat{\Delta}'$ (2)by hypothesis.

 $\widehat{\Gamma}$; $\widehat{\Delta}$, $\widehat{\Delta_v} \vdash H$ (3)

 $\widehat{\Gamma}$; $\widehat{\Delta_{\nu}} \vdash \nu : A \dashv \cdot$

by inversion on (str:BINDING) with (1).

By (Subtyping Inversion Lemma) on (2), we have that either:

• [1] $\widehat{\Delta}' = \widehat{\Delta}$, rw ρA

by sub-case hypothesis.

Thus, we conclude by (1).

• [3(a)] $\widehat{\Delta}' = \widehat{\Delta_0}, A_0$ (2.1)

 $\widehat{\Delta} <: \widehat{\Delta_0}$ (2.2)

 $\operatorname{rw} \rho A <: A_0$ (2.3)by sub-case hypothesis.

 $A_0 = \mathbf{rw} \, \rho \, A_1$ (2.4)

(2.5) $A <: A_1$

by (Subtyping Inversion Lemma) with (2.3). (note the symmetric case is immediate, so we omit it).

 $\widehat{\Gamma}$; $\widehat{\Delta_{\nu}} \vdash \nu : A_1 \dashv \cdot$

by (T:Subsumption) on (4) with (2.5).

 $\widehat{\Gamma}$; $\widehat{\Delta_0}$, $\widehat{\Delta_v} \vdash H$ (2.7)

by induction hypothesis on (3) and (2.2) noting that Δ_{ν} is unchanged.

 $\widehat{\Gamma}$; $\widehat{\Delta_0}$, $\mathbf{rw} \, \rho \, A_1 \vdash H, \rho \hookrightarrow v$

by (STR:BINDING) with (2.6) and (2.7) with ρ .

 $\widehat{\Gamma}; \widehat{\Delta'} \vdash H, \rho \hookrightarrow v$ by rewriting (2.8) with (2.1) and (2.4).

Thus, we conclude.

• [3(b)] $\widehat{\Delta}' = \widehat{\Delta}, (\mathbf{rw} \, \rho \, A) \oplus A_1$ (3.1)

by sub-case hypothesis.

 $\widehat{\Gamma}$; $\widehat{\Delta}$, $(\mathbf{rw} \ \rho \ A) \oplus A_1 \vdash H, \rho \hookrightarrow v$ (3.2)by (STR:ALTERNATIVE) on (1).

Thus, we conclude.

• [7] $\widehat{\Delta}' = \widehat{\Delta}$, rw ρA , none (4.1)

by sub-case hypothesis. $\widehat{\Gamma}$; $\widehat{\Delta}$, rw ρ A, none \vdash H, $\rho \hookrightarrow v$ (4.2)

by (STR:NONE) on (1). Thus, we conclude.

Case (STR:STAR) We have:

 $\widehat{\Gamma}$; $\widehat{\Delta}$, $A_0 * A_1 \vdash H$ (1) $\widehat{\Delta}$, $A_0 * A_1 <: \widehat{\Delta'}$ (2)

by hypothesis.

 $\widehat{\Gamma}$; $\widehat{\Delta}$, A_0 , $A_1 \vdash H$ (3)

by inversion on (str:Star) on (1).

by (Subtyping Inversion Lemma) on (2) we have that either:

• [1] $\widehat{\Delta}' = \widehat{\Delta}, A_0 * A_1$ (1.1)

Thus, we conclude by (1).

• [3(a)] $\widehat{\Delta'} = \widehat{\Delta''}, A$ and $\widehat{\Delta} <: \widehat{\Delta^{\prime\prime}}$ (2.1)

 $A_0 * A_1 <: A$ (2.2)

By (Subtyping Inversion Lemma) on (2.2) we have that either:

 $\diamond [12(a)] A = A_1 * A_0$

 $\widehat{\Delta'} = \widehat{\Delta''}, A_1 * A_0$ (2.3)by rewriting hypothesis.

 $\widehat{\Delta''}, A_1 * A_0 <: \widehat{\Delta''}, A_1, A_0$ (2.4)

by (SD:STAR) on (2.3). $\widehat{\Gamma}$; $\widehat{\Delta''}$, A_0 , $A_1 \vdash H$ (2.5)

by induction hypothesis on (3) with (2.1).

 $\widehat{\Gamma}; \widehat{\Delta^{\prime\prime}}, A_1, A_0 \vdash H$ (2.6)since Δ is a set, re-ordering is allowed.

Thus, we conclude by (2.6).

 $\diamond [12(b)] A = A_0 * A_2 \text{ and } A_1 <: A_2$

 $\widehat{\Delta'} = \widehat{\Delta}, A_0 * A_2$ (3.1)

by rewriting hypothesis. $\widehat{\Delta}$, $A_0 * A_2 <: \widehat{\Delta}$, A_0 , A_2 (3.2)

by (SD:STAR) on (3.1).

 $\widehat{\Gamma}; \widehat{\Delta}, A_0, A_2 \vdash H$ (3.3)by induction hypothesis on (3) with $A_1 < A_2$.

Thus we conclude $\diamond [12(c)]$ if $A_0 = A'_0 * A''_0$ then $A = A'_0 * (A''_0 * A_1)$

 $\widehat{\Delta'} = \widehat{\Delta}, (A'_0 * A''_0) * \widehat{A}_1$

 $\widehat{\Gamma}$; $\widehat{\Delta}$, $(A'_0 * A''_0)$, $A_1 \vdash H$ (4.2)

by rewriting hypothesis.

 $\widehat{\Gamma}$; $\widehat{\Delta}$, A_1 , $(A'_0 * A''_0) \vdash H$

since Δ is a set, re-ordering is allowed on (4.2). (4.4)

 $\widehat{\Gamma}; \widehat{\Delta}, A_1, A_0', A_0'' \vdash H$ by (Store Typing Inversion Lemma) on (4.3).

 $\widehat{\Gamma}$; $\widehat{\Delta}$, A'_0 , A''_0 , $A_1 \vdash H$

since Δ is a set, re-ordering is allowed on (4.4).

 $\widehat{\Gamma}; \widehat{\Delta}, A_0', (A_0''*A_1) \vdash H$ (4.6)by (str:Star) on (4.5).

 $\widehat{\Gamma}$; $\widehat{\Delta}$, $A_0' * (A_0'' * A_1) \vdash H$ (4.7)

by (STR:STAR) on (4.6).

Thus, we conclude.

• [3(b)] $\widehat{\Delta}' = \widehat{\Delta}, (A_0 * A_1) \oplus A_2.$

Thus, we conclude by (STR:ALTERNATIVE) on (1).

• [5] $\widehat{\Delta}' = \widehat{\Delta}, A_0, A_1$.

Thus, we conclude by (3).

• [7] $\widehat{\Delta}' = \widehat{\Delta}$, none.

Thus, we conclude by (STR:NONE) on (1).

Case (STR: NONE) We have:

 $\widehat{\Gamma}$; $\widehat{\Delta}$, none $\vdash H$ (1)

 $\widehat{\Delta}$, none $<:\widehat{\Delta}'$ (2) by hypothesis.

 $\widehat{\Gamma}; \widehat{\Delta} \vdash H$

by inversion on (str:Star) on (1).

By (Subtyping Inversion Lemma) on (2), we have that either:

• [1] $\widehat{\Delta}' = \widehat{\Delta}$, none

Thus, we conclude by (1).

• [6] $\widehat{\Delta}' = \widehat{\Delta}$

5

Thus, we conclude by (3).

Case (STR: ALTERNATIVE) We have:

 $\widehat{\Gamma}$; $\widehat{\Delta}$, $A_0 \oplus A_1 \vdash H$ (1)

 $\widehat{\Delta}$, $A_0 \oplus A_1 <: \widehat{\Delta'}$ (2)

by hypothesis. By (Subtyping Inversion Lemma) on (2), we have that either:

• [1] $\widehat{\Delta}' = \widehat{\Delta}, A_0 \oplus A_1$

Thus, we conclude by (1). • [3(a)] $\widehat{\Delta'} = \widehat{\Delta_0}, A$ (2.1)

 $\widehat{\Delta} <: \widehat{\Delta_0}$ (2.2)

 $A_0 \oplus A_1 <: A$ (2.3)

by sub-case hypothesis. $A = A_0 \oplus A_1$ (2.4)

by (Subtyping Inversion Lemma) on (2.3).

By inversion on (1) we have that either: $\diamond \widehat{\Gamma}; \widehat{\Delta}, A_0 \vdash H$ (2.5)

 $\widehat{\Delta}$, $A_0 <: \widehat{\Delta_0}$, A_0

(2.6)by (SD:Type) on (2.2) and (ST:Symmetry) with A_0 .

(1.1)

$$\widehat{\Gamma}; \widehat{\Delta_0}, A_0 \vdash H \qquad \qquad (2.7)$$
 by induction hypothesis on (2.5) and (2.6).
$$\widehat{\Gamma}; \widehat{\Delta_0}, A_0 \oplus A_1 \vdash H \qquad (2.8)$$
 by (STR:ALTERNATIVE) on (2.7).
$$\widehat{\Gamma}; \widehat{\Delta_0}, A_1 \vdash H \qquad \qquad (2.9)$$
 Analogous to the previous case, noting that \oplus is commutative.
$$\bullet \ [\widehat{\beta}(b)] \ \widehat{\Delta'} = \widehat{\Delta}, (A_0 \oplus A_1) \oplus A_2 \qquad \qquad (3.1)$$
 Thus, we conclude by (STR:ALTERNATIVE) on (1) with A_2 .
$$\bullet \ [7] \ \widehat{\Delta'} = \widehat{\Delta}, A_0 \oplus A_1, \textbf{none} \qquad \qquad (4.1)$$
 Thus, we conclude by (STR:NONE) on (1).
$$\bullet \ [8] \ \widehat{\Delta}, A_0 <: \widehat{\Delta'} \qquad \qquad (5.1)$$

$$\widehat{\Delta}, A_1 : \widehat{\Delta'} \qquad \qquad (5.2)$$
 By inversion on (1) we have that either:
$$\diamond \ \widehat{\Gamma}; \widehat{\Delta}, A_0 \vdash H \qquad \qquad (5.3)$$

$$\widehat{\Gamma}; \widehat{\Delta'} \vdash H \qquad \qquad (5.4)$$
 by induction hypothesis on (5.1) and sub-case hypothesis.
$$\diamond \ \widehat{\Gamma}; \widehat{\Delta}, A_1 \vdash H \qquad \qquad (5.5)$$
 Analogous to the previous case, using (5.2).

B.4 Values Inversion Lemma

Lemma 4 (Values Inversion Lemma). If v is a value such that:

$$\widehat{\Gamma}$$
; $\widehat{\Delta} \vdash v : A_0 \dashv \cdot$

then one of the following holds:

1. if $A_0 = []$ then:

$$\widehat{\Delta} = \cdot$$
 $\widehat{\Gamma} : \cdot \vdash v : \Gamma \vdash \cdot$

2. if $A_0 = !A_1$ then:

$$\widehat{\Delta} = \cdot$$
 $\widehat{\Gamma}; \cdot \vdash v : A_1 \dashv \cdot$

3. if $A_0 = A_1 :: A_2$ then:

$$\widehat{\Gamma}$$
; $\widehat{\Delta} \vdash v : A_1 \dashv A_2$

4. if $A_0 = \operatorname{ref} \rho$ then:

п

$$v = \rho$$
 $\rho : \mathbf{loc} \in \Gamma$ $\widehat{\Delta} = \cdot$

5. if $A_0 = A \multimap A'$ then:

$$A <: A''$$
 $v = \operatorname{fun}(x : A'').e$ $\widehat{\Gamma}; \widehat{\Delta}, x : A'' \vdash e : A' \dashv \cdot$

6. if $A_0 = \forall t.A$ then:

$$v = \langle t \rangle e$$
 $\widehat{\Gamma}, t : \mathbf{loc}; \widehat{\Delta} \vdash e : A \dashv \cdot$

7. if $A_0 = \exists t.A$ then:

$$v = \langle p, v' \rangle$$
 $\widehat{\Gamma}; \widehat{\Delta} \vdash v' : A\{p/t\} \dashv \cdot$

8. if $A_0 = [\overline{f:A}]$ then:

$$v = \{\overline{\mathbf{f} = v'}\}$$
 $\overline{\widehat{\Gamma}; \widehat{\Delta} \vdash v'_i : A_i \dashv \cdot}$

(Note that, although the record value can have more fields than those that are listed in the type, only the fields that are in the type will appear in the inversion.)

9. if $A_0 = \forall X.A$ then:

$$v = \langle X \rangle e$$
 $\widehat{\Gamma}, X : \mathbf{type}; \widehat{\Delta} \vdash e : A \dashv \cdot$

10. if $A_0 = \exists X.A$ then:

$$v = \langle A', v' \rangle$$
 $\widehat{\Gamma}; \widehat{\Delta} \vdash v' : A\{A'/X\} \dashv \cdot$

11. if $A_0 = \sum_i \mathbf{1}_i \# A_i$ then:

$$v = 1_i \# v_i$$
 $\widehat{\Gamma}; \widehat{\Delta} \vdash v_i : A_i \dashv \cdot$

for some *i*.

12. if $A_0 = \operatorname{rec} X.A$ then

$$\widehat{\Gamma}$$
; $\widehat{\Delta} \vdash v : A\{\mathbf{rec}\ X.A/X\} \dashv \cdot$

13. if $\Delta = \Delta', A_1 \oplus A_2$ then

$$\widehat{\Gamma}; \widehat{\Delta'}, A_1 \vdash v : A_0 \dashv \cdot \qquad \widehat{\Gamma}; \widehat{\Delta'}, A_2 \vdash v : A_0 \dashv \cdot$$

Proof. By induction on the derivation of $\widehat{\Gamma}$; $\widehat{\Delta} \vdash v : A_0 \dashv \cdot$.

Case (T:REF) - We have:

$$\widehat{\Gamma}, \rho : \mathbf{loc}; \vdash \rho : \mathbf{ref} \rho \dashv \cdot \tag{1}$$
 by hypothesis.

Thus, we conclude by case 4 of the definition.

Case (T:PURE) - We have:

$$\widehat{\Gamma}; \vdash \nu : A_1 \dashv \cdot$$
by hypothesis.
$$\widehat{\Gamma}; \vdash \nu : A_1 \dashv \cdot$$
(2)

by inversion on (T:Pure).

Thus, we conclude by case 2 of the definition.

Case (T:UNIT) - We have:

 $\widehat{\Gamma}$; · + ν : [] \dashv · (1) by hypothesis.

Thus, we conclude by case 1 of the definition.

Case (T:Pure-Read), (T:LINEAR-READ), (T:Pure-ELIM), (T:NEW) - Not applicable. Case (T:Delete), (T:Assign), (T:Dereference-Linear), (T:Dereference-Pure) - Not applicable.

Case (T:RECORD) - We have:

$$\widehat{\Gamma}, \widehat{\Delta} \vdash \{ \overline{\mathbf{f} = \nu} \} : [\overline{\mathbf{f} : A}] \dashv \cdot \tag{1}$$
 by hypothesis.

$$\overline{\widehat{\Gamma}; \widehat{\Delta} \vdash \nu_i : A_i \dashv \cdot}$$
 (2)

by inversion on (T:RECORD). Thus, we conclude by case 8 of the definition.

Case (T:Selection), (T:APPLICATION) - Not applicable.

Case (T:Function) - We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \mathsf{fun}(x:A_0).e:A_0 \multimap A_1 \dashv \cdot \tag{1}$$
 by hypothesis.

$$\widehat{\Gamma}; \widehat{\Delta}, x : A_0 \vdash e : A_1 \dashv \cdot$$
 (2)

$$\begin{array}{c} \text{by inversion on (r:Function)}. \\ A_0 <: A_0 \end{array} \tag{3} \\ \text{by (st:Symmetry) with } A_0. \end{array}$$

Thus, we conclude by case 5 of the definition.

Case (T:CAP-ELIM) - Not applicable.

Case (T:CAP-STACK) - We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \nu : A_0 :: A_1 \dashv \cdot$$

$$\widehat{by hypothesis.}$$

 $\widehat{\Gamma}$; $\widehat{\Delta} \vdash v : A_0 \dashv A_1$ (2)by inversion on (T:CAP-STACK).

Thus, we conclude by case 3 of the definition.

Case (T:CAP-UNSTACK), (T:APPLICATION) - Not applicable.

Case (T:FORALL-Loc) We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \langle t \rangle e : \forall t.A \dashv \cdot$$
by hypothesis.

$$\widehat{\Gamma}, t: \mathbf{loc}; \widehat{\Delta} \vdash e: A \dashv$$
 (2) by inversion on (T:ForalL-Loc) with (1).

Thus, we conclude by case 6 of the definition.

Case (T:Loc-APP) Not applicable.

Case (T:Loc-PACK) We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \langle p, v \rangle : \exists t.A + \cdot$$
 (1) by hypothesis.

$$\widehat{\Gamma}; \widehat{\Delta} \vdash v : A\{p/t\} + \cdot$$
 (2)

by inversion on (T:Loc-Pack) with (1).

Thus, we conclude by case 7 of the definition.

Case (T:Loc-OPEN) Not applicable.

Case (T:FORALL-TYPE) We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \langle X \rangle e : \forall X.A \dashv \cdot \tag{1}$$
 by hypothesis.

$$\widehat{\Gamma}, X : \mathbf{type}; \widehat{\Delta} \vdash e : A \dashv \cdot$$
 (2

by inversion on (T:Forall-Loc) with (1).

Thus, we conclude by case 9 of the definition.

Case (T:TYPE-APP) Not applicable.

Case (T:TYPE-PACK) We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \langle A_0, v \rangle : \exists X.A_1 \dashv \cdot \tag{1}$$
 by hypothesis.

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \nu : A_1\{A_0/X\} \dashv \cdot$$
 by inversion on (T.Type-Pack) with (1).

Thus, we conclude by case 10 of the definition.

Case (T:TYPE-OPEN) Not applicable.

Case (T:TAG) We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash 1 \# \nu : 1 \# A \dashv \cdot \tag{1}$$

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \nu : A \dashv \cdot$$
 by hypothesis. (2)

by inversion on (T:TAG).

Thus, we conclude by case 11 of the definition.

Case (T:CASE) Not applicable.

Case (T:ALTERNATIVE-LEFT) We have:

$$\widehat{\Gamma}; \widehat{\Delta}, A_0 \oplus A_1 \vdash \nu : A_2 \dashv \cdot \tag{1}$$
 by hypothesis.

$$\widehat{\widehat{\Gamma}}; \widehat{\widehat{\Delta}}, A_0 \vdash \nu : A_2 \dashv \cdot$$

$$\widehat{\widehat{\Xi}}; \widehat{\widehat{\Delta}}, A_0 \vdash \nu : A_2 \dashv \cdot$$
(2)

$$\widehat{\Gamma}; \widehat{\Delta}, A_1 \vdash \nu : A_2 \dashv \cdot$$
 (3)

by inversion on (T:ALTERNATIVE-LEFT). Thus, we conclude by case 13 of the definition.

Case (T:Frame) Not applicable, Δ environment on right is empty, otherwise direct application of induction hypothesis.

Case (T:Subsumption) We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \nu : A_1 \dashv \cdot \tag{1}$$

by hypothesis.
$$\widehat{\Delta} <: \widehat{\Delta'}$$

$$\widehat{\Gamma}; \widehat{\Delta'} \vdash \nu : A_0 \dashv \cdot \tag{3}$$

$$\begin{array}{cccc}
A_0 <: A_1 & (4) \\
& \cdot <: \cdot & (5)
\end{array}$$

by inversion on (T:SUBSUMPTION).

(1.5)

By induction hypothesis on (3) we have that one of the following holds:

1. if
$$A_0 = []$$
 then:

$$\widehat{\Delta'} = \cdot$$
 (1.1)

$$\widehat{\Gamma}; \vdash v : [] + \cdot \tag{1.2}$$

$$[] <: A_1 \tag{1.3}$$

by case 1 of the hypothesis and rewriting (4). Then, by (Subtyping Inversion Lemma) on (1.3) we have that either:

• [1]
$$A_1 = []$$
 (1.4)

and we conclude as case 1 of the definition.
•
$$[5(c)]$$
 $A_1 = ![]$

and we conclude as case 2 of the definition.

2. if $A_0 = !A$ then:

$$\widehat{\Delta'} = \cdot \tag{2.1}$$

$$\widehat{\Gamma}$$
; $\vdash v : A \dashv \cdot$ (2.2)

$$!A <: A_1 \tag{2.3}$$

by case 2 of the hypothesis and rewriting (4).

by (Subtyping Inversion Lemma) on (2.3) we have that either:

• [1] $A_1 = !A$

Thus, we conclude by case 2 of the definition through (2.2). • $[2(a)] A_1 = A$

Thus, we conclude by induction hypothesis on (2.2).

•
$$[2(b)]$$
 $A_1 = !A'$ and $A <: A'$

 $\widehat{\Gamma}$; $\cdot \vdash v : A' \dashv \cdot$ by (T:Subsumption) on (2.2) with A <: A'.

Thus, we conclude by case 2 of the definition with (2.4).

• [2(c)] $A_1 = ![]$

$$\widehat{\Gamma}; \cdot \vdash \nu : [] \dashv \cdot \tag{2.5}$$

by (T:UNIT) on v.

Thus, we conclude by case 2 of the definition.

3. if $A_0 = A \multimap A'$ then:

$$v = \operatorname{fun}(x : A).e \tag{3.1}$$

$$\widehat{\Gamma}; \widehat{\Delta'}, x : A \vdash e : A' \dashv \cdot \tag{3.2}$$

$$A - A' <: A_1$$
 (3.3)
by case 5 of the hypothesis and rewriting (4).

by (Subtyping Inversion Lemma) on (3.3) we have that:

(note: we omit the case $A_1 = A_0$, since it is immediate)

$$A_1 = A'' - o A''' \tag{3.4}$$

$$A' <: A''$$
 (3.5)
 $A'' <: A$ (3.6)

$$\stackrel{"}{\wedge} : A \qquad (3.6)$$

$$\stackrel{?}{\wedge} : A \vdash e : A \stackrel{"'}{} + \cdots \qquad (3.7)$$

$$\widehat{\Gamma}; \widehat{\Delta'}, x: A \vdash e: A''' \dashv \cdot$$
 (3.7)
by (T:Subsumption) on (3.2) and (3.5)

$$\widehat{\Gamma}; \widehat{\Delta}, x : A \vdash e : A''' \dashv \cdot$$
 (3.8)

(a defocus-guarantee can never be introduced by subtyping, thus $\widehat{\Delta}$)

Thus, with (3.8), (3.6) and (3.1) we conclude by case 5 of the definition.

4. if $A_0 = A :: A'$ then:

7

$$\widehat{\Gamma}; \widehat{\Delta'} \vdash \nu : A \dashv A' \tag{4.1}$$

$$A::A' <: A_1 \tag{4.2}$$

by case 3 of the hypothesis and rewriting (4).

by (Subtyping Inversion Lemma) on (4.2) we have that: (note: we omit the case $A_1 = A_0$, since it is immediate)

$$A_1 = A'' :: A''' \tag{4.3}$$

$$A <: A'' \tag{4.4}$$

$$\begin{array}{ll}
A' <: A''' \\
\widehat{\Gamma}; \widehat{\Delta} \vdash \nu : A'' + A'''
\end{array} (4.5)$$

Thus, we conclude by case 3 of the definition.

5. if $A_0 = [\overline{f : A}]$ then:

$$v = \{\overline{\mathbf{f} = v'}\}\tag{5.1}$$

$$\widehat{\Gamma}; \widehat{\Delta'} \vdash \nu'_i : A_i \dashv \cdot \tag{5.2}$$

$$[\overline{\mathbf{f}}: A] <: A_1 \tag{5.5}$$

by case 8 of the hypothesis and rewriting (4). by (Subtyping Inversion Lemma) on (5.5) we have that either:

(note: we omit the case $A_1 = A_0$, since it is immediate)

• [5(b)] $A_0 = [\overline{f:A}, f_i:A']$ and

$$A_1 = [\overline{\mathbf{f} : A}, \, \mathbf{f}_i : A''] \tag{5.6}$$

$$A' <: A'' \tag{5.7}$$

Thus, by (T:Subsumption) on (5.2) and (5.7) we conclude by case 8 of the definition.

• [5(a)] $A_0 = [\overline{f:A}, f_i:A]$ and

$$A_1 = [\overline{f : A}] \text{ and } i > 0.$$

Thus, by (T:RECORD) with (5.1) and ignoring the dropped field, we conclude by case 8 of the definition. Note that all fields have the same effect and by i > 0 we ensure that subtyping leaves at least one field to do such effect.

• [5(c)] $A_0 = [\overline{\mathbf{f} : !A}]$ and

$$A_1 = ![\overline{\mathbf{f}} : !A] \tag{5.8}$$

$$\overline{\widehat{\Gamma}}; \widehat{\Delta'} \vdash \nu'_i : !A_i \dashv \overline{}$$
 (5.9)

by rewriting (5.2) with (5.8).

$$\widehat{\widehat{\Gamma}}; \vdash \nu_i' : !A_i + \overbrace{}$$
 (5.10) by induction hypothesis on (5.9), note the ! type.

$$\widehat{\Gamma}; \vdash \{\overline{\mathbf{f}} = \overline{\nu'}\} : [\overline{\mathbf{f}} : \underline{A}] + \cdot$$
 (5.11) by (T.Record) on (5.9).

Thus, we conclude by case 2 of the definition.

6. if $A_0 = \exists t.A$ then:

$$v = \langle p, v' \rangle \tag{6.1}$$

$$\widehat{\Gamma}; \widehat{\Delta'} \vdash \nu' : A\{p/t\} \dashv \cdot \tag{6.2}$$

$$\exists t. A <: A_1 \tag{6.3}$$

by case 7 of the hypothesis and rewriting (4).

by (Subtyping Inversion Lemma) on (6.3) we have that:

(note: we omit the case $A_1 = A_0$, since it is immediate) $A_1 = \exists t.A'$ (6.4)

$$A : A' \tag{6.5}$$

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \nu' : A'\{p/t\} \dashv \cdot \tag{6.6}$$

by (T:Subsumption) on (6.2) and (6.5).

Thus, we conclude by case 7 of the definition.

7. if $A_0 = \forall t.A$ then:

$$v = \langle t \rangle e \tag{7.1}$$

$$\widehat{\Gamma}, t: \mathbf{loc}; \widehat{\Delta'} \vdash e: A \dashv \cdot \tag{7.2}$$

$$\forall t.A <: A_1 \tag{7.3}$$

by case 6 of the hypothesis and rewriting (4). by (Subtyping Inversion Lemma) on (7.3) we have that:

(note: we omit the case $A_1 = A_0$, since it is immediate)

$$A_1 = \forall t.A' \tag{7.4}$$

$$A <: A' \tag{7.5}$$

$$\widehat{\Gamma}, t: \mathbf{loc}; \widehat{\Delta} \vdash e: A' \dashv \cdot$$
 (7.2)

by (T:Subsumption) on (7.2) and (7.5).

(note that a defocus-guarantee cannot be introduced by subtyping)

Thus, we conclude by case 6 of the definition.

8. if $A_0 = \operatorname{ref} \rho$ then:

$$v = \rho \tag{8.1}$$

$$\rho: \mathbf{loc} \in \widehat{\Gamma} \tag{8.2}$$

$$\widehat{\Delta} = \cdot$$
 (8.3)

$$\begin{array}{ll}
\Delta = \cdot & (6.5) \\
\mathbf{ref} \ \rho <: A_1 & (8.4)
\end{array}$$

by case 4 of the hypothesis and rewriting (4). (note: we omit the case $A_1 = A_0$, since it is immediate)

by (Subtyping Inversion Lemma) on (8.4) we have:

• [11] $A1 = !(\mathbf{ref}\ p)$

Thus, we conclude by case 2 of the definition.

9. if $A_0 = \exists X.A$, analogous to $\exists t.A$.

10. if $A_0 = \forall X.A$, analogous to $\forall t.A$.

11. if
$$A_0 = \sum_i \mathbf{1}_i \# A_i'$$
 then:
 $v = \mathbf{1}_i \# v_i$ (11.1)

$$\widehat{\Gamma}; \widehat{\Delta'} \vdash \nu_i : A'_i \dashv \cdot \tag{11.2}$$

for some
$$i$$
.

$$\sum_{i} 1_i \# A_i' <: A_1 \tag{11.3}$$

(note: we omit the case $A_1 = \sum_i 1_i \# A_i$, since it is immediate)

by (Subtyping Inversion Lemma) on (8.4) we have that:

$$A_1 = 1' \# A' + \sum_i 1_i \# A'_i$$
 (11.4)

Thus, by (11.2) we conclude by case 11 of the definition.

12. if
$$A_0 = \text{rec } X.A \text{ then:}$$

$$\widehat{\Gamma}; \widehat{\Delta'} \vdash \nu : A\{\mathbf{rec}\ X.A/X\} \dashv \cdot$$
 (12.1)

$$\operatorname{rec} X.A <: A_1 \tag{12.2}$$

by case 12 of the hypothesis and rewriting (4). (note: we omit the case $A_1 = A_0$, since it is immediate)

by (Subtyping Inversion Lemma) on (12.2) we have that either:

• [15(a)] A1 = rec X.A and A <: A'

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \nu : A'\{\mathbf{rec} \ X.A'/X\} + \cdots$$
(12.3)

by (T.Subsumption) on (12.1).

Thus, we conclude by case 12 of the definition.

• [15(b)] $A1 = A\{X/\text{rec } X.A\}$

Thus, we conclude by induction hypothesis on (12.1) combined with (T:Subsumption) on each case.

13. if $\Delta = \Delta', A_2 \oplus A_3$ then:

$$\widehat{\Gamma}; \widehat{\Delta'}, A_2 \vdash \nu : A_0 \dashv \cdot \tag{13.1}$$

$$\widehat{\Gamma}; \widehat{\Delta'}, A_3 \vdash v : A_0 \dashv \cdot$$
 (13.2)

$$A_0 <: A_1$$
 (13.3)

By induction hypothesis on each case and then (T:Subsumption).

Case (T:LET) Not a value.

B.5 Substitution

For clarity, substitution is defined on constructs that allow expressions even though our grammar (in some places) only allows values since such difference has no impact in the following definitions and is generally more readable.

1. Variable Substitution, (vs:*)

We define the usual capture-avoiding (i.e. up to renaming of bounded variables) substitution rules:

$$e_0\{v/x\}=e_1$$

```
\rho\{v/x\}
(vs:1)
                                                                         =
                                                                                \rho
(vs:2)
                                                           x\{v/x\}
                                                                                \nu
(vs:3)
                                                                                                                                                  (x_0 \neq x_1)
                                                        x_0\{v/x_1\}
(vs:4)
                                    (\text{fun}(x_0 : A).e_0)\{v/x_1\}
                                                                                fun(x_0 : A).e_0\{v/x_1\}
                                                                                                                                                   (x_0 \neq x_1)
                                                   \{\overline{\mathbf{f} = e}\}\{v/x\}
                                                                                \{\overline{\mathbf{f} = e\{v/x\}}\}
(vs:5)
(vs:6)
                                                      (e.f)\{v/x\}
                                                                                 e\{v/x\}.f
                                                                                 e_0\{v/x\}\;e_1\{v/x\}
(vs:7)
                                                   (e_0 \ e_1)\{v/x\}
(vs:8)
                                                  (\text{new } e)\{v/x\}
                                                                                 new e\{v/x\}
(vs:9)
                                               (delete e){v/x}
                                                                         =
                                                                                 delete e\{v/x\}
(vs:10)
                                                        (!e)\{v/x\}
                                                                                 !e\{v/x\}
(vs:11)
                                               (e_0 := e_1)\{v/x\}
                                                                                 e_0\{v/x\} := e_1\{v/x\}
                                                     \langle p,e\rangle \{v/x\}
(vs:12)
                                                                                 \langle p, e\{v/x\} \rangle
(vs:13)
                                                       e[p]{v/x}
                                                                                 e\{v/x\}[p]
(vs:14)
                                                    (\langle t \rangle e) \{ v/x \}
                                                                                 \langle t \rangle e\{v/x\}
(vs:15)
                (open \langle t, x_0 \rangle = e_0 in e_1 end)\{v/x_1\}
                                                                                 open \langle t, x_0 \rangle = e_0 \{ v / x_1 \} in e_1 \{ v / x_1 \} end
                                                                                                                                                  (x_0 \neq x_1)
(vs:16)
                                                                                 \langle A, e\{v/x\} \rangle
                                                    \langle A, e \rangle \{ v/x \}
(vs:17)
                                                                                 e\{v/x\}[A]
                                                       e[A]\{v/x\}
(vs:18)
                                                   (\langle X \rangle e)\{v/x\}
                                                                                 \langle X \rangle e\{v/x\}
(vs:19)
               (open \langle X, x_0 \rangle = e_0 in e_1 end)\{v/x_1\}
                                                                         =
                                                                                 open \langle X, x_0 \rangle = e_0 \{ v/x_1 \} in e_1 \{ v/x_1 \} end
                                                                                                                                                  (x_0 \neq x_1)
(vs:20)
                                                     (1#e)\{v/x\}
                                                                                 1#e\{v/x\}
                     (case e of \overline{1_i \# x_i \to e_i} end)\{v/x\}
(vs:21)
                                                                                 case e\{v/x\} of \overline{1_i \# x_i \to e_i \{v/x\}} end
                                                                                                                                                   (x_i \neq x)
(vs:22)
                          (\text{let } x_0 = e_0 \text{ in } e_1 \text{ end})\{v/x_1\}
                                                                                 let x_0 = e_0\{v/x_1\} in e_1\{v/x_1\} end
                                                                                                                                                  (x_0 \neq x_1)
```

2. Location Variable Substitution, (LS:*)

Similarly, we define location substitution (but here up to renaming of bounded location variables) as:

```
e_0\{p/t\} = e_1
                                                                                               \rho\{p/t\} =
                                   (Ls:1.1)
                                                                                                                    \rho
                                   (LS:1.2)
                                                                                                x\{p/t\}
                                                                             (\operatorname{fun}(x:A).e)\{p/t\}
                                   (Ls:1.3)
                                                                                                                    fun(x: A\{p/t\}).e\{p/t\}
                                   (LS:1.4)
                                                                                      \{\overline{\mathbf{f}=e}\}\{p/t\}
                                                                                                                    \{\overline{\mathbf{f} = e\{p/t\}}\}\
                                   (LS:1.5)
                                                                                          (e.\mathbf{f})\{p/t\}
                                                                                                                    e\{p/t\}.f
                                                                                                                    e_0\{p/t\} e_1\{p/t\}
                                   (Ls:1.6)
                                                                                       (e_0 \ e_1)\{p/t\}
                                   (Ls:1.7)
                                                                                      (\text{new } e)\{p/t\}
                                                                                                                    new e\{p/t\}
                                   (LS:1.8)
                                                                                   (delete e){p/t}
                                                                                                                    delete e\{p/t\}
                                   (Ls:1.9)
                                                                                            (!e)\{p/t\}
                                                                                                                    !e\{p/t\}
                                                                                  (e_0 := e_1)\{p/t\}
                                                                                                                    e_0\{p/t\} := e_1\{p/t\}
                                   (LS:1.10)
                                   (LS:1.11)
                                                                                      \langle p_0, e \rangle \{p_1/t\}
                                                                                                                     \langle p_0\{p_1/t\}, e\{p_1/t\}\rangle
                                   (LS:1.12)
                                                                                        e[p_0]\{p_1/t\}
                                                                                                                    e\{p_1/t\}[p_0\{p_1/t\}]
                                   (LS:1.13)
                                                                                      (\langle t_0\rangle e)\{p/t_1\}
                                                                                                                    \langle t_1 \rangle e\{p/t_1\}
                                                                                                                                                                                    (t_0 \neq t_1)
                                   (LS:1.14)
                                                     (open \langle t_0, x \rangle = e_0 in e_1 end)\{p/t_1\}
                                                                                                                    open \langle t_0, x \rangle = e_0 \{ p/t_1 \} in e_1 \{ p/t_1 \} end
                                                                                                                                                                                   (t_0 \neq t_1)
                                   (LS:1.15)
                                                                                        \langle A, e \rangle \{ p/t \}
                                                                                                                    \langle A\{p/t\}, e\{p/t\} \rangle
                                   (LS:1.16)
                                                                                           e[A]\{p/t\}
                                                                                                                    e\{p/t\}[A\{p/t\}]
                                   (LS:1.17)
                                                                                       (\langle X \rangle e)\{p/t\}
                                                                                                                    \langle X \rangle e\{p/t\}
                                   (Ls:1.18)
                                                      (open \langle X, x \rangle = e_0 in e_1 end)\{p/t\}
                                                                                                                    open \langle X, x \rangle = e_0\{p/t\} in e_1\{p/t\} end
                                   (LS:1.19)
                                                                                         (1#e)\{p/t\}
                                                                                                                    1#e\{p/t\}
                                   (LS:1.20)
                                                         (case e of \overline{1_i \# x_i \to e_i} end)\{p/t\}
                                                                                                             =
                                                                                                                    case e\{p/t\} of \overline{1_i \# x_i \to e_i \{p/t\}} end
                                   (LS:1.21)
                                                                 (\text{let } x = e_0 \text{ in } e_1 \text{ end})\{p/t\}
                                                                                                                    let x_0 = e_0\{p/t\} in e_1\{p/t\} end
A_0\{p/t\} = A_1
                                                               (Ls:2.1)
                                                                                               \rho\{p/t\} =
                                                                                                                    \rho
                                                               (Ls:2.2)
                                                                                                t\{p/t\}
                                                                                                                    p
                                                               (Ls:2.3)
                                                                                             t_0\{p/t_1\}
                                                                                                                                                        (t_0 \neq t_1)
                                                               (Ls:2.4)
                                                                                           (!A)\{p/t\}
                                                                                                             =
                                                                                                                    !A\{p/t\}
                                                               (Ls:2.5)
                                                                                 (A_0 \multimap A_1)\{p/t\}
                                                                                                                    A_0\{p/t\} \multimap A_1\{p/t\}
                                                               (Ls:2.6)
                                                                                  (A_0 :: A_1)\{p/t\}
                                                                                                                    A_0\{p/t\} :: A_1\{p/t\}
                                                                                                                    [\overline{\mathtt{f}:A\{p/t\}}]
                                                                                       [\overline{\mathbf{f}:A}]\{p/t\}
                                                               (Ls:2.7)
                                                               (Ls:2.8)
                                                                                     (\forall t_0.A)\{p/t_1\}
                                                                                                                    \forall t_0.A\{p/t_1\}
                                                                                                                                                        (t_0 \neq t_1)
                                                               (Ls:2.9)
                                                                                     (\exists t_0.A)\{p/t_1\}
                                                                                                                    \exists t_0.A\{p/t_1\}
                                                                                                                                                        (t_0 \neq t_1)
                                                               (Ls:2.10)
                                                                                    (\mathbf{ref}\ p_0)\{p_1/t\}
                                                                                                                    ref p_0\{p_1/t\}
                                                               (LS:2.12)
                                                                                 (\mathbf{rw} \ p_0 \ A)\{p_1/t\}
                                                                                                                    rw p_0\{p_1/t\} A\{p_1/t\}
                                                                                   (A_0*A_1)\{p/t\}
                                                               (Ls:2.13)
                                                                                                                    A_0\{p/t\} * A_1\{p/t\}
                                                               (LS:2.14)
                                                                                       (\forall X.A)\{p/t\}
                                                                                                                    \forall X.A\{p/t\}
                                                               (LS:2.15)
                                                                                       (\exists X.A)\{p/t\}
                                                                                                                    \exists X.A\{p/t\}
                                                                                               X\{p/t\}
                                                               (Ls:2.16)
                                                                                                             =
                                                                                                                    X
                                                               (Ls:2.17)
                                                                                   (\mathbf{rec}\ X.A)\{p/t\}
                                                                                                                    rec X.A\{p/t\}
                                                                                                                    \sum_{i} \mathbf{1}_{i} \# A_{i} \{p/t\}
                                                               (Ls:2.18)
                                                                                  (\sum_i \mathbf{1}_i \# A_i) \{p/t\}
                                                               (Ls:2.19)
                                                                                   (A_0 \oplus A_1)\{p/t\}
                                                                                                                    A_0\{p/t\} \oplus A_1\{p/t\}
                                                               (Ls:2.20)
                                                                                         none\{p/t\}
\Gamma_0\{p/t\} = \Gamma_1
                                                                   (Ls:3.1)
                                                                                                    \cdot \{p/t\} =
                                                                   (Ls:3.2)
                                                                                        (\Gamma,x:A)\{p/t\} =
                                                                                                                     \Gamma\{p/t\}, x: A\{p/t\}
                                                                   (Ls:3.3)
                                                                                   (\Gamma, t_0 : \mathbf{loc})\{p/t_1\} =
                                                                                                                    \Gamma\{p/t_1\}, t_0 : \mathbf{loc}
                                                                                                                                                    (t_0 \neq t_1)
                                                                                   (\Gamma, X : \mathbf{type})\{p/t\} = \Gamma\{p/t\}, X : \mathbf{type}
                                                                   (Ls:3.4)
\Delta_0\{p/t\} = \Delta_1
                                                                                                           \cdot \{p/t\} =
                                                                              (Ls:4.2)
                                                                                             (\Delta, x : A)\{p/t\} = \Delta\{p/t\}, x : A\{p/t\}
                                                                              (Ls:4.3)
                                                                                                   (\Delta, A)\{p/t\} = \Delta\{p/t\}, A\{p/t\}
```

3. Type Variable Substitution, (TS:*)

Finally, we define type substitution (up to renaming of bounded type variables) as:

```
e_0\{A/X\} = e_1
                           (ts:1.1)
                                                                                    \rho\{A/X\} = \rho
                           (ts:1.2)
                                                                                    x\{A/X\}
                           (ts:1.3)
                                                                 (\text{fun}(x : A_0).e)\{A_1/X\}
                                                                                                  =
                                                                                                         fun(x : A_0\{A_1/X\}).e\{A_1/X\}
                           (rs:1.4)
                                                                            \{\overline{\mathbf{f} = e}\}\{A/X\}
                                                                                                         \{\overline{\mathbf{f} = e\{A/X\}}\}\
                                                                                                  =
                           (Ts:1.5)
                                                                               (e.f)\{A/X\}
                                                                                                         e\{A/X\}.f
                           (TS:1.6)
                                                                             (e_0 \ e_1)\{A/X\}
                                                                                                         e_0\{A/X\} e_1\{A/X\}
                           (rs:1.7)
                                                                            (\text{new } e)\{A/X\}
                                                                                                  =
                                                                                                         new e\{A/X\}
                           (ts:1.8)
                                                                        (\text{delete } e)\{A/X\}
                                                                                                         delete e\{A/X\}
                           (ts:1.9)
                                                                                 (!e){A/X}
                                                                                                         !e\{A/X\}
                                                                                                         e_0\{A/X\} := e_1\{A/X\}
                           (ts:1.10)
                                                                        (e_0 := e_1)\{A/X\}
                                                                              \langle p, e \rangle \{A/X\}
                           (ts:1.11)
                                                                                                  =
                                                                                                         \langle p, e\{A/X\} \rangle
                           (Ts:1.12)
                                                                                e[p]{A/X}
                                                                                                         e\{A/X\}[p]
                           (ts:1.13)
                                                                              (\langle t \rangle e) \{A/X\}
                                                                                                         \langle t \rangle e\{A/X\}
                                               (open \langle t, x \rangle = e_0 in e_1 end)\{A/X\}
                           (rs:1.14)
                                                                                                         open \langle t, x \rangle = e_0 \{A/X\} in e_1 \{A/X\} end
                                                                                                         \langle A_0\{A_1/X\}, e\{A_1/X\}\rangle
                           (Ts:1.15)
                                                                           \langle A_0, e \rangle \{A_1/X\}
                           (ts:1.16)
                                                                                                         e\{A_1/X\}[A_0\{A_1/X\}]
                                                                             e[A_0]\{A_1/X\}
                                                                          (\langle X_0 \rangle e) \{A/X_1\}
                                                                                                  =
                                                                                                         \langle X_0 \rangle e\{A/X_1\}
                           (Ts:1.17)
                                                                                                                                                                        (X_0 \neq X_1)
                                                                                                         open \langle X_0, x \rangle = e_0 \{A/X_1\} in e_1 \{A/X_1\} end
                           (rs:1.18)
                                           (open \langle X_0, x \rangle = e_0 in e_1 end)\{A/X_1\}
                                                                                                                                                                        (X_0 \neq X_1)
                                                                             (1#e){A/X}
                           (Ts:1.19)
                                                                                                         1#e\{A/X\}
                           (ts:1.20)
                                                 (case e of \overline{1_i \# x_i \to e_i} end)\{A/X\}
                                                                                                         case e\{A/X\} of \overline{1_i \# x_i \to e_i \{A/X\}} end
                           (ts:1.21)
                                                        (let x = e_0 in e_1 end)\{A/X\}
                                                                                                         let x_0 = e_0\{A/X\} in e_1\{A/X\} end
A_0\{A_1/X\} = A_2
                                                    (Ts:2.1)
                                                                                     \rho\{A/X\}
                                                                                                   =
                                                    (Ts:2.2)
                                                                                      t\{A/X\}
                                                                                                          p
                                                    (Ts:2.3)
                                                                                     X\{A/X\}
                                                                                                   =
                                                                                                          A
                                                    (ts:2.4)
                                                                                  X_0\{A/X_1\}
                                                                                                   =
                                                                                                          X_0
                                                                                                                                               (X_0 \neq X_1)
                                                                                                          !A_0\{A_1/X\}
                                                    (Ts:2.5)
                                                                              (!A_0)\{A_1/X\}
                                                                      (A_0 \multimap A_1)\{A_2/X\}
                                                                                                          A_0\{A_2/X\} \multimap A_1\{A_2/X\}
                                                    (Ts:2.6)
                                                    (ts:2.7)
                                                                        (A_0::A_1)\{A_2/X\}
                                                                                                          A_0\{A_2/X\}::A_1\{A_2/X\}
                                                    (ts:2.8)
                                                                             [\overline{\mathbf{f}:A}]\{A_0/X\}
                                                                                                          [f:A\{A_0/X\}]
                                                    (Ts:2.9)
                                                                            (\forall t.A_0)\{A_1/X\}
                                                                                                           \forall t.A_0\{A_1/X\}
                                                                            (\exists t.A_0)\{A_1/X\}
                                                    (ts:2.10)
                                                                                                          \exists t. A_0\{A_1/X\}
                                                    (TS:2.11)
                                                                              (\mathbf{ref}\ p)\{A/X\}
                                                                                                          ref p
                                                                        (\mathbf{rw} \ p \ A_0)\{A_1/X\}
                                                    (Ts:2.13)
                                                                                                          rw p A_0\{A_1/X\}
                                                    (ts:2.14)
                                                                        (A_0 * A_1)\{A_2/X\}
                                                                                                          A_0\{A_2/X\} * A_1\{A_2/X\}
                                                    (Ts:2.15)
                                                                        (\forall X_0.A_0)\{A_1/X_1\}
                                                                                                           \forall X_0.A_0\{A_1/X_1\}
                                                                                                                                               (X_0 \neq X_1)
                                                                                                                                               (X_0 \neq X_1)
                                                    (ts:2.16)
                                                                       (\exists X_0.A_0)\{A_1/X_1\}
                                                                                                          \exists X_0.A_0\{A_1/X_1\}
                                                    (TS:2.17)
                                                                     (\mathbf{rec}\ X_0.A_0)\{A_1/X_1\}
                                                                                                          rec X_0.A_0\{A_1/X_1\}
                                                                                                                                               (X_0 \neq X_1)
                                                                         (\sum_i 1_i \# A_i) \{A/X\}
                                                                                                   =
                                                    (Ts:2.18)
                                                                                                          \sum_{i} 1_i \# A_i \{A/X\}
                                                    (ts:2.19)
                                                                          (A_0 \oplus A_1)\{A/X\}
                                                                                                          A_0\{A/X\} \oplus A_1\{A/X\}
                                                    (TS:2.20)
                                                                               none\{A/X\}
                                                                                                          none
\Gamma_0\{A/X\} = \Gamma_1
                                                       (ts:3.1)
                                                                                        \cdot \{A/X\} =
                                                       (ts:3.2)
                                                                          (\Gamma, x : A_0)\{A_1/X\} = \Gamma\{A_1/X\}, x : A_0\{A_1/X\}
                                                       (Ts:3.3)
                                                                           (\Gamma, t : \mathbf{loc})\{A/X\} =
                                                                                                        \Gamma\{A/X\}, t: \mathbf{loc}
                                                       (ts:3.4)
                                                                     (\Gamma, X_0 : \mathbf{type})\{A/X_1\} = \Gamma\{A/X_1\}, X_0 : \mathbf{type}
                                                                                                                                            (X_0 \neq X_1)
\Delta_0\{A/X\} = \Delta_1
                                                                 (Ts:4.1)
                                                                                               \cdot \{A/X\} =
                                                                 (Ts:4.2)
                                                                                (\Delta, x : A_0)\{A_1/X\} =
                                                                                                               \Delta \{A_1/X\}, x : A_0\{A_1/X\}
                                                                 (ts:4.3)
                                                                                     (\Delta, A_0)\{A_1/X\} = \Delta\{A_1/X\}, A_0\{A_1/X\}
```

B.6 Free Variables Lemma

Lemma 5 (Free Variables Lemma). If Γ ; Δ_0 , $x : A_0 \vdash e : A_1 \dashv \Delta_1$ and $x \in \text{fv}(e)$ then $x \notin \Delta_1$.

 $fv(e) \triangleq$ "set of all free variables inside the expression e"

Proof. We proceed by induction on the derivation of Γ ; Δ_0 , $x : A_0 \vdash e : A_1 \dashv \Delta_1$.

Case (T:Ref), (T:Pure), (T:Unit), (T:Pure-Read) - Δ is empty. Case (T:Linear-Read) - We have:

Therefore, we immediately conclude $x \notin \cdot$.

Case (T:PURE-ELIM) - We have:

$$\begin{array}{c} \Gamma; \Delta_0, x: !A_0 \vdash e: A_1 \dashv \Delta_1 & (1) \\ x \in \mathbf{fv}(e) & (2) \\ \\ \Gamma, x: A_0; \Delta_0 \vdash e: A_1 \dashv \Delta_1 & (3) \\ x \not\in \Delta_1 & \text{by inversion on (T-Pure-ELIm).} \\ x \not\in \Delta_1 & \text{because x is in the linear environment (and cannot appear duplicated in Δ's).} \end{array}$$

Therefore, we conclude.

(Note: the case when x is not the one use in the (τ :Pure-ELIM) rule is a direct application of the induction hypothesis.)

Case (T:NEW) - We have:

Γ ; Δ_0 , $x : A_0 \vdash \text{new } v : \exists t. (\text{ref } t :: \text{rw } t A) \dashv \Delta_1$	(1)
$x \in fv(\text{new } v)$	(2)
	by hypothesis.
Γ ; Δ_0 , x : $A_0 \vdash v$: $A \dashv \Delta_1$	(3)
	by inversion on (T:NEW) with (1).
$x \in fv(v)$	(4)
	[fv(new v) = fv(v)]

by definition of fv and (2). $x \notin \Delta_1$ (5) by induction hypothesis on (3) and (4).

Therefore, we conclude.

Case (T:DELETE) - We have:

$\Gamma; \Delta_0, x : A_0 \vdash \text{delete } v : \exists t.A \dashv \Delta_1$ $x \in \text{fv}(\text{delete } v)$	(1) (2)
	by hypothesis.
Γ ; Δ_0 , $x : A_0 \vdash v : \exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A) \dashv \Delta_1$	(3)
	by inversion on (T:Delete) with (1).
$x \in \mathbf{fv}(v)$	(4)
	[$fv(delete v) = fv(v)$]
	by definition of fv and (2).
$x \notin \Delta_1$	(5)
	by induction hypothesis on (3) and (4).

Case (T:Assign) - We have:

Therefore, we conclude,

Γ ; Δ_0 , x : $A \vdash v_0 := v_1 : A_1 \dashv \Delta_2$, $\mathbf{rw} p A_0$	(1)
$x \in \mathbf{fv}(v_0 := v_1)$	(2)
	by hypothesis.
Γ ; Δ_0 , x : $A \vdash v_1 : A_0 \dashv \Delta_1$	(3)
Γ ; $\Delta_1 \vdash v_0 : \mathbf{ref} \ p \dashv \Delta_2, \mathbf{rw} \ p \ A_1$	(4)
	by inversion on (T:Assign) with (1).
	[$fv(v_0 := v_1) = fv(v_0) \cup fv(v_1)$]

Therefore, we have the following possibilities:

1.
$$x \in \mathbf{fv}(v_0) \land x \notin \mathbf{fv}(v_1)$$
 (1.1)
 $(x : A) \in \Delta_1$ (1.2)
 $x \notin \Delta_2, \mathbf{rw} \ p \ A_1$ (1.2)
 $x \notin \Delta_2, \mathbf{rw} \ p \ A_0$ (1.3)
since the capability trivially obeys the restriction (since x is not a type). Thus, we conclude.

2. $x \in \mathbf{fv}(v_1) \land x \notin \mathbf{fv}(v_0)$

 $x \notin \Delta_1$ (2.1)by induction hypothesis on (3) and case assumption. $x \notin \Delta_2$, rw $p A_1$ (2.2)by (2.1) and (4). $x\not\in\Delta_2, \mathbf{rw}\ p\ A_0$ (2.3)since the capability trivially obeys the restriction on (2.2). Thus, we conclude. 3. $x \in \mathbf{fv}(v_0) \land x \in \mathbf{fv}(v_1)$ $x \notin \Delta_1$ by induction hypothesis on (3) and case assumption. We reach a contradiction since v_0 is well-typed by (4) but $x \in fv(v_1)$ contradicts (3.1). Thus, such case is impossible to occur in a well-typed expression. Thus, we conclude.

Case (T:Dereference-Linear) - We have:

$$\begin{array}{lll} \Gamma; \Delta_0, x: A_0 \vdash !v: A \dashv \Delta_1, \mathbf{rw} \ p \ [] & (1) \\ x \in \mathbf{fv}(!v) & (2) \\ & \text{by hypothesis.} \\ \Gamma; \Delta_0, x: A_0 \vdash v: \mathbf{ref} \ p \dashv \Delta_1, \mathbf{rw} \ p \ A \\ & x \in \mathbf{fv}(v) & (3) \\ & \text{by inversion on (T:Dereference-Linear).} \\ & x \in \mathbf{fv}(v) & (4) \\ & \text{by definition of } \mathbf{fv} \ \text{and} \ (2). \\ & x \notin \Delta_1, \mathbf{rw} \ p \ A \\ & x \notin \Delta_1, \mathbf{rw} \ p \ [] & (5) \\ & \text{by induction hypothesis on (3) and (4).} \\ & x \notin \Delta_1, \mathbf{rw} \ p \ [] & (6) \\ & \text{by (5) and since } x \ \text{cannot be in } \mathbf{rw} \ p \ []. \end{array}$$

riius, we conclude.

Case (T:RECORD) - We have:

$$\Gamma; \Delta, x : A_0 \vdash \{\overline{f} = v\} : [\overline{f} : A] \rightarrow$$

$$(1)$$

$$x \in fv(\{\overline{f} = v\})$$
(2)
by hypothesis.

Therefore, we immediately conclude $x \notin \cdot$.

Case (T:Selection) - We have:

Thus, we conclude.

Case (T:APPLICATION) - We have:

Therefore, we have the following possibilities:

$$\begin{array}{lll} 1. & x \in \mathsf{fv}(v_0) \land x \notin \mathsf{fv}(v_1) \\ & \Gamma; \Delta_0 \vdash v_1 : A_0 \dashv \Delta_1' & (1.1) \\ & \Delta_1 = \Delta_1', x : A & (1.2) \\ & & \text{by } x \notin \mathsf{fv}(v_1). \\ & \Gamma; \Delta_1', x : A \vdash v_0 : A_0 \multimap A_1 \dashv \Delta_2 & (1.3) \\ & x \notin \Delta_2 & \text{by rewriting (4) with (1.2).} \end{array}$$

Thus, we conclude. 2. $x \in fv(v_0) \land x \in fv(v_1)$	$\Gamma; \Delta, x : A_0 \vdash \langle p, v \rangle : \exists t.A \dashv \Delta_1$ $x \in \text{fv}(\langle p, v \rangle)$	(1) (2)
$x \notin \Delta_1 \tag{2.1}$	$\Gamma; \Delta, x : A_0 \vdash v : A\{p/t\} \dashv \Delta_1$	by hypothesis. (3)
by induction hypothesis on (3) and case assumption.	· · · · · · · · · · · · · · · · · · ·	by inversion on (T:Loc-Pack) on (1).
We reach a contradiction since v_0 is well-typed by (4) but $x \in fv(v_1)$ contradicts (2.1). Thus, such case is impossible to occur in a well-typed	$x \in \mathbf{fv}(v)$	$[fv(\langle p, v \rangle) = fv(v)] $ (4)
expression. Therefore, we conclude.	$x \notin \Delta_1$	by definition of fv and (2). (5)
3. $x \in fv(v_1) \land x \notin fv(v_0)$ $x \notin \Delta_1$ (3.1)		by induction hypothesis on (4) and (3).
by induction hypothesis on (3) and case assumption.	Thus, we conclude.	
$x \notin \Delta_2$ (3.2) by (3.1) and (4).	Case (T:Forall-Type) - We have:	
Thus, we conclude. Case (r:Function) - We have:	$\Gamma; \Delta, x : A_0 \vdash \langle X \rangle e : \forall X.A \dashv \cdot x \in fv(\langle X \rangle e)$	(1) (2) by hypothesis.
$\Gamma; \Delta, x : A_0 \vdash fun(x_0 : A_2).e : A_2 \multimap A_1 \dashv \cdot \tag{1}$	$x \notin \cdot$	(3)
$x \in \mathbf{fv}(fun(x_0 : A_2).e) \tag{2}$	Thus, we conclude.	since it is the empty environment.
by hypothesis. $x \notin \cdot$ (3)	Case (T:Type-App) - We have:	
Since it is the empty environment. Thus, we conclude.	$\Gamma; \Delta, x : A_0 \vdash v[A_1] : A_2\{A_1/X\} \dashv \Delta_1$	(1)
	$x \in \mathbf{fv}(v[A_1])$	(2)
Case (T:Forall-Loc) - We have:	$\Gamma \vdash A_1$ type	by hypothesis. (3)
$\Gamma; \Delta, x : A_0 \vdash \langle t \rangle e : \forall t.A \dashv \cdot \tag{1}$	$\Gamma; \Delta, x : A_0 \vdash v : \forall X.A_2 \dashv \Delta_1$	by inversion on (T:Type-App) on (1).
$x \in \mathbf{fv}(\langle t \rangle e)$ (2) by hypothesis.		[$fv(v[A_1]) = fv(v)$]
$x \notin \cdot$ (3) since it is the empty environment.	$x \in \mathbf{fv}(v)$	(5) by definition of fv and (2).
Thus, we conclude.	$x \notin \Delta_1$	(6) by induction hypothesis on (5) and (4).
Case (T:Loc-App) - We have:	Thus, we conclude.	by induction hypothesis on (3) and (4).
	Case (T:TYPE-PACK) - We have:	
$\Gamma; \Delta, x : A_0 \vdash v[p] : A\{p/t\} \dashv \Delta_1 \tag{1}$ $x \in \mathbf{fv}(v[p]) \tag{2}$	$\Gamma; \Delta, x : A_0 \vdash \langle A_1, v \rangle : \exists X.A_2 \dashv \Delta_1$	(1)
by hypothesis.	$x \in \mathbf{fv}(\langle A_1, v \rangle)$	(2) by hypothesis.
$p: \mathbf{loc} \in \Gamma$ $\Gamma; \Delta, x: A_0 \vdash v: \forall t.A \dashv \Delta_1$ (3) (4)	$\Gamma; \Delta, x: A_0 \vdash v: A_2\{A_1/X\} \dashv \Delta_1$	(3)
by inversion on (τ :Loc-APP) on (1). [$fv(v[p]) = fv(v)$]		by inversion on (T:Type-Pack) on (1). [$fv(\langle A_1, v \rangle) = fv(v)$]
$x \in \mathbf{fv}(v) \tag{5}$	$x \in \mathbf{fv}(v)$	(4) by definition of fv and (2).
by definition of f v and (2). $x \notin \Delta_1$ (6)	$x \notin \Delta_1$	(5)
by induction hypothesis on (5) and (4). Thus, we conclude.	Thus, we conclude.	by induction hypothesis on (4) and (3).
	Case (T:Type-Open) - Analogous to (T:L	oc-Open).
Case (r:Loc-Open) - We have:	Case (T:CAP-ELIM) - We have:	
$\Gamma; \Delta_0, x : A \vdash open(t, x_0) = v_0 \text{ in } e_1 \text{ end } : A_1 \dashv \Delta_2$ (1)	$\Gamma; \Delta_0, x: A_1 :: A_2 \vdash e: A_0 \dashv \Delta_1$	(1)
$x \in \text{fv(open}\langle t, x_0 \rangle = v_0 \text{ in } e_1 \text{ end)}$ (2) $[\text{fv(open}\langle t, x_0 \rangle = v_0 \text{ in } e_1 \text{ end}) = \text{fv}(v_0) \cup \text{fv}(e_1)]$	$x \in fv(e)$	(2) by hypothesis.
by hypothesis. $\Gamma; \Delta_0, x : A \vdash v_0 : \exists t. A_0 + \Delta_1$ (3)	$\Gamma; \Delta_0, x: A_1, A_2 \vdash e: A_0 \dashv \Delta_1$	by inversion on (T:CAP-ELIM) on (1).
$\Gamma, t: \mathbf{loc}; \Delta_1, x_0: A_0 \vdash e_1: A_1 \dashv \Delta_2$ (4) by inversion on (T:Loc-Open) with (1).	$x \notin \Delta_1$	(4)
by inversion on (1.Loc-OPER) with (1).	Thus, we conclude.	by induction hypothesis on (2) and (3).
Therefore, we have the following possibilities: $1 - x \in f_{V(x)} \land x \notin f_{V(x)}$	Case (T:CAP-STACK) - We have:	
1. $x \in fv(e_1) \land x \notin fv(v_0)$ $(x : A) \in \Delta_1$ (1.1)	$\Gamma; \Delta_0, x: A_0 \vdash e: A_1 :: A_2 \dashv \Delta_1$	(1)
by $x \notin fv(v_0)$. $x \notin \Delta_2$ (1.2)	$x \in \mathbf{fv}(e)$	(2) by hypothesis.
by induction hypothesis on (4) with (1.1) .	$\Gamma; \Delta_0 \vdash e : A_1 \dashv \Delta_1, A_2$	(3)
Thus, we conclude. 2. $x \in \text{fv}(v_0) \land x \in \text{fv}(e_1)$	$x \notin \Delta_1, A_2$	by inversion on (T:CAP-STACK) on (1). (4)
$x \notin \Delta_1$ (2.1)	$x \notin \Delta_1$	by induction hypothesis on (3) and (2). (5)
by induction hypothesis on (3) and case assumption.		by (4).
We reach a contradiction since v_0 is well-typed by (4) but $x \in \text{fv}(e_1)$ contradicts (2.1). Thus, such case is impossible to occur in a well-typed	Thus, we conclude.	
expression.	Case (T:CAP-UNSTACK) - We have:	
3. $x \in fv(v_0) \land x \notin fv(e_1)$ $x \notin \Delta_1$ (3.1)	$\Gamma; \Delta_0, x : A_0 \vdash e : A_1 \dashv \Delta_1, A_2$ $x \in fv(e)$	(1) (2)
by induction hypothesis on (3) and case assumption. $x \notin \Delta_2$ (3.2)		by hypothesis.
by (3.1) and (4).	$\Gamma; \Delta_0, x: A_0 \vdash e: A_1 :: A_2 \dashv \Delta_1$	by inversion on (T:CAP-UNSTACK) with (1).
Thus, we conclude. Case (τ:Loc-Pack) - We have:	$x \notin \Delta$	(4) by induction hypothesis with (3) and (2).
·		•

Thus, we conclude. by inversion on (T:Alternative-Left) with (1). $x \notin \Delta_1$ Case (T:FRAME) - We have: by induction hypothesis with (2) and (3). Thus, we conclude. Γ ; $(\Delta_0, x : A_0), \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2$ (1) $x \in \mathbf{fv}(e)$ (2) Case (T:LET) - We have: by hypothesis. Γ ; Δ_0 , $x : A \vdash \text{let } x_0 = e_0 \text{ in } e_1 \text{ end } : A_1 \dashv \Delta_2$ Γ ; Δ_0 , x: $A_0 \vdash e$: $A \dashv \Delta_1$ by inversion on (T:Frame) with (1), note by (2) x must be in environment. $x \in \mathbf{fv}(\mathsf{let}\ x_0 = e_0 \mathsf{in}\ e_1 \mathsf{end})$ $x \notin \Delta_1$ [$fv(let x_0 = e_0 in e_1 end) = fv(e_0) \cup fv(e_1)$] by hypothesis. by induction hypothesis. $\Gamma; \Delta_0, x : A \vdash e_0 : A_0 \dashv \Delta_1$ $x\notin (\Delta_1,\Delta_2)$ since by (1) x cannot be in Δ_2 . $\Gamma; \Delta_1, x_0 : A_0 \vdash e_1 : A_1 \dashv \Delta_2$ by inversion on (T:LET) with (1). Thus, we conclude. Therefore, we have the following possibilities: Case (T:Subsumption) - We have: 1. $x \in \mathbf{fv}(e_1) \land x \notin \mathbf{fv}(e_0)$ Γ ; Δ_0 , $x : A \vdash e : A_1 \dashv \Delta_1$ (1) $(x:A)\in\Delta_1$ $x \in \mathbf{fv}(e)$ (2) by $x \notin fv(e_0)$. by hypothesis. $x \notin \Delta_2$ $\Delta_0, x:A<:\Delta_0', x:A'$ (3) by induction hypothesis on (4) with (1.1). $\Gamma; \Delta'_0 \vdash e : A_0 \dashv \Delta'_1$ (4)Thus, we conclude. $A_0 \stackrel{\circ}{<:} A_1$ $\Delta'_1 \stackrel{\circ}{<:} \Delta_1$ (5) 2. $x \in \mathbf{fv}(e_0) \land x \in \mathbf{fv}(e_1)$ (6) $x \notin \Delta_1$ by inversion on (T:Subsumption) with (1). by induction hypothesis on (3) and case assumption. $x \notin \Delta'_1$ (7)by induction hypothesis on (2) and (4). We reach a contradiction since e_0 is well-typed by (4) but $x \in fv(e_1)$ $x \notin \Delta_1$ contradicts (2.1). Thus, such case is impossible to occur in a well-typed by (6) and (7) noting the members of Δ_1 and Δ'_1 are the same. expression. Thus, we conclude. 3. $x \in fv(e_0) \land x \notin fv(e_1)$ Case (T:TAG) - We have: $x \notin \Delta_1$ by induction hypothesis on (3) and case assumption. $\Gamma; \Delta_0, x: A_0 \vdash 1 \# v: A_1 \dashv \Delta_1$ (1) $x \notin \Delta_2$ $x \in \mathbf{fv}(1#v)$ (2) by (3.1) and (4). by hypothesis. Thus, we conclude Γ ; Δ_0 , $x : A_0 \vdash v : A_1 \dashv \Delta_1$ by inversion on (T:TAG) with (1). [fv(1#v) = fv(v)] $x \in fv(e)$ (4) by definition of fv and (2). $x \notin \Lambda_1$ by induction hypothesis on (3) and (4). Thus, we conclude. Case (T:CASE) - We have: Γ ; Δ_0 , $x: A' \vdash \mathsf{case} \ v \ \mathsf{of} \ \overline{1_j \# x_j \to e_j} \ \mathsf{end} : A \dashv \Delta_1$ (1) $x \in \text{fv}(\text{case } v \text{ of } \overline{1_j \# x_j \to e_j} \text{ end})$ (2)[$fv(case \ v \ of \ \overline{1_j \# x_j \to e_j} \ end) = fv(v) \cup \overline{fv(e_i)}$], for some $i \le j$ by hypothesis. $\Gamma; \Delta_0, x : A' \vdash v : \sum_i \mathbf{1}_i \# A_i \dashv \Delta'$ $\overline{\Gamma;\Delta',x_i:A_i\vdash e_i:A\dashv \Delta_1}$ (4) $i \leq j$ (5)by inversion on (T:CASE) with (1). Therefore, we have the following possibilities: 1. $x \in \mathbf{fv}(v) \land x \notin \overline{\mathbf{fv}(e_i)}$ $x\notin\Delta'$ (1.1)by induction hypothesis on (3) and case assumption. $x\not\in\Delta_1$ (1.2)by (1.1) and (4). Thus, we conclude. 2. $x \notin fv(v) \land x \in \overline{fv(e_i)}$ $(x:A')\in\Delta'$ (2.1)by $x \notin fv(e)$. $x \notin \Delta_1$ (2.2)by induction hypothesis on (4) and (2.1). Thus, we conclude. 3. $x \in \mathbf{fv}(v) \land x \in \overline{\mathbf{fv}(e_i)}$ $x \notin \Delta_1$ (3.1)by induction hypothesis on (3) and sub-case hypothesis. We reach a contradiction since v is well-typed by (4) but $x \in \overline{\mathsf{fv}(e_i)}$ contra-

> (1) (2)

(3)

(4)

by hypothesis.

dicts (3.1). Thus, such case is impossible to occur in a well-typed expression.

Case (T:ALTERNATIVE-LEFT) - We have: Γ ; Δ_0 , $x : A_0$, $A_1 \oplus A_2 \vdash e : A_3 \dashv \Delta_1$

 Γ ; Δ_0 , x: A_0 , $A_1 \vdash e$: $A_3 \dashv \Delta_1$

 Γ ; Δ_0 , $x : A_0$, $A_2 \vdash e : A_3 \dashv \Delta_1$

 $x \in \mathbf{fv}(e)$

14 2013/11/3

(1)

(2)

(3)

(4)

(1.1)

(1.2)

(2.1)

(3.1)

(3.2)

B.7 Well-Form Lemmas

Lemma 6 (Well-Formed Type Substitution). We have:

- For location variables:
 - 1. If

 Γ , t: loc wf ρ : loc $\in \Gamma$

then $\Gamma\{\rho/t\}$ wf.

2. If

 Γ , t: loc $\vdash \Delta$ wf ρ : loc $\in \Gamma$

then $\Gamma\{\rho/t\} \vdash \Delta\{\rho/t\}$ wf.

3. If

 $\Gamma, t: \mathbf{loc} \vdash A \mathbf{type} \qquad \rho: \mathbf{loc} \in \Gamma$

then $\Gamma\{\rho/t\} \vdash A\{\rho/t\}$ **type**.

- For type variables:
 - 1. If

 Γ , X type wf $\Gamma \vdash A$ type

then $\Gamma\{A/X\}$ wf.

2. If

 Γ , X type $\vdash \Delta$ wf $\Gamma \vdash A$ type

then $\Gamma\{A/X\} \vdash \Delta\{A/X\}$ wf.

3. If

 $\Gamma, X \text{ type} \vdash A \text{ type}$ $\Gamma \vdash A' \text{ type}$

then $\Gamma\{A'/X\} \vdash A\{A'/X\}$ **type.**Proof. Straightforward by induction on the structure of Γ , Δ and types.

Lemma 7 (Well-Formed Subtyping). We have two cases:

- 1. (Type) If $\Gamma \vdash A$ type and $A \lt : A'$ then $\Gamma \vdash A'$ type.
- 2. (Delta) If $\Gamma \vdash \Delta$ wf and $\Delta <: \Delta'$ then $\Gamma \vdash \Delta'$ wf.

Proof. Straightforward by induction on the definition of <: for types and Δ , respectively.

B.8 Substitution Lemma

Lemma 8 (Substitution Lemma). We have the following substitution properties for both *expression typing* and *type formation*:

1. (Linear) If

$$\Gamma; \Delta_0 \vdash v : A_0 \dashv \Delta_1$$
 $\Gamma; \Delta_1, x : A_0 \vdash e : A_1 \dashv \Delta_2$

then

$$\Gamma; \Delta_0 \vdash e\{v/x\} : A_1 \dashv \Delta_2$$

2. (Pure) If

$$\Gamma$$
; $\cdot \vdash v : !A_0 \dashv \cdot \qquad \Gamma$, $x : A_0; \Delta_0 \vdash e : A_1 \dashv \Delta_1$

then

$$\Gamma$$
; $\Delta_0 \vdash e\{v/x\} : A_1 \dashv \Delta_1$

(note that due to the required pure types, the Δ environments to check ν must be empty)

3. (Location Variable) If

$$\Gamma$$
, t : loc; $\Delta_0 \vdash e : A \dashv \Delta_1$ ρ : loc $\in \Gamma$

then

$$\Gamma\{\rho/t\};\Delta_0\{\rho/t\}\vdash e\{\rho/t\}:A\{\rho/t\}\dashv\Delta_1\{\rho/t\}$$

Note that, since t may appear free in all typing environments, the expression and in its type, we must substitute into all those elements.

4. (Type Variable) If

$$\Gamma$$
, X **type**; $\Delta_0 \vdash e : A_0 \dashv \Delta_1 \qquad \Gamma \vdash A_1$ **type**

then

П

$$\Gamma\{A_1/X\}; \Delta_0\{A_1/X\} \vdash e\{A_1/X\} : A_0\{A_1/X\} \dashv \Delta_1\{A_1/X\}$$

(replaces X in all places it may occur free)

Proof. We split the proof on each of the lemma's sub-parts:

1. (Linear)

Proof. We proceed by induction on the typing derivation of Γ ; Δ_1 , $x : A_0 \vdash e : A_1 \dashv \Delta_2$.

Case (T:Ref), (T:Pure), (T:UNIT), (T:Pure-Read) - Not applicable since these rules require an empty Δ environment.

Case (T:LINEAR-READ) - We have:

(note ν 's ending environment must be \cdot to apply (T.LINEAR-READ)). Γ ; $\Delta \vdash x \{\nu/x\} : A \dashv \cdot$ (3)

by (vs:2) with (1) and x.

Thus, we conclude.

Case (T:PURE-ELIM) - We have:

$$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 \tag{1}$$

$$\Gamma; \Delta_1, \chi_1 : A_2, \chi_0 : A_0 \vdash e : A_1 \dashv \Delta_2 \tag{2}$$

 $\Gamma, x_1:A_2; \Delta_1, x_0:A_0 \vdash e:A_1 \dashv \Delta_2 \tag{3}$ by hypothesis.

by inversion on (T.Pure-Elm) with (2). $\Gamma, x_1: A_2; \Delta_1 \vdash e\{\nu/x_0\}: A_1 \dashv \Delta_2 \tag{4}$

by induction hypothesis on (3) with (1). $\Gamma; \Delta_1, x_1 : !A_2 \vdash e\{v/x_0\} : A_1 \dashv \Delta_2$ (5) by (T.Pure-Elm) with (4).

Thus, we conclude.

Case (T:NEW) - We have:

$$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 \tag{1}$$

$$\Gamma; \Delta_1, x: A_0 \vdash \mathsf{new}\ v_0: \exists t. (\mathsf{ref}\ t:: \mathsf{rw}\ t\, A_1) \dashv \Delta_2$$
 (2) by hypothesis.

$$\Gamma; \Delta_1, x : A_0 \vdash \nu_0 : A_1 \dashv \Delta_2 \tag{3}$$

$$\text{by inversion on (T:New) with (2)}.$$
 $\Gamma;\Delta_0 \vdash \nu_0\{\nu/x\}:A_1\dashv \Delta_2$

by induction hypothesis with (1) and (3).
$$\Gamma$$
; $\Delta_0 \vdash \mathsf{new} \ v_0\{v/x\} : \exists t.(\mathbf{ref}\ t :: \mathbf{rw}\ t\ A_1) \dashv \Delta_2$ (5)

by (T:New) with (4).	by (T:Record) on (4
$\Gamma; \Delta_0 \vdash (new\ v_0)\{v/x\} : \exists t.(ref\ t :: rw\ t\ A_1) \dashv \Delta_2$ (6) by (vs:8) with (5).	$\Gamma; \Delta_1 \vdash (\{\overline{\mathbf{f} = v'}\})\{v/x\} : [\overline{\mathbf{f} : A}] \dashv \cdot$ (6)
Thus, we conclude.	by (vs:5) on (5). Thus, we conclude.
Case (T:Delete) - We have:	Case (T:Selection) - We have:
$\begin{array}{c} \Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 & (1) \\ \Gamma; \Delta_1, x : A_0 \vdash delete \ \nu_0 : \exists t. A_1 \dashv \Delta_2 & (2) \\ & \text{by hypothesis.} \end{array}$	$\begin{array}{c} \Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 & (1 \\ \Gamma; \Delta_1, x : A_0 \vdash \nu_0.\mathbf{f} : A_1 \dashv \Delta_2 & (2 \\ \end{array}$
$\Gamma; \Delta_1, x : A_0 \vdash v_0 : \exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A_1) + \Delta_2 $ (3)	by hypothesis $\Gamma; \Delta_1, x: A_0 \vdash \nu_0: [\mathbf{f}: A_1] \dashv \Delta_2 $ (3
by inversion on (r:Delete) with (2). Γ ; $\Delta_0 \vdash v_0\{v/x\}$: $\exists t. (\mathbf{ref}\ t :: \mathbf{rw}\ t\ A_1) \dashv \Delta_2$ (4) by induction hypothesis with (1) and (3).	by inversion on (T.SELECTION) with (2) $\Gamma; \Delta_1 \vdash \nu_0\{\nu/x\} : [\mathbf{f} : A_1] + \Delta_2$ by induction hypothesis on (3) with (1)
$\Gamma; \Delta_0 \vdash \text{delete } v_0\{v/x\}: \exists t.A_1 \dashv \Delta_2$ (5) by (T:Delete) with (4).	$\Gamma; \Delta_1 \vdash \nu_0\{\nu/x\}.\mathbf{f} : [\mathbf{f} : A_1] \dashv \Delta_2 $
$\Gamma; \Delta_0 \vdash (\text{delete } v_0)\{v/x\} : \exists t.A_1 \dashv \Delta_2$ (6)	by (T:Selection) on (4) $\Gamma; \Delta_1 \vdash (v_0.\mathbf{f})\{v/x\} : [\mathbf{f} : A_1] \dashv \Delta_2$
by (vs:9) with (5). Thus, we conclude.	by (vs:6) on (5). Thus, we conclude.
Case (T:Assign) - We have:	Case (T:Application) - We have:
$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 \tag{1}$	$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 \tag{1}$
$\Gamma; \Delta_1, x : A_0 \vdash \nu_0 := \nu_1 : A_1 \dashv \Delta_2, \mathbf{rw} \ p \ A_2 $ (2) by hypothesis.	$\Gamma; \Delta_1, x_0 : A_0 \vdash v_0 \ v_1 : A_1 \dashv \Delta_2$ (2 by hypothesis
$\Gamma; \Delta_1, x : A_0 \vdash \nu_1 : A_2 \dashv \Delta'$ $\Gamma; \Delta' \vdash \nu_0 : \mathbf{ref} \ p \dashv \Delta_2, \mathbf{rw} \ p \ A_1$ (3) (4)	$\Gamma; \Delta_0, x_0 : A_0 \vdash v_1 : A_2 \dashv \Delta' \tag{3}$
by inversion on (T.Assign) with (2).	$\Gamma; \Delta' \vdash \nu_0 : A_2 \multimap A_1 \dashv \Delta_2$ by inversion on (T:Application) with (2)
We have that either:	We have that either:
(a) $x \in \mathbf{fv}(v_1)$ $x \notin \Delta'$ (1.1)	(a) $x \in fv(v_1)$ $x \notin \Delta'$ (1.1)
by (Free Variables Lemma) on (3).	by (Free Variables Lemma) on (3)
$\Gamma; \Delta' \vdash v_0\{v/x\} : \mathbf{ref} \ p \dashv \Delta_2, \mathbf{rw} \ p \ A_1$ (1.2) since x cannot occur in e_0 by (1.1).	$\Gamma; \Delta' \vdash \nu_0\{\nu/x\} : A_2 \multimap A_1 \dashv \Delta_2$ (1.2 since x cannot occur in e_0 by (1.1
$\Gamma; \Delta_1 \vdash \nu_1 \{\nu/x\} : A_2 \dashv \Delta'$ (1.3) by induction hypothesis on (1) and (3).	$\Gamma; \Delta_0 \vdash \nu_1\{\nu/x\} : A_2 \dashv \Delta' \tag{1.3}$
$\Gamma; \Delta_1 \vdash \nu_0\{\nu/x\} := \nu_1\{\nu/x\} : A_1 + \Delta_2, \mathbf{rw} \ p \ A_2$ (1.4)	by induction hypothesis with (1) and (3) $\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\} \ \nu_1\{\nu/x\} : A_1 \dashv \Delta_2 $ (1.4)
by (τ :Assign) on (1.2) and (1.3). Γ ; $\Delta_1 \vdash (v_0 := v_1)\{v/x\} : A_1 \dashv \Delta_2$, rw $p A_2$ (1.5)	by (T:Application) with (1.2) and (1.3) Γ ; $\Delta_0 \vdash (v_0 \ v_1)\{v/x\}$: $A_1 \dashv \Delta_2$ (1.5)
by (vs:11) on (1.4). Thus, we conclude.	by (vs:7) on (1.4). Thus, we conclude.
(b) $x \notin fv(v_1)$	(1) (6 ()
$(x:A_0) \in \Delta' \tag{2.1}$	(b) $x \notin fv(v_1)$ $(x: A_0) \in \Delta'$ (2.1)
by (9) and $x \notin fv(v_1)$. $\Gamma; \Delta'' \vdash v_0\{v/x\} : \mathbf{ref} \ p \dashv \Delta_2, \mathbf{rw} \ p \ A_1$ (2.2)	by $x \notin fv(v_1)$
by induction hypothesis (since it is applied to x wherever is in the	$\Gamma; \Delta'' \vdash \nu_0 \{\nu/x\} : A_2 \multimap A_1 \dashv \Delta_2$ (2.2 by induction hypothesis where Δ'' is Δ' without Δ'
environment) and where Δ'' is the same as Δ' without x . $\Gamma; \Delta_1 \vdash v_1\{v/x\} : A_2 \dashv \Delta''$ (2.3)	$\Gamma; \Delta_0 \vdash \nu_1 \{ v/x \} : A_2 \dashv \Delta''$ (2.3) since x cannot occur in ν_1 by $x \notin fv(\nu_1)$ and (2.1)
since x cannot occur in e_1 by $x \notin fv(e_1)$.	$\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\} \; \nu_1\{\nu/x\} : A_1 \dashv \Delta_2$ (2.4)
$\Gamma; \Delta_1 \vdash v_0\{v/x\} := v_1\{v/x\} : A_1 \dashv \Delta_2, \mathbf{rw} \ p \ A_2$ (2.4) by (T.ASSIGN) using (2.4) and (2.5).	by (T:Application) on (2.2) and (2.3) Γ ; $\Delta_0 \vdash (v_0 \ v_1)\{v/x\} : A_1 \dashv \Delta_2$ (2.5)
$\Gamma; \Delta_1 \vdash (v_0 := v_1)\{v/x\} : A_1 \dashv \Delta_2, \mathbf{rw} \ p \ A_2$ (2.5)	by (vs:7) on (2.4)
by (vs:11) on (2.6). Thus, we conclude.	Thus, we conclude.
G (D) W (Case (T:Function) - We have:
Case (T:Dereference-Linear) - We have: Γ ; $\Delta_0 \vdash \nu : A_0 \dashv \Delta_1$ (1)	$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 $ $\Gamma; \Delta_1, x_0 : A_0 \vdash fun(x_1 : A_1).e : A_1 \multimap A_2 \dashv \cdot $ (2
$\Gamma; \Delta_1, x : A_0 \vdash !v_0 : A_1 \dashv \Delta_2, \mathbf{rw} \ p \ [] $	by hypothesis
by hypothesis. $\Gamma; \Delta_1, x : A_0 \vdash v_0 : \mathbf{ref} \ p \dashv \Delta_2, \mathbf{rw} \ p \ A_1$ (3)	$\Gamma; \Delta_1, x_1 : A_1, x_0 : A_0 \vdash e : A_2 \dashv \cdot$ $x_1 \neq x_0 \tag{4}$
by inversion on (t:Dereference-Linear) on (2). Γ ; $\Delta_1 \vdash v_0\{v/x\}$: ref $p \dashv \Delta_2$, rw p A_1 (4)	by def. of substitution up to rename of bounded variables Γ ; $\Delta_1, x_1 : A_1 \vdash e\{v/x\} : A_2 \dashv \cdots$ (5
by induction hypothesis with (1) and (3). Γ ; $\Delta_1 \vdash !v_0\{v/x\} : A_1 \dashv \Delta_2$, rw $p \mid 1$ (5)	by induction hypothesis with (1) and (3) $\Gamma; \Delta_1 \vdash fun(x_1 : A_1).e\{v/x\} : A_1 \multimap A_2 + \cdots$
by (T:Dereference-Linear) on (4).	by (T:Function) with (5)
$\Gamma; \Delta_1 \vdash (!v_0)\{v/x\} : A_1 + \Delta_2, \mathbf{rw} \ p \ [] $ (6) by (vs:10) on (5).	$\Gamma; \Delta_1 \vdash (fun(x_1 : A_1).e)\{v/x\} : A_1 \multimap A_2 \dashv \cdot$ by (vs:4) on (6) and (4)
Thus, we conclude.	Thus, we conclude.
$\pmb{\textbf{Case}} \; (\textbf{t:} \pmb{\textbf{Dereference-Pure}}) \text{ - } Analogous \; \text{to} \; (\textbf{t:} \pmb{\textbf{Dereference-Linear}}).$	Case (T:Forall-Loc) - We have:
Case (T:RECORD) - We have:	$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1 \tag{1}$ $\Gamma; \Delta_1, x : A_0 \vdash \langle t \rangle e : \forall t. A_1 \dashv \cdot \tag{2}$
$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \underline{\Delta_1} \tag{1}$	by hypothesis
$\Gamma; \Delta_1, x : A_0 \vdash \{ \mathbf{f} = v' \} : [\mathbf{f} : A] \dashv \cdot $ (2) by hypothesis.	$\Gamma, t: \mathbf{loc}; \Delta_1, x: A_0 \vdash e: A_1 \dashv \cdot$ (3 by inversion on (T.Forall-Loc) with (2)
$\overline{\Gamma; \Delta_1, x : A_0 \vdash v_i' : A_i \dashv \cdot} $ (3)	$\Gamma, t: \mathbf{loc}; \Delta_1 \vdash e\{v/x\} : A_1 \dashv \cdots$ (4)
by inversion with (T.RECORD) on (2). $\Gamma; \Delta_1 \vdash \nu'_i \{ \nu/x \} : A_i \dashv \cdot $ (4)	by induction hypothesis with (1) and (3) Γ ; $\Delta_1 \vdash \langle t \rangle e\{v/x\}$: $\forall t.A_1 \rightarrow \cdots$ (5)
by induction hypothesis with (1) and (3).	by (T.Forall-Loc) on (4)
$\Gamma; \Delta_1 + \{ \overline{\mathbf{f} = v'\{v/x\}} \} : [\overline{\mathbf{f} : A}] + \cdot $ (5)	$\Gamma; \Delta_1 \vdash (\langle t \rangle e) \{ v/x \} : \forall t. A_1 \dashv \cdot $

	by (vs:14) on (5).		by inversion on (T:CAP-ELIM) with (2).
Thus, we conclude.		$\Gamma; \Delta_1, x_1 : A_2, A_3 \vdash e\{v/x_0\} : A_1 -$	Δ_2 (4) by induction hypothesis with (1) and (3).
Case (T:Loc-APP) - We have:	(1)	$\Gamma; \Delta_1, x_1 : A_2 :: A_3 \vdash e\{v/x_0\} : A_1$	$+$ $Δ_2$ (5) by (T:CAP-ELIM) with (4).
$\Gamma; \Delta_0 \vdash \nu : A_0 \dashv \Delta_1$ $\Gamma; \Delta_1, x : A_0 \vdash \nu_0[p] : A_1\{p/t\} \dashv \Delta_2$	(1) (2) by hypothesis.	Thus, we conclude.	by (near Ellin) with (1).
$p: \mathbf{loc} \in \Gamma$ $\Gamma; \Delta_1, x: A_0 \vdash v_0: \forall t. A_1 \dashv \Delta_2$	(3) (4)	Case (T:CAP-STACK) - We have: Γ ; $\Delta_0 \vdash \nu : A_0 \dashv \Delta_1$	(1)
$\Gamma; \Delta_1 \vdash v_0\{v/x\} : \forall t.A_1 \dashv \Delta_2$	by inversion on (T:Loc-App) with (2). (5)	$\Gamma; \Delta_1, x: A_0 \vdash e: A_1 :: A_2 \dashv \Delta_2$	(2) by hypothesis.
$\Gamma; \Delta_1 \vdash \nu_0\{\nu/x\}[p] : A_1\{p/t\} \dashv \Delta_2$	by induction hypothesis on (4) and (1). (6)	$\Gamma; \Delta_1, x: A_0 \vdash e: A_1 \dashv \Delta_2, A_2$	(3) by inversion on (T:CAP-STACK) with (2).
$\Gamma; \Delta_1 \vdash (v_0[p])\{v/x\} : A_1\{p/t\} \dashv \Delta_2$	by (T:Loc-App) on (5) and (3). (7)	$\Gamma; \Delta_1 \vdash e\{v/x\} : A_1 \dashv \Delta_2, A_2$	(4) by induction hypothesis with (1) and (3).
Thus, we conclude.	by (vs:13) on (6).	$\Gamma; \Delta_1 \vdash e\{v/x\} : A_1 :: A_2 \dashv \Delta_2$	(5) by (T:CAP-STACK) on (4).
Case (T:Loc-PACK) - We have:		Thus, we conclude.	
$\Gamma; \Delta_0 \vdash v : A_0 \dashv \Delta_1$	(1)	Case (T:CAP-UNSTACK) - We have:	(1)
$\Gamma; \Delta_1, x : A_0 \vdash \langle p, v_0 \rangle : \exists t. A_1 \dashv \Delta_2$	(2) by hypothesis.	Γ ; $\Delta_0 \vdash \nu : A_0 \dashv \Delta_1$ Γ ; $\Delta_1, x : A_0 \vdash e : A_1 \dashv \Delta_2, A_2$	(1) (2)
$\Gamma; \Delta_1, x: A_0 \vdash v_0: \ A_1\{p/t\} \dashv \Delta_2$	(3) by inversion on (T:Loc-PACK) with (2).	$\Gamma; \Delta_1, x : A_0 \vdash e : A_1 :: A_2 \dashv \Delta_2$	by hypothesis. (3)
$\Gamma; \Delta_1 \vdash v_0\{v/x\}: \ A_1\{p/t\} \dashv \Delta_2$	(4)		by inversion (T:CAP-UNSTACK) with (2).
$\Gamma; \Delta_1 \vdash \langle p, v_0\{v/x\} \rangle : \exists t. A_1 \dashv \Delta_2$	by induction hypothesis on (1) and (3). (5)	$\Gamma; \Delta_1 \vdash e\{v/x\} : A_1 :: A_2 \dashv \Delta_2$	by induction hypothesis with (1) and (3).
$\Gamma; \Delta_1 \vdash (\langle p, v_0 \rangle) \{v/x\} : \exists t. A_1 \dashv \Delta_2$	by (т.Loc-Раск) on (4). (6)	$\Gamma; \Delta_1 \vdash e\{v/x\} : A_1 \dashv \Delta_2, A_2$	(5) by (t:Cap-Unstack) with (4).
Thus, we conclude.	by (vs:12) on (5).	Thus, we conclude.	
Case (T:Loc-OPEN) - We have:		Case (T:Subsumption) - We have: Γ ; $\Delta_0 \vdash \nu : A_0 \dashv \Delta_1$	(1)
$\Gamma; \Delta_0 \vdash v : A_0 \dashv \Delta_1$	(1)	$\Gamma; \Delta_1, x : A_0 \vdash e : A_1 \dashv \Delta_2$	(2)
$\Gamma; \Delta_1, x_0 : A_0 \vdash open \langle t, x_1 \rangle = v_0 in e$	$_1$ end : $A_1 \dashv \Delta_2$ (2) by hypothesis.	$\Delta_1, x : A_0 <: \Delta'_1, x : A'_0$	by hypothesis. (3)
$\Gamma; \Delta_1, x_0: A_0 \vdash v_0: \exists t. A_2 \dashv \Delta'$	(3)	$\Gamma; \Delta'_1, x : A'_0 \vdash e : A_2 \dashv \Delta'_2$	(4)
Γ , t : loc ; Δ' , x_1 : $A_2 \vdash e_1$: $A_1 \dashv \Delta_2$	by inversion on (T:Loc-Open) with (2).	$A_2 <: A_1$ $\Delta'_2 <: \Delta_2$	(5) (6)
We have that either:	by inversion on (i.e.oc-orea) with (2).	$\Delta_2 \sim \Delta_2$	by inversion on (T:Subsumption) on (2).
(a) $x_0 \in fv(v_0)$		$A_0 <: A'_0$	(7) (Subtyping Inversion Lemma) on (3) on <i>x</i> .
$x_0 \notin \Delta'$	(1.1) by (Free Variables Lemma) on (3).	$\Gamma; \Delta_0 \vdash \nu : A'_0 \dashv \Delta'_1$	(8)
$x_0 \neq x_1$ by def. of substitut	(1.2) tion up to rename of bounded variables.	$\Gamma; \Delta_1' \vdash e\{v/x\} : A_2 \dashv \Delta_2'$	by (T:Subsumption) on (1) with (7). (9)
$\Gamma, t : \mathbf{loc}; \Delta', x_1 : A_2 \vdash e_1\{v/x_0\} :$		$\Delta_1 <: \Delta_1'$	by induction hypothesis on (4) and (8). (10)
$\Gamma; \Delta_1 \vdash v_0\{v/x_0\} : \exists t.A_2 \dashv \Delta'$	(1.4)	Γ ; $\Delta_1 \vdash e\{v/x\} : A_1 \dashv \Delta_2$	by (Subtyping Inversion Lemma) on (3). (11)
$\Gamma; \Delta_1 \vdash open \langle t, x_1 \rangle = v_0 \{ v/x_0 \} \text{ in}$	by (T:Loc-Open) on (1.3) and (1.4).		"SUBSUMPTION) on (9) with (10), (5) and (6).
$\Gamma; \Delta_1 \vdash (open \langle t, x_1 \rangle = v_0 in e_1 e$	end) $\{v/x_0\}$: $A_1 + \Delta_2$ (1.6) by (vs:15) on (1.6) and (1.2).	Case (T:FRAME) - We have:	
Thus, we conclude.		$\Gamma; \Delta_0 \vdash v : A_0 \dashv \Delta_1$ $\Gamma; (A_1, v : A_2) \land A_1 \vdash a : A_1 \vdash A_2$	(1)
(b) $x_0 \notin fv(v_0)$		Γ ; $(\Delta_1, x : A_0), \Delta_3 \vdash e : A_1 \dashv \Delta_2, \Delta_3$	Δ_3 (2) by hypothesis.
$(x_0:A_0)\in\Delta'$	(2.1)	$\Gamma; \Delta_1, x : A_0 \vdash e : A_1 \dashv \Delta_2$	(3) by inversion on (T:Frame) with (2).
$x_0 \neq x_1$	by $x_0 \notin \mathbf{fv}(v_0)$. (2.2)	$\Gamma; \Delta_1 \vdash e\{v/x\} : A_1 \dashv \Delta_2$	(4)
by def. of substitut Γ , t : loc ; Δ'' , x_1 : $A_2 \vdash e_1\{v/x_0\}$:	tion up to rename of bounded variables. : $A_1 + \Delta_2$ (2.3)	$\Gamma; \Delta_1, \Delta_3 \vdash e\{v/x\} : A_1 \dashv \Delta_2, \Delta_3$	by induction hypothesis with (1) and (3). (5)
	pothesis with Δ'' equal to Δ' without x_0 . (2.4)	Thus, we conclude.	by (T.Frame) on (4) with Δ_3 .
	ce x_0 cannot occur in v_0 by $x_0 \notin \mathbf{fv}(v_0)$. $\mathbf{r} e_1\{v/x_0\}$ end : $A_1 \dashv A_2$ (2.5)	Case (T:TAG) - We have:	
Γ ; $\Delta_1 \vdash (open \langle t, x_1 \rangle = v_0 in e_1 e$	by (T:Loc-Open) on (2.3) and (2.4).	$\Gamma; \Delta_0 \vdash v : A_0 \dashv \Delta_1$ $\Gamma; \Delta_1, x : A_0 \vdash 1 \# v_0 : 1 \# A_1 \dashv \Delta_2$	(1) (2)
$1,\Delta_1 \vdash (open(t,x_1) = v_0 int e_1 e$	(2.6) by (vs:15) on (2.2) and (2.5).		by hypothesis.
Thus, we conclude.		$\Gamma; \Delta_1, x : A_0 \vdash v_0 : A_1 \dashv \Delta_2$	by inversion (T:Tag) with (2).
Case (T:FORALL-TYPE) - Analogous to (T:		$\Gamma; \Delta_1 \vdash v_0\{v/x\} : A_1 \dashv \Delta_2$	(4) by induction hypothesis with (1) and (3).
Case (T:Type-App) - Analogous to (T:Loc Case (T:Type-Pack) - Analogous to (T:Loc		$\Gamma; \Delta_1 \vdash 1 \# \nu_0 \{ \nu/x \} : 1 \# A_1 \dashv \Delta_2$	(5)
Case (T:Type-Open) - Analogous to (T:Lo Case (T:Cap-Elim) - We have:		$\Gamma;\Delta_1\vdash (1\#\nu_0)\{\nu/x\}:1\#A_1\dashv\Delta_2$	by (T:TAG) with (4). (6)
$\Gamma; \Delta_0 \vdash v : A_0 \dashv \Delta_1, x_1 : A_2 :: A_3$	(1)	Thus, we conclude.	by (vs:20) on (5).
$\Gamma; \Delta_1, x_1 : A_2 :: A_3, x_0 : A_0 \vdash e : A_1 \dashv$	Δ_2 (2) by hypothesis.	Case (T:CASE) - We have:	
$\Gamma; \Delta_1, x_1 : A_2, A_3, x_0 : A_0 \vdash e : A_1 \dashv \Delta$		Case (F.Case) - We have: Γ ; $\Delta_0 \vdash v : A_0 \dashv \Delta_1$	(1)

$_1,x:A_0 \vdash case\ v_0 \ of\ 1_j \# x_j \to e_j \ end:A\dashv \Delta_2$ (2) by hypothesis.	Case (T:Pure-Read) - We have:
$A_1, x : A_0 \vdash v_0 : \sum_i 1_i \# A_i' \dashv \Delta'$ (3)	$\Gamma; \cdot \vdash v : !A_0 \dashv \cdot \tag{1}$
(4) (5)	$\Gamma, x_0 : A_0; \cdot \vdash x_1 : !A_1 \dashv \cdot \tag{2}$
j (5) by inversion (T:CASE) with (2).	by hypothesis (matching environments and type with (T:Pure-Read)). We have that either:
have that either:	
$x \in fv(v_0)$	(a) $x_0 = x_1$ $\Gamma; \cdot \vdash v : !A + \cdot$ (1.1)
$x \notin \Delta' \tag{1.1}$	$\Gamma, x : A; \vdash x : !A \dashv \cdot \tag{1.2}$
by (Free Variables Lemma) on (3).	by restated hypothesis with $x = x_0 = x_1$.
$x \neq x_j$ (1.2) by def. of substitution up to rename of bounded variables.	and with $A = A_0 = A_1$.
$\frac{\Gamma; \Delta', x_i : A'_i + e_i \{v/x\} : A + \Delta_2}{\Gamma; \Delta', x_i : A'_i + e_i \{v/x\} : A + \Delta_2} $ (1.3)	$\Gamma; \vdash x\{v/x\} : !A \dashv \cdot $ by (vs:2) on (1.1) using x and v.
since x cannot occur in e_i and by (1.1) nor in Γ by (3).	Thus, we conclude.
$\Gamma; \Delta_1, x : A_0 \vdash v_0\{v/x\} : \sum_i 1_i \# A_i' + \Delta' \tag{1.4}$	(b) $x_0 \neq x_1$
by induction hypothesis on (1) and (3).	$\Gamma; \cdot \vdash x_1 : A_1 + \cdot \tag{2.1}$
Γ ; $\Delta_1 \vdash case \ v_0\{v/x\} \ of \ 1_j \# x_j \to e_j\{v/x\} \ end : A + \Delta_2$ (1.5) by (T:Case) on (5), (1.3) and (1.4).	by $x_0 \notin fv(x_1)$ on (2).
Γ ; $\Delta_1 \vdash (case \ v_0 \ of \ \overline{1_j \# x_j \rightarrow e_j} \ end) \{v/x\} : A \dashv \Delta_2$ (1.6)	$\Gamma; \vdash x_1 \{ v / x_0 \} : !A_1 \dashv \cdot$ (2.2) by (vs:3) on (2.1) using x_0 and v .
by (vs:21) on (1.6) and (1.2).	Thus, we conclude.
Thus, we conclude.	Case (T:LINEAR-READ) - We have:
or of Cor(v.)	$\Gamma; \vdash \nu : A_0 \to \cdots $ (1)
$x \notin fv(v_0)$ $(x:A_0) \in \Delta'$ (2.1)	$\Gamma, x_0 : A_0; x_1 : A_1 \vdash x_1 : A_1 \dashv \cdot$ (2)
$(x: A_0) \in \Delta'$ (2.1) by $x \notin \mathbf{fv}(e)$.	by hypothesis.
$\overline{x \neq x_i} \tag{2.2}$	$x_0 \neq x_1$ (3) since Γ and Δ identifiers cannot collide.
by def. of substitution up to rename of bounded variables.	Since Γ and Δ identifies cannot coince. $\Gamma; x_1 : A_1 \vdash x_1 \{ v / x_0 \} : A_1 \dashv \cdot \tag{4}$
$\Gamma; \Delta'', x_i : A_i' \vdash e_i \{ v/x \} : A + \Delta_2 \tag{2.3}$	by (vs:3) on (2) using x_0 and v .
by induction hypothesis where Δ'' is same as Δ' without x . $\Gamma; \Delta_1 \vdash \nu_0\{\nu/x\} : \sum_i 1_i \# A_i' \dashv \Delta''$ (2.4)	Thus, we conclude.
since x cannot occur in e by $x \notin fv(e)$.	Case (T:Pure-Elim) - We have:
$\Gamma; \Delta_1 \vdash \text{case } v_0\{v/x\} \text{ of } \overline{1_j \# x_j \to e_j\{v/x\}} \text{ end } : A \dashv \Delta_2$ (2.5)	$\Gamma; \vdash \nu : A_0 + \cdots $ (1)
by (T:Case) on (5), (2.3) and (2.4).	$\Gamma, x_0 : A_0; \Delta_0, x_1 : !A_2 \vdash e : A_1 \dashv \Delta_1$ (2)
Γ ; $\Delta_1 \vdash (\text{case } v_0 \text{ of } 1_j \# x_j \rightarrow e_j \text{ end}) \{v/x\} : A \dashv \Delta_2$ (2.6)	by hypothesis.
by (vs:21) on (2.1) and (2.5). Thus, we conclude.	$\Gamma, x_0 : A_0, x_1 : A_2; \Delta_0 \vdash e : A_1 \dashv \Delta_1 $ (3) $\text{by inversion on } (\pi \text{Pure Func}) \text{ with } (2)$
That, we continue:	by inversion on (T:Pure-ELIM) with (2) $\Gamma, x_1: A_2; \Delta_0 \vdash e\{v/x_0\}: A_1 \dashv \Delta_1 $ (4)
ALTERNATIVE-LEFT) - Immediate by applying the induction hypothesis on	by induction hypothesis on (1) with (3).
nversion and then re-applying the rule.	$\Gamma; \Delta_0, x_1 : A_2 + e\{v/x_0\} : A_1 + \Delta_1$ (5)
Let) - Analogous to previous cases.	by (T:Pure-Elim) on (4). Thus, we conclude.
	Thus, we conclude.
	Case (r:New) - We have:
	$\Gamma; \cdot \vdash \nu : A_0 \dashv \cdot \tag{1}$
We proceed by induction on the typing derivation of	$\Gamma, x : A_0; \Delta_0 \vdash \text{new } v_0 : \exists t. (\text{ref } t :: \text{rw } t A_1) \dashv \Delta_1$ (2) by hypothesis.
$\Delta_0 \vdash e : A_1 \dashv \Delta_1.$	$\Gamma, x : A_0; \Delta_0 \vdash \nu_0 : A_1 \dashv \Delta_1 \tag{3}$
Ref) - We have:	by inversion on (T:New) with (2).
$: \mathbf{loc}; \cdot \vdash v_0 : !A_0 \dashv \cdot \tag{1}$	$\Gamma; \Delta_0 \vdash v_0\{v/x\} : A_1 \dashv \Delta_1 \tag{4}$
: $\mathbf{loc}, x : A_0; \vdash \rho : \mathbf{ref} \ \rho \dashv \cdot$ (2) by hypothesis.	by induction hypothesis with (3) and (1). Γ ; $\Delta_0 \vdash \text{new } v_0\{v/x\}$: $\exists t.(\text{ref } t :: \text{rw } t A_1) + \Delta_1$ (5)
: $loc; \vdash \rho : ref \rho \dashv \cdot$ (3)	by (T:New) with (4).
by $x \notin fv(\rho)$ on (2).	$\Gamma; \Delta_0 \vdash (\text{new } v_0)\{v/x\} : \exists t.(\text{ref } t :: \text{rw } t A_1) \dashv \Delta_1$ (6)
$: \mathbf{loc}; \cdot \vdash \rho\{v/x\} : \mathbf{ref} \rho + \cdot \tag{4}$	by (vs:8) on (5).
by (vs:1) on (3) using x and v . s, we conclude.	Thus, we conclude.
s, we conclude.	Case (T:Delete) - We have:
Pure) - We have:	$\Gamma; \vdash \nu : A_0 \to \cdots $ (1)
$-v_0: !A_0 \dashv \cdot \tag{1}$	$\Gamma, x : A_0; \Delta_0 \vdash delete \ v_0 : \exists t. A_1 + \Delta_1 $ (2)
$A_0; \cdot \vdash v_1 : A_1 + \cdot \tag{2}$	by hypothesis.
by hypothesis. (3) by A_0 ; $+ \nu_1 : A_1 + \cdots$	$\Gamma, x : A_0; \Delta_0 \vdash v_0 : \exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A_1) \dashv \Delta_1$ (3) by inversion on (T:Delete) with (2).
by inversion on (T:Pure) with (2).	$\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\} : \exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A_1) \dashv \Delta_1 $ (4)
	by induction hypothesis with (3) and (1).
$0: A_0 \vdash v_1: A_1 \dashv \cdot \tag{4}$	
$0: A_0 \vdash v_1: A_1 \dashv \cdot$ (4) by (T.Pure-Elim) on (3) with x_0 .	$\Gamma; \Delta_0 \vdash \text{delete } v_0\{v/x\} : \exists t.A_1 \dashv \Delta_1 $ (5)
$0: !A_0 \vdash v_1: A_1 \dashv \cdot $ by (T:Pure-Elim) on (3) with x_0 . $-v_1\{v_0/x_0\}: A_1 \dashv \cdot $ (5)	by (T:Delete) with (4).
$0: A_0 \vdash v_1: A_1 \dashv \cdot$ (4) by (T.Pure-Elim) on (3) with x_0 .	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\text{by (T:Delete) with (4)}.$ $\Gamma; \Delta_0 \vdash (delete\ v_0)\{v/x\}: \exists t. A_1 \dashv \Delta_1 $
$0: A_0 \vdash v_1 : A_1 \dashv \cdot (4)$ $by (T:Pure-Elim) on (3) with x_0.$ $-v_1\{v_0/x_0\} : A_1 \dashv \cdot (5)$ $by (Substitution Lemma - Linear) with (1) and (4).$ $-v_1\{v_0/x_0\} : A_1 \dashv \cdot (6)$	$\Gamma; \Delta_0 \vdash (delete\ v_0)\{v/x\}: \exists t.A_1 \dashv \Delta_1 $ by (T:Delete) with (4).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma; \Delta_0 \vdash (delete\ v_0)\{v/x\} : \exists t.A_1 \dashv \Delta_1 \qquad \qquad \qquad by\ (T:Delete)\ with\ (4).$ (6) $by\ (vs:9)\ on\ (5).$ $Thus, \ we\ conclude.$ $Case\ (T:Assign) - \ We\ have:$
$\begin{array}{c} : !A_0 \vdash \nu_1 : A_1 \dashv \cdot \\ $	$\Gamma; \Delta_0 \vdash (delete\ v_0)\{v/x\} : \exists t.A_1 \dashv \Delta_1 \qquad \qquad$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma; \Delta_0 \vdash (delete\ v_0)\{v/x\} : \exists t.A_1 \dashv \Delta_1 \qquad \qquad \qquad by\ (T:Delete)\ with\ (4).$ (6) $by\ (vs:9)\ on\ (5).$ $Thus, \ we\ conclude.$ $Case\ (T:Assign) - \ We\ have:$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma; \Delta_0 \vdash (delete\ v_0)\{v/x\} : \exists t.A_1 \dashv \Delta_1 \qquad \qquad$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma; \Delta_0 \vdash (delete \ v_0)\{v/x\} : \exists t.A_1 \dashv \Delta_1 \tag{6}$ by (T:Delete) with (4). (6) by (vs:9) on (5). Thus, we conclude.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma; \Delta_0 \vdash (delete\ v_0)\{v/x\} : \exists t.A_1 \dashv \Delta_1 \qquad \qquad$

$\Gamma; \Delta_1 \vdash v_0\{v/x\} : \mathbf{ref} \ p \dashv \Delta_2, \mathbf{rw} \ p \ A_1$ (6)	by (T:Function) with (6).
by induction hypothesis on (4) with (1).	$\Gamma; \Delta \vdash (fun(x_1 : A_0).e)\{v/x_0\} : A_0 \multimap A_1 \dashv \cdot \tag{7}$
$\Gamma; \Delta_0 \vdash v_0(v/x) := v_1(v/x) : A_1 + \Delta_2, \mathbf{rw} \ p \ A_2$ $\text{by (r.Assign) with (5) and (6)}.$	by (vs:4) on (6) and (4). Thus, we conclude.
$\Gamma; \Delta_0 \vdash (\nu_0 := \nu_1) \{ \nu/x \} : A_1 + \Delta_2, \mathbf{rw} \ p \ A_2$ (8) by (vs:11) on (7). Thus, we conclude.	Case (T:Forall-Loc) - We have: $\Gamma: \vdash \nu : A' \rightarrow \cdots$ (1)
	$\Gamma, x : A'; \Delta_0 \vdash \langle t \rangle e : \forall t.A \dashv \cdot \tag{2}$
Case (T:Dereference-Linear) - We have: $\Gamma; \vdash \nu : !A_0 \dashv \cdot$ (1)	by hypothesis.
$\Gamma; \vdash \nu : !A_0 \dashv \cdot \qquad (1)$ $\Gamma, x : A_0; \Delta_0 \vdash !\nu_0 : A_1 \dashv \Delta_1, \mathbf{rw} \ p \ [] \qquad (2)$	$\Gamma, t: \mathbf{loc}, x: A'; \Delta_0 \vdash e: A \dashv \cdot$ (3) by inversion on (T:Forall-Loc) with (2).
by hypothesis. $\Gamma, x : A_0; \Delta_0 \vdash v_0 : \mathbf{ref} \ p + \Delta_1, \mathbf{rw} \ p \ A_1$ (3)	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash e\{v/x\} : A \dashv \cdot$ (4) by induction hypothesis on (3) with (1).
$\Gamma, x : A_0; \Delta_0 \vdash v_0 : \mathbf{ref} \ p \dashv \Delta_1, \mathbf{rw} \ p \ A_1$ (3) by inversion on (T:Dereference-Linear) with (2).	$\Gamma; \Delta_0 \vdash \langle t \rangle e\{v/x\} : \forall t.A \dashv \cdot $ (5)
$\Gamma; \Delta_0 \vdash v_0\{v/x\}$: ref $p \dashv \Delta_1$, rw $p A_1$ (4) by induction hypothesis on (3) with (1).	by (T.Forall-Loc) with (4). $\Gamma; \Delta_0 \vdash (\langle t \rangle e) \{ v/x \} : \forall t.A \dashv \cdot $ (6)
$\Gamma; \Delta_0 \vdash !v_0\{v/x\} : A_1 \dashv \Delta_1, \mathbf{rw} \ p \ [] \tag{5}$	by (vs:14) on (5).
by (T:Dereference-Linear) with (4). $\Gamma; \Delta_0 \vdash (!v_0)\{v/x\} : A_1 \dashv \Delta_1, \mathbf{rw} \ p \ [] $ (6)	Thus, we conclude.
by (vs:10) on (5).	Case (T:Loc-APP) - We have:
Thus, we conclude.	$\Gamma; \vdash \nu : !A' + \vdash \qquad (1)$ $\Gamma, x : A'; \Delta_0 \vdash \nu_0[p] : A\{p/t\} + \Delta_1 \qquad (2)$
Case (T:Dereference-Pure) - Analogous to (T:Dereference-Linear).	by hypothesis.
Case (T:RECORD) - We have:	$p: \mathbf{loc} \in \Gamma, x: A' \tag{3}$
$\Gamma; \vdash \nu : !A' \dashv \cdot \qquad (1)$ $\Gamma, x : A'; \Delta \vdash \{f = v'\} : [\overline{f : A}] \dashv \cdot \qquad (2)$	$\Gamma, x : A'; \Delta_0 \vdash v_0 : \forall t.A \dashv \Delta_1$ (4) by inversion on (T:Loc-App) with (2).
by hypothesis.	$\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\} : \forall t.A \dashv \Delta_1 \tag{5}$
$\overline{\Gamma}, x : A'; \Delta \vdash v'_i : A_i \dashv \overline{\cdot}$ (3) by inversion on (T:Record) with (2).	by induction hypothesis with (1) and (4). $\Gamma; \Delta_0 \vdash v_0\{v/x\}[p] : A\{p/t\} \dashv \Delta_1 $ (6)
$\overline{\Gamma; \Delta \vdash \nu_i'\{\nu/x\} : A_i \dashv \cdot} $ (4) by induction hypothesis on (3) with (1).	by (r:Loc-App) with (5) and (3). $\Gamma; \Delta_0 \vdash (v_0[p])\{v/x\} : A\{p/t\} \dashv \Delta_1 $ (7)
$\Gamma; \Delta \vdash \{\overline{\mathbf{f}} = v'\{v/x\}\} : [\overline{\mathbf{f}} : A] \dashv \cdot $ (5)	by (vs:13) on (6). Thus, we conclude.
by (T.Record) on (4). $\Gamma; \Delta \vdash (\{\overline{\mathbf{f} = v'}\})\{v/x\} : [\overline{\mathbf{f} : A}] \dashv \cdot $ (6)	Case (T:Loc-OPEN) - We have:
by (vs:5) on (5). Thus, we conclude.	$\Gamma_{i}^{\cdot} \vdash \nu : !A' + \cdot \qquad (1)$ $\Gamma_{i}^{\cdot} x : A'; \Delta_{0} \vdash open \langle t, x_{1} \rangle = v_{0} in e_{1} end : A_{1} + \Delta_{1} \qquad (2)$
7 (G) W 1	by hypothesis.
Case (T:Selection) - We have: $\Gamma; \vdash \nu : A' \dashv \cdot$ (1)	$\Gamma, x : A'; \Delta_0 \vdash \nu_0 : \exists t. A_0 + \Delta_1 \tag{3}$
$\Gamma, x : A' ; \Delta_0 \vdash v_0 \cdot \mathbf{f} : A \dashv \Delta_1 \tag{2}$	$\Gamma, t: \mathbf{loc}, x: A'; \Delta_1, x_1: A_0 \vdash e_1: A_1 \dashv \Delta_2$ (4) by inversion on (T.Loc-Open) with (2).
by hypothesis. $\Gamma, x : A'; \Delta_0 \vdash \nu_0 : [\mathbf{f} : A] \dashv \Delta_1 \tag{3}$	$x_0 \neq x_1 \tag{5}$
by inversion on (T:Selection) with (2).	by def. of substitution up to rename of bounded variables. Γ ; $\Delta_0 \vdash \nu_0 \{v/x\}$: $\exists t. A_0 + \Delta_1$ (6)
$\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\} : [\mathbf{f}:A] \dashv \Delta_1$ (4) by induction hypothesis with (1) and (3).	by induction hypothesis on (3) and (1).
$\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\}. \mathbf{f} : A \dashv \Delta_1 \tag{5}$	$\Gamma, t: \mathbf{loc}; \Delta_1, x_1: A_0 \vdash e_1\{v/x\}: A_1 \dashv \Delta_2$ (7) by induction hypothesis on (4) and (1).
by (T:Selection) with (4). $\Gamma; \Delta_0 \vdash (\nu_0.\mathbf{f})\{\nu/x\} : A \dashv \Delta_1 $ (6)	Γ ; $\Delta_0 \vdash \text{open} \langle t, x_1 \rangle = v_0 \{v/x\} \text{ in } e_1 \{v/x\} \text{ end } : A_1 \dashv \Delta_1$ (8) by (T.Loc-Open) with (6) and (7).
by (vs:6) on (5). Thus, we conclude.	Γ ; $\Delta_0 \vdash (open \langle t, x_1 \rangle = v_0 \text{ in } e_1 \text{ end}) \{v/x\} : A_1 \dashv \Delta_1$ (9) by (vs:15) on (8) and (5).
Casa (m Amyza mon) Wa haya	Thus, we conclude.
Case (T:Application) - We have: $\Gamma; \vdash \nu : !A' \dashv \cdot$ (1)	Case (T:Loc-Pack) - We have:
$\Gamma, x : A'; \Delta_0 \vdash \nu_0 \ \nu_1 : A_1 \dashv \Delta_2 \tag{2}$	$\Gamma; \cdot \vdash v : !A' \to \cdot \tag{1}$
by hypothesis. $\Gamma, x : A'; \Delta_0 \vdash \nu_1 : A_0 \dashv \Delta_1 $ (3)	$\Gamma, x : A'; \Delta_0 \vdash \langle p, \nu_0 \rangle : \exists t. A + \Delta_1 \tag{2}$
$\Gamma, x : A'; \Delta_1 \vdash \nu_0 : A_0 \multimap A_1 + \Delta_2 \tag{4}$	by hypothesis. $\Gamma, x: A'; \Delta_0 \vdash v_0: A\{p/t\} \dashv \Delta_1 $ (3)
by inversion on (T:Application) with (2). $\Gamma; \Delta_0 \vdash \nu_1\{\nu/x\} : A_0 \dashv \Delta_1 $ (5)	by inversion on (T:Loc-Pack) with (2).
by induction hypothesis with (1) on (3).	$\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\} : A\{p/t\} \dashv \Delta_1$ (4) by induction hypothesis with (1) and (3).
$\Gamma; \Delta_1 \vdash v_0\{v/x\} : A_0 \multimap A_1 \dashv \Delta_2$ (6) by induction hypothesis with (1) on (4).	Γ ; $\Delta_0 \vdash \langle p, v_0\{v/x\} \rangle$: $\exists t.A \dashv \Delta_1$ (5) by (τ:Loc-Pack) with (4).
$\Gamma; \Delta_0 \vdash v_0\{v/x\} \ v_1\{v/x\} : A_1 \dashv \Delta_2$ (7) by (T:Application) with (5) and (6).	$\Gamma; \Delta_0 \vdash (\langle p, v_0 \rangle) \{v/x\} : \exists t.A + \Delta_1 $ (6) by (vs:12) on (5).
$\Gamma; \Delta_0 \vdash (v_0 \ v_1)\{v/x\} : A_1 \dashv \Delta_2$ (8) by (vs:7) on (7).	Thus, we conclude.
Thus, we conclude.	Case (T:Forall-Type) - Analogous to (T:Forall-Loc) with (vs:18).
Case (T:Function) - We have:	Case (T:Type-App) - Analogous to (T:Loc-App) with (vs:17).
$\Gamma; \vdash \nu : !A' \dashv \cdot \tag{1}$	Case (т:Туре-Раск) - Analogous to (т:Loc-Раск) with (vs:16). Case (т:Туре-Орен) - Analogous to (т:Loc-Орен) with (vs:19).
$\Gamma, x_0 : A'; \Delta \vdash fun(x_1 : A_0).e : A_0 \multimap A_1 \dashv \cdot$ (2)	Case (T:CAP-ELIM) - We have:
by hypothesis. $\Gamma, x_0 : A'; \Delta, x_1 : A_0 \vdash e : A_1 \dashv \cdot \tag{3}$	$\Gamma; \cdot \vdash \nu : !A' \dashv \cdot \tag{1}$
by inversion on (T.Function) with (2).	$\Gamma, x: A'; \Delta_0, x_0: A_0:: A_2 \vdash e: A_1 \dashv \Delta_1$ (2) by hypothesis.
$x_0 \neq x_1$ (4) by def. of substitution up to rename of bounded variables.	$\Gamma, x : A'; \Delta_0, x_0 : A_0, A_2 \vdash e : A_1 \dashv \Delta_1$ (3)
$\Gamma; \Delta, x_1 : A_0 \vdash e\{v/x_0\} : A_1 \dashv \cdot \tag{5}$	by inversion on (T:Cap-Elim) with (2). $\Gamma; \Delta_0, x_0: A_0, A_2 \vdash e\{\nu/x\}: A_1 \dashv \Delta_1 \tag{4}$
by induction hypothesis with (3) and (1). $\Gamma; \Delta \vdash fun(x_1:A_0).e\{v/x_0\}: A_0 \multimap A_1 \dashv \cdot \tag{6}$	by induction hypothesis with (1) and (3). $\Gamma; \Delta_0, x_0 : A_0 :: A_2 \vdash e\{v/x\} : A_1 \dashv \Delta_1 $ (5)
	, -0,···0 ···-2 · -(·/··) ···-1 · □1

by (T:CAP-ELIM) with (4). $\overline{\Gamma; \Delta', x_i : A'_i \vdash e_i\{v/x\} : A + \Delta_2} $ (8)
Thus, we conclude.	by induction hypothesis on (4) and (1)
Case (T:CAP-STACK) - We have:	Γ ; $\Delta_1 \vdash case \ v_0\{v/x\} \ of \ 1_j \# x_j \to e_j\{v/x\} \ end : A \dashv \Delta_2$ (9 by (T.CASE) on (5), (7) and (8)
Γ ; $\cdot \vdash v : !A' \dashv \cdot$	(1) $\Gamma; \Delta_1 \vdash (case \ v_0 \ of \ \overline{1_j \# x_j \to e_j} \ end) \{v/x\} : A \dashv \Delta_2$ (10)
by hypothe	val.
$\Gamma, x: A'; \Delta_0 \vdash e: A_0 \dashv \Delta_1, A_1$ by inversion on (T:Cap-Stack) with (Case (T:ALTERNATIVE-LEFT) - Immediate by applying the induction hypothesis or
Γ ; $\Delta_0 \vdash e\{v/x\} : A_0 \dashv \Delta_1, A_1$ by induction hypothesis with (1) and (the inversion and then re-applying the rule.
$\Gamma; \Delta_0 \vdash e\{v/x\} : A_0 :: A_1 \dashv \Delta_1$	(5)
$\mbox{by (T:Cap-Stack) with (} \label{eq:cap-Stack} \mbox{Thus, we conclude.}$	4).
Case (T:CAP-UNSTACK) - We have:	3. (Location Variable)
Γ ; $\cdot \vdash v : !A' \dashv \cdot$	(1) <i>Proof.</i> We proceed by induction on the typing derivation of Γ , $t : \mathbf{loc}$; $\Delta_0 \vdash e : A + \Delta_1$.
by hypothes $\Gamma, x: A'; \Delta_0 \vdash e: A_0 :: A_1 \dashv \Delta_1$	(3)
by inversion on (T:Cap-Unstack) with (2). $\rho: \mathbf{loc}, t: $
$\Gamma; \Delta_0 \vdash e\{v/x\} : A_0 :: A_1 \dashv \Delta_1$ by induction hypothesis with (1) and (by hypothesis
$\Gamma; \Delta_0 \vdash e\{v/x\} : A_0 \dashv \Delta_1, A_1$	(5) $1, \rho_0 \cdot \log t \cdot \log w$ by typing
by (T.CAP-UNSTACK) with (Thus, we conclude.	4). $(\Gamma, \rho_0 : \mathbf{loc})\{\rho/t\}$ wf by (Well-Formed Type Substitution - Gamma) on (3), (2)
Cone (mEn. vp) We have	$\Gamma\{\rho/t\}, \rho_0\{\rho/t\} : \mathbf{loc} \ \mathbf{wf}$ (5)
Case (T:Frame) - We have: $\Gamma; \vdash \nu : !A' \dashv \vdash$	(1) by (Ls:3.3) on (4 $\Gamma\{\rho/t\}, \rho_0\{\rho/t\} : \mathbf{loc}; \cdot \vdash \rho_0\{\rho/t\} : \mathbf{ref} \rho_0\{\rho/t\} \dashv \cdot $ (6
7 7 77 - 77 -	(2) by (T:Ref) with (5)
by hypothes $\Gamma, x: A'; \Delta_0 \vdash e: A \dashv \Delta_1$	is. $(\Gamma, \rho_0 : \mathbf{loc})\{\rho/t\}; \vdash \rho_0\{\rho/t\} : (\mathbf{ref} \ \rho_0)\{\rho/t\} + \cdot$ (7) (3) by (Ls:3.3), (Ls:2.10) on (6)
by inversion on (T.Frame) with (Γ ; $\Delta_0 \vdash e\{v/x\} : A \dashv \Delta_1$	2). Thus, we conclude.
by induction hypothesis with (1) and (3). Case (T:Pure) - We have:
$\Gamma; \Delta_0, \Delta_2 \vdash e\{v/x\} : A \dashv \Delta_1, \Delta_2$ by (T:Frame) with A	(5) $\Gamma, t: \mathbf{loc}_: \vdash v: A \dashv \cdot$ $\Delta_2.$ $\rho: \mathbf{loc} \in \Gamma$ (2)
Thus, we conclude.	by hypothesis
Case (T:Subsumption) - We have: $\Gamma: \vdash \nu : !A' \dashv \cdot$	(1) $\Gamma, t: \mathbf{loc}; \vdash v: A \dashv \cdot$ by inversion on (T:Pure) with (1)
$\Gamma, x: A'; \Delta_0 \vdash e: A_1 \dashv \Delta_1$	(2) $\Gamma\{\rho/t\}; \{\rho/t\} + \nu\{\rho/t\} : A\{\rho/t\} + \{\rho/t\} $ (4)
by hypother $\Delta_0 <: \Delta_0'$	by induction hypothesis with (2) and (3) $\Gamma\{\rho/t\}; \cdot \{\rho/t\} \vdash \nu\{\rho/t\} : !A\{\rho/t\} + \cdot \{\rho/t\} $ (5)
	(4) by (T:Pure) on (4)
$\Delta_1' <: \Delta_1$	(6) by (Ls:2.4) on (5
by inversion on (T:Subsumption) with ($\Gamma; \Delta_0' \vdash e\{v/x\} : A_0 \dashv \Delta_1'$	2). Thus, we conclude.
by induction hypothesis with (1) and (4). Case (r:Unit) - We have:
Γ ; $\Delta_0 \vdash e\{v/x\} : A_1 \dashv \Delta_1$ by (T:Subsumption) with (7), (3), (5) and ((8) $\Gamma, t: \mathbf{loc}; \cdot \vdash v: [] + \cdot$ (1) $\rho: \mathbf{loc} \in \Gamma$ (2)
Thus, we conclude.	by hypothesis
Case (T:TAG) - We have:	$\Gamma, t: \mathbf{loc} \ \mathbf{wf}$ (3 by typing
	(1) $\Gamma\{\rho/t\}$ wf (4)
$\Gamma, x: A'; \Delta_0 \vdash 1 \# v_0: 1 \# A_1 \dashv \Delta_1$ by hypothes	(2) by (Well-Formed Type Substitution - Gamma) on (3), (2) iss. $\Gamma\{\rho/t\}; \vdash \nu : [] \dashv \cdot$ (5
$\Gamma, x: A'; \Delta_0 \vdash v_0: A_1 \dashv \Delta_1$ by inversion (T.Tag) with ((3) by (T.UNIT) with (4) 2). $\Gamma\{\rho/t\}; \{\rho/t\} \vdash \nu\{\rho/t\} : []\{\rho/t\} \dashv \{\rho/t\}$ (6
$\Gamma; \Delta_0 \vdash \nu_0\{\nu/x\} : A_1 \dashv \Delta_1$	by (Ls2.7), (Ls4.1) on (5) and noting that regardless i
by induction hypothesis with (1) and (Γ ; $\Delta_0 \vdash 1 \# \nu_0 \{ \nu/x \} : 1 \# A_1 \dashv \Delta_1$	3). t occurs or not in v its type remains unchanged (5) Thus, we conclude.
by (r:Tag) with ($\Gamma;\Delta_0 \vdash (1\#\nu_0)\{\nu/x\}: 1\#A_1 \dashv \Delta_1$	4). (6) Case (T:Pure-Read) - We have:
by (vs:20) on (Thus, we conclude.	5). $\Gamma, x: A, t: \mathbf{loc}; \vdash x: !A + \cdot $
	$ \rho: \mathbf{loc} \in \Gamma $ (2 by hypothesis
Case (T:Case) - We have: $\Gamma; \vdash \nu : !A' \dashv \vdash$	$\Gamma, x: A, t: \mathbf{loc} \ \mathbf{wf} $ (3) by typing
$\Gamma, x : A'; \Delta_0 \vdash case \ v_0 \ of \ \overline{1_j \# x_j \to e_j} \ end : A \dashv \Delta_1$	(2) $(\Gamma, x : A)\{\rho/t\} \text{ wf} $
by hypothes $\Gamma, x : A' : \Delta_1 \vdash v_0 : \sum_i 1_i \# A'_i \dashv \Delta'$	is. by (Well-Formed Type Substitution) on (3), (2) $\Gamma\{\rho/t\}, x : A\{\rho/t\} \text{ wf} $ (5)
$\overline{\Gamma, x: A'; \Delta', x_i: A'_i \vdash e_i: A \dashv \Delta_2}$	(4) by (Ls:3.2) on (4)
$i \le j$ by inversion (T:CASE) with ((5) $\Gamma(\rho/t), x : A(\rho/t); \vdash x : A(\rho/t) + \cdot$ (6) by (T.Pure-Read) with (5)
$\overline{x \neq x_j}$	(6) $\Gamma(\rho/t), x : A\{\rho/t\}; \{\rho/t\} + x\{\rho/t\} : (!A)\{\rho/t\} + \{\rho/t\} $ (7)
	(7) Thus, we conclude.
by induction hypothesis on (3) and (1).

Case (T:LINEAR-READ) - We have:

$\Gamma, t: \mathbf{loc}; x: A \vdash x: A \dashv \cdot$ (1)	by hypothesis.
$\rho: \mathbf{loc} \in \Gamma \tag{2}$	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash \nu_1 : A_0 \dashv \Delta_1 \tag{3}$
by hypothesis.	$\Gamma, t : \mathbf{loc}; \Delta_1 \vdash \nu_0 : \mathbf{ref} \ p \dashv \Delta_2, \mathbf{rw} \ p \ A_1 $ (4)
$(\Gamma, t: \mathbf{loc}) \ \mathbf{wf}$ (3)	by inversion on (T:Assign) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu_1\{\rho/t\} : A_0\{\rho/t\} + \Delta_1\{\rho/t\} $ (5)
by typing. $\Gamma\{\rho/t\} \text{ wf} \tag{4}$	$\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash \nu_1[\rho/t] : A_0[\rho/t] \dashv \Delta_1[\rho/t] $ (5) by induction hypothesis on (3) with (2).
by (Well-Formed Type Substitution) with (3) and (2). Γ , t : loc \vdash A type (5)	$\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash v_0\{\rho/t\} : (\mathbf{ref}\ p)\{\rho/t\} \dashv (\Delta_2, \mathbf{rw}\ p\ A_1)\{\rho/t\} $ (6) by induction hypothesis on (4) with (2).
by (Well-Formed Delta) on (1)	$\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash v_0\{\rho/t\} : \mathbf{ref} \ p\{\rho/t\} + \Delta_2\{\rho/t\}, \mathbf{rw} \ p\{\rho/t\} \ A_1\{\rho/t\} $ (7)
$\Gamma\{\rho/t\} \vdash A\{\rho/t\}$ type (6) by (Well-Formed Type Substitution) with (6) and (2).	by (Ls:2.10), (Ls:4.3), (Ls:2.12) on (6). $\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash v_0\{\rho/t\} := v_1\{\rho/t\} : A_1\{\rho/t\}$
$\Gamma\{\rho/t\}; x : A\{\rho/t\} \vdash x : A\{\rho/t\} \dashv \cdot \tag{7}$	$+\Delta_2\{\rho/t\}, \mathbf{rw} \ p\{\rho/t\} \ A_0\{\rho/t\} $ (8)
by (t:Linear-Read) with (5).	by (T:Assign) on (6) and (7).
$\Gamma\{\rho/t\}; (x:A)\{\rho/t\} + x\{\rho/t\} : A\{\rho/t\} + \{\rho/t\} + \{\rho/t\}$ by (Ls:4.2), (Ls:4.1), (Ls:1.2) on (7).	$\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash (v_0 := v_1)\{\rho/t\} : A_1\{\rho/t\} \vdash (\Delta_2, \mathbf{rw} \ p \ A_0)\{\rho/t\} $ (9) by (Ls:1.10), (Ls:2.12), (Ls:4.3) on (8).
Thus, we conclude.	Thus, we conclude.
Case (T:Pure-Elim) - We have:	Case (T:Dereference-Linear) - We have:
$\Gamma, t : \mathbf{loc}; \Delta_0, x : A_0 \vdash e : A_1 + \Delta_1 $ $\rho : \mathbf{loc} \in \Gamma $ (1) (2)	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash !v: A \dashv \Delta_1, \mathbf{rw} \ p \ [] $ $\rho: \mathbf{loc} \in \Gamma $ (2)
by hypothesis. (2)	by hypothesis. (2)
$\Gamma, t: \mathbf{loc}, x: A_0; \Delta_0 \vdash e: A_1 \dashv \Delta_1 \tag{3}$	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \mathbf{ref} \ p \dashv \Delta_1, \mathbf{rw} \ p \ A$ (3)
by inversion on (T:Pure-Elim) with (1).	by inversion on (T:Dereference-Linear) with (1).
$(\Gamma, x : A_0)\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A_1\{\rho/t\} + \Delta_1\{\rho/t\}$ (4) by induction hypothesis on (3) and (2).	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : (\mathbf{ref}\ p)\{\rho/t\} \dashv (\Delta_1, \mathbf{rw}\ p\ A)\{\rho/t\}$ (4) by induction hypothesis with (2) and (3).
$\Gamma(\rho/t), x : A_0(\rho/t); \Delta_0(\rho/t) + e(\rho/t) : A_1(\rho/t) + \Delta_1(\rho/t)$ (5)	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : \mathbf{ref} \ p\{\rho/t\} + \Delta_1\{\rho/t\}, \mathbf{rw} \ p\{\rho/t\} \ A\{\rho/t\} $ (5)
by (Ls:3.2) on (4) $\Gamma(\rho/t); \Delta_0(\rho/t), x : !A_0(\rho/t) \vdash e(\rho/t) : A_1(\rho/t) + \Delta_1(\rho/t) $ (6)	by (Ls:4.3), (Ls:2.12), (Ls:2.10) on (4). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash !v\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \mathbf{rw} \ p\{\rho/t\} \ [] $ (6)
by (T:Pure-Elim) on (5). $\Gamma\{\rho/t\}; (\Delta_0, x : !A_0)\{\rho/t\} \vdash e\{\rho/t\} : A_1\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ (7)	by (T:Dereference-Linear) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (!v)\{\rho/t\} : A\{\rho/t\} \dashv (\Delta_1, \mathbf{rw} \ p \ []) $ (7)
by (Ls:4.2) on (6)	by (Ls:1.9), (Ls:4.3), (Ls:2.12), (Ls:2.3) on (6).
Thus, we conclude.	Thus, we conclude.
Case (T:New) - We have:	Case (T:Dereference-Pure) - Analogous to (T:Dereference-Linear).
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash new \ v : \exists t_0. (\mathbf{ref} \ t_0 :: \mathbf{rw} \ t_0 \ A) \dashv \Delta_1 $ (1)	Case (T:RECORD) - We have:
$\rho: \mathbf{loc} \in \Gamma \tag{2}$	$\Gamma, t : \mathbf{loc}; \Delta \vdash \{\overline{\mathbf{f} = \nu}\} : [\overline{\mathbf{f} : A}] + \cdot $ (1)
by hypothesis. (2)	$\rho: \mathbf{loc} \in \Gamma \tag{2}$
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: A \dashv \Delta_1$ (3) by inversion on (T:New) with (1).	by hypothesis. $\overline{\Gamma, t: \mathbf{loc}; \Delta \vdash v_i : A_i \dashv \cdot} $ (3)
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ $\tag{4}$	$\Gamma, t: \mathbf{loc}; \Delta \vdash v_i : A_i \dashv \cdot$ (3) by inversion on (T.Record) with (1).
by induction hypothesis on (2) and (3). Fraction $A(x,y) = A(x,y) + A(x,y) = A(x,y) + A(x,y) + A(x,y) = A(x,y) + A(x,y)$	$\overline{\Gamma(\rho/t)}; \Delta(\rho/t) \vdash e_i(\rho/t) : A_i(\rho/t) \dashv \cdot (\rho/t) $ (4)
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \text{new } v\{\rho/t\} : \exists t_0.(\text{ref } t_0 :: \text{rw } t_0 A\{\rho/t\}) + \Delta_1\{\rho/t\} $ (5) by (T:New) with (4).	by induction hypothesis with (2) and (3).
$t_0 \neq t \tag{6}$	$\Gamma\{\rho/t\}; \Delta\{\rho/t\} + \{\mathbf{f} = v\{\rho/t\}\} : [\mathbf{f} : A\{\rho/t\}] + \{\rho/t\} $ (5)
by def. of substitution up to rename of bounded location variables.	by (T:Record) with (4). $\Gamma(A) = \left(\frac{1}{1 - A} \right) \left(\frac{1}{1 - A} $
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (new\ v)\{\rho/t\} : \exists t_0.(ref\ t_0 :: rw\ t_0\ A\{\rho/t\}) \dashv \Delta_1\{\rho/t\} \tag{7}$	$\Gamma\{\rho/t\}; \Delta\{\rho/t\} \vdash (\{\mathbf{f} = v\})\{\rho/t\} : ([\overline{\mathbf{f}} : \overline{A}])\{\rho/t\} + \{\rho/t\} $ (6) by (Ls:1.4), (Ls:2.7) on (5).
by (Ls:1.7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (new\ v)\{\rho/t\} : \exists t_0.(ref\ t_0 :: (rw\ t_0\ A)\{\rho/t\}) \dashv \Delta_1\{\rho/t\} $ (8)	Thus, we conclude.
by (Ls:2.12) on (7).	
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (new\ v)\{\rho/t\} : \exists t_0.((ref\ t_0 :: rw\ t_0\ A)\{\rho/t\}) \dashv \Delta_1\{\rho/t\} \tag{9}$	Case (T:Selection) - We have:
by (Ls:2.6) on (8) and (6).	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v.\mathbf{f}_i : A_i \dashv \Delta_1 $ $\rho: \mathbf{loc} \in \Gamma $ (1) (2)
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (\text{new } v)\{\rho/t\} : (\exists t_0.(\text{ref } t_0 :: \text{rw } t_0 A))\{\rho/t\} + \Delta_1\{\rho/t\} $ (10) by (Ls:2.9) on (9) and (6).	by hypothesis. (2)
Thus, we conclude.	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: [\overline{\mathbf{f}:A}] + \Delta_1$ (3)
	by inversion on (T:Selection) with (1).
Case (T:Delete) - We have:	$\Gamma(\rho/t); \Delta_0(\rho/t) \vdash \nu(\rho/t) : [\overline{\mathbf{f} : A}](\rho/t) + \Delta_1(\rho/t) \tag{4}$
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash delete \ v : \exists t_0.A \dashv \Delta_1 $ (1)	by induction hypothesis on (1) and (3). $\overline{(2)}$
$\rho: \mathbf{loc} \in \Gamma \tag{2}$ by hypothesis.	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : [\mathbf{f} : A\{\rho/t\}] \dashv \Delta_1\{\rho/t\} $ by (Ls:2.7) on (4).
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \exists t_0. (\mathbf{ref} \ t_0 :: \mathbf{rw} \ t_0 \ A) \dashv \Delta_1$ (3)	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\}. \mathbf{f}_i : A_i\{\rho/t\} + \Delta_1\{\rho/t\} $ (6)
by inversion on (T:Delette) with (1). $ \Gamma(x, t) = \sum_{i=1}^{n} \frac{1}{n} \left(\sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} $	by (T:Selection) on (5).
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : (\exists t_0.(\mathbf{ref}\ t_0 :: \mathbf{rw}\ t_0\ A))\{\rho/t\} \vdash \Delta_1\{\rho/t\} $ (4) by induction hypothesis on (2) and (3).	$\Gamma(\rho/t)$; $\Delta_0(\rho/t) \vdash (v.\mathbf{f}_i)(\rho/t) : A_i(\rho/t) \dashv \Delta_1(\rho/t)$ (7) by (Ls:1.5) on (6).
$t_0 \neq t \tag{5}$	Thus, we conclude.
by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : \exists t_0.((\mathbf{ref} t_0 :: \mathbf{rw} t_0 A)\{\rho/t\}) \dashv \Delta_1\{\rho/t\} $ (6)	
$1\{p/i\}, \Delta_0\{p/i\} \in V\{p/i\}: \Delta_0(\{\text{let }i_0: \text{lw }i_0 A\}\{p/i\}) \cap \Delta_1\{p/i\}$ (6) by (Ls:2.9) on (4) and (5).	Case (T:Application) - We have:
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : \exists t_0.((\mathbf{ref}\ t_0)\{\rho/t\} :: (\mathbf{rw}\ t_0\ A)\{\rho/t\}) + \Delta_1\{\rho/t\} $ (7)	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash \nu_0 \ \nu_1 : A_1 \dashv \Delta_2 $ $\rho: \mathbf{loc} \in \Gamma $ (1)
by (Ls:2.12) on (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : \exists t_0. (\mathbf{ref}\ t_0 :: \mathbf{rw}\ t_0\ A\{\rho/t\}) \dashv \Delta_1\{\rho/t\} $ (8)	by hypothesis.
by (Ls:2.10), (Ls:2.12) on (7).	$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash \nu_1 : A_0 \dashv \Delta_1 \tag{3}$
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu\{\rho/t\} : \exists t_0.(A\{\rho/t\}) + \Delta_1\{\rho/t\} $ (9)	$\Gamma, t: \mathbf{loc}; \Delta_1 \vdash \nu_0 : A_0 \multimap A_1 \dashv \Delta_2$ (4) by inversion on (T.APPLICATION) with (1).
by (T.Delete) on (8).	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu_1\{\rho/t\} : A_0\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ (3)
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\exists t_0.A)\{\rho/t\} \dashv \Delta_1\{\rho/t\}$ (10) by (Ls:2.9) on (5) and (9).	by induction hypothesis on (2) and (3).
Thus, we conclude.	$\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash v_0\{\rho/t\} : (A_0 \multimap A_1)\{\rho/t\} + \Delta_2\{\rho/t\} $ (4) by induction by notheric on (2) and (4)
	by induction hypothesis on (2) and (4). $\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash v_0\{\rho/t\} : A_0\{\rho/t\} \rightarrow A_1\{\rho/t\} \rightarrow \Delta_2\{\rho/t\} $ (5)
Case (T:Assign) - We have:	by (Ls:2.5) on (4).
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash \nu_0 := \nu_1 : A_1 \dashv \Delta_2, \mathbf{rw} \ p \ A_0 \tag{1}$	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} + (v_0 \ v_1)\{\rho/t\} : A_0\{\rho/t\} + \Delta_2\{\rho/t\} \tag{6}$
$\rho: \mathbf{loc} \in \Gamma \tag{2}$	by (T:APPLICATION) on (5) and (3), and (Ls:1.6).

Thus, we conclude.	$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v_0 : \exists t_0.A_0 \dashv \Delta_1 $ $\Gamma, t : \mathbf{loc}, t_0 : \mathbf{loc}; \Delta_1, x : A_0 \vdash e_1 : A_1 \dashv \Delta_2 $ $\tag{4}$
Case (T:Function) - We have:	by inversion on (T.Loc-Open) with (1).
$\Gamma, t : \mathbf{loc}; \Delta \vdash fun(x : A_0).e : A_0 \multimap A_1 \dashv \cdot $ (1)	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu_0\{\rho/t\} : (\exists t_0.A_0)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5)
$\rho: \mathbf{loc} \in \Gamma \tag{2}$	by induction hypothesis on (2) and (3).
by hypothesis.	$(\Gamma, t_0 : \mathbf{loc})\{\rho/t\}; (\Delta_1, x : A_0)\{\rho/t\} \vdash e_1\{\rho/t\} : A_1\{\rho/t\} + \Delta_2\{\rho/t\} $ (6)
$\Gamma, t: \mathbf{loc}; \Delta, x: A_0 \vdash e: A_1 \dashv \cdot$ (3)	by induction hypothesis on (2) and (4). $t_0 \neq t$ (7)
by inversion on (T:Function) with (1).	$t_0 \neq t$ (7) by def. of substitution up to rename of bounded location variables.
$\Gamma(\rho/t); (\Delta, x : A_0)\{\rho/t\} + e\{\rho/t\} : A_1\{\rho/t\} + \cdot\{\rho/t\} \tag{4}$	$\Gamma\{\rho/t\}, t_0 : \mathbf{loc}; \Delta_1\{\rho/t\}, x : A_0\{\rho/t\} \vdash e_1\{\rho/t\} : A_1\{\rho/t\} \dashv \Delta_2\{\rho/t\}$ (8)
by induction hypothesis on (2) and (3). $\Gamma\{\rho/t\}; \Delta\{\rho/t\}, x : A_0\{\rho/t\} \vdash e\{\rho/t\} : A_1\{\rho/t\} \rightarrow \{\rho/t\} $ (5)	by (LS:3.3), (LS:4.2) on (7), (6).
(5) by (Ls:4.2) on (4).	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \nu_0\{\rho/t\} : \exists t_0. A_0\{\rho/t\} + \Delta_1\{\rho/t\} $ (9)
$\Gamma\{\rho/t\}; \Delta\{\rho/t\} \vdash fun(x : A_0\{\rho/t\}).e\{\rho/t\} : A_0\{\rho/t\} \multimap A_1\{\rho/t\} \dashv \{\rho/t\} $ (6)	by (Ls:2.10) on (5), (7).
by (T:Function) on (5).	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \text{open } \langle t_0, x \rangle = v_0\{\rho/t\}$
$\Gamma\{\rho/t\}; \Delta\{\rho/t\} \vdash (\operatorname{fun}(x:A_0).e)\{\rho/t\} : (A_0 \multimap A_1)\{\rho/t\} + \cdot \{\rho/t\} $ (7)	in $e_1\{\rho/t\}$ end : $A_1\{\rho/t\} + \Delta_2\{\rho/t\}$ (10)
by (Ls:1.3), (Ls:2.5) on (6).	by (T:Loc-Open) on (8) and (9).
Thus, we conclude.	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (open\langle t_0, x\rangle = v_0 \;in\; e_1 \;end)\{\rho/t\} : A_1\{\rho/t\} + \Delta_2\{\rho/t\} (11)$
	by (LS:1.14) on (10).
Case (T:Forall-Loc) - We have:	Thus, we conclude.
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash \langle t_0 \rangle e: \forall t_0.A \dashv \cdot \tag{1}$	Cose (#Forum Type) Analogous to (#Forum Los)
$\rho: \mathbf{loc} \in \Gamma \tag{2}$	Case (T:Forall-Type) - Analogous to (T:Forall-Loc).
by hypothesis.	Case (T:Type-App) - Analogous to (T:Loc-App).
$\Gamma, t : \mathbf{loc}, t_0 : \mathbf{loc}; \Delta_0 \vdash e : A + \cdot$ (3)	Case (T:Type-Pack) - Analogous to (T:Loc-Pack).
by inversion on (T:Forall-Loc) with (1). $t_0 \neq t$ (4)	Case (T:Type-Open) - Analogous to (T:Loc-Open).
by def. of substitution up to rename of bounded location variables.	Case (T:CAP-ELIM) - We have:
$(\Gamma, t_0 : \mathbf{loc})\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + \langle \rho/t\} $ (5)	$\Gamma, t : \mathbf{loc}; \Delta_0, x : A_1 :: A_2 \vdash e : A_0 \dashv \Delta_1 $ $\rho : \mathbf{loc} \in \Gamma $ (2)
by induction hypothesis with (2) and (3).	ρ . loc \in 1
$\Gamma\{\rho/t\}, t_0 : \mathbf{loc}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + \{\rho/t\} $ $\tag{6}$	$\Gamma, t: \mathbf{loc}; \Delta_0, x: A_1, A_2 \vdash e: A_0 \dashv \Delta_1$ (3)
by (Ls:3.3), (Ls:2.3) with (4) on (5).	by inversion on (T:CAP-ELIM) with (1).
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \langle t_0 \rangle e\{\rho/t\} : \forall t_0. A\{\rho/t\} + \langle \rho/t\} $ $\tag{7}$	$\Gamma\{\rho/t\}; (\Delta_0, x : A_1, A_2)\{\rho/t\} \vdash e\{\rho/t\} : A_0\{\rho/t\} + \Delta_1\{\rho/t\} $ (4)
by (T.Forall-Loc) on (6).	by induction hypothesis with (2) and (3).
$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (\langle t_0 \rangle e)\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \langle \rho/t\} $ $\tag{8}$	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, x : A_1\{\rho/t\}, A_2\{\rho/t\} \vdash e\{\rho/t\} : A_0\{\rho/t\} + \Delta_1\{\rho/t\} $ (5)
by (Ls:1.13), (Ls:2.8) with (4) on (7).	by (Ls:4.3), (Ls:4.2) on (4).
Thus, we conclude.	$\Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, x : A_1\{\rho/t\} :: A_2\{\rho/t\} + e\{\rho/t\} : A_0\{\rho/t\} + \Delta_1\{\rho/t\} $ (6)
Case (T:Loc-App) - We have:	by (T:Cap-Elim) with (5). $\Gamma(a/a) \cdot (A - a \cdot A - a \cdot $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash \nu[p] : A\{p/t_0\} + \Delta_1 \tag{1}$	$\Gamma[\rho/t]; (\Delta_0, x : A_1 :: A_2)\{\rho/t\} \vdash e\{\rho/t\} : A_0\{\rho/t\} + \Delta_1\{\rho/t\} $ (7) by (Ls:4.2), (Ls:2.6) on (6).
$\rho: \mathbf{loc} \in \Gamma $ (2)	Thus, we conclude.
by hypothesis.	rius, we conclude.
$p: \mathbf{loc} \in \Gamma \tag{3}$	Case (T:CAP-STACK), (T:CAP-UNSTACK) - Analogous to (T:CAP-ELIM).
$p: \mathbf{loc} \in \Gamma $ $\Gamma, t: \mathbf{loc}; \Delta_0 \vdash \nu: \forall t_0.A \dashv \Delta_1 $ (4)	Case (T:CAP-STACK), (T:CAP-UNSTACK) - Analogous to (T:CAP-ELIM).
•	Case (T:CAP-STACK), (T:CAP-UNSTACK) - Analogous to (T:CAP-ELIM). Case (T:Frame) - We have:
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1 $ by inversion on (r:Loc-App) with (1). $\Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5)	Case (T:Frame) - We have:
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1 $ by inversion on (r:Loc-App) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4).	Case (T:Frame) - We have: $\Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2$ (1)
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1 $	Case (T:Frame) - We have:
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $	Case (T:Frame) - We have: $\Gamma, t: \mathbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 \tag{1}$ $\rho: \mathbf{loc} \in \Gamma \tag{2}$
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1$	Case (T:Frame) - We have: $\Gamma, t: \mathbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 \tag{1}$ $\rho: \mathbf{loc} \in \Gamma \tag{2}$ by hypothesis.
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1 $	Case (T:Frame) - We have: $ \Gamma, t: \mathbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 \qquad (1) \\ \rho: \mathbf{loc} \in \Gamma \qquad (2) \\ \text{by hypothesis.} $ $ \Gamma, t: \mathbf{loc}; \Delta_0 \vdash e: A \dashv \Delta_1 \qquad \text{by inversion on (T:Frame) with (1).} $ $ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\} \qquad (4) $
Γ, $t : \mathbf{loc}$; $\Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1$ (4) by inversion on (T:Loc-App) with (1). Γ $\{\rho/t\}$; $\Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} \dashv \Delta_1\{\rho/t\}$ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\}$ (6) by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t$ (7) by def. of substitution up to rename of bounded location variables. Γ $\{\rho/t\}$; $\Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} \dashv \Delta_1\{\rho/t\}$ (8)	$ \begin{aligned} \mathbf{Case} & & (\mathbf{T:Frame}) - \text{ We have:} \\ & & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 & (1) \\ & & \rho : \mathbf{loc} \in \Gamma & (2) \\ & & \text{by hypothesis.} \\ & & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 & (3) \\ & & \text{by inversion on (T:Frame) with (1).} \\ & & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (4) \\ & & \text{by induction hypothesis with (2) and (3).} \end{aligned} $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1 $	$ \begin{aligned} \mathbf{Case} & & (\mathbf{T:Frame}) - \text{ We have:} \\ & & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 & (1) \\ & & \rho : \mathbf{loc} \in \Gamma & (2) \\ & & \text{by hypothesis.} \\ & & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 & \text{by inversion on } (\mathbf{T:Frame}) \text{ with } (1). \\ & & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (4) \\ & & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & (5) \end{aligned} $
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $	$ \begin{aligned} \mathbf{Case} & & (\mathbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 & (1) \\ & \rho : \mathbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis.} \\ & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 & (3) \\ & \text{by inversion on } (\mathbf{T:Frame}) \text{ with } (1). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (4) \\ & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & (5) \\ & \text{by typing on } (1). \end{aligned} $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1$ by inversion on (T:Loc-App) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ by induction hypothesis with (2) and (4). $p\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\}$ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t$ $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ by (T:Loc-App) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\} : A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ (10)	$ \begin{aligned} \mathbf{Case} & & (\mathbf{T:Frame}) - \text{ We have:} \\ & & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A + \Delta_1, \Delta_2 & (1) \\ & & \rho : \mathbf{loc} \in \Gamma & (2) \\ & & \text{by hypothesis.} \\ & & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A + \Delta_1 & \text{sy inversion on (T:Frame) with (1).} \\ & & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + \Delta_1\{\rho/t\} & (4) \\ & & \text{by induction hypothesis with (2) and (3).} \\ & & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & \text{sy typing on (1).} \\ & & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & (6) \end{aligned} $
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $	$ \begin{aligned} & \textbf{Case (T:Frame) - We have:} \\ & \Gamma, t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A + \Delta_1, \Delta_2 & (1) \\ & \rho: \textbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis:} \\ & \Gamma, t: \textbf{loc}; \Delta_0 \vdash e: A + \Delta_1 & (3) \\ & \text{by inversion on (T:Frame) with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + \Delta_1\{\rho/t\} & (4) \\ & \text{by induction hypothesis with (2) and (3).} \\ & \Gamma, t: \textbf{loc} \vdash \Delta_0, \Delta_2 & \text{by typing on (1).} \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & (6) \\ & \text{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \end{aligned} $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1$ by inversion on (T:Loc-App) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ by induction hypothesis with (2) and (4). $p\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\}$ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t$ $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ by (T:Loc-App) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\} : A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ (10)	$ \begin{aligned} \mathbf{Case} & & (\mathbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A + \Delta_1, \Delta_2 & (1) \\ & \rho : \mathbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A + \Delta_1 & (3) \\ & \text{by inversion on (T:Frame) with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + \Delta_1\{\rho/t\} & (4) \\ & \text{by induction hypothesis with (2) and (3).} \\ & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & (5) \\ & \text{by typing on (1).} \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & (6) \\ & \text{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ & \text{and by (Ls:4.*).} \end{aligned} $
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $ by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} $ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\}: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude.	$ \begin{aligned} \mathbf{Case} & & (\mathbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A + \Delta_1, \Delta_2 & (1) \\ & \rho : \mathbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A + \Delta_1 & (3) \\ & \text{by inversion on (T:Frame) with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + \Delta_1\{\rho/t\} & (4) \\ & \text{by induction hypothesis with (2) and (3).} \\ & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & (5) \\ & \text{by typing on (1).} \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & (6) \\ & \text{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ & \text{and by (Ls:} 4.*). \end{aligned} $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1 $ by inversion on (τ:Loc-App) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\} $ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (9) by (τ:Loc-App) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\} : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{t}:\mathbf{Loc-Pack}) - \mathbf{We} \text{ have:}$	$ \textbf{Case (T:Frame) - We have:} $ $ \Gamma, t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 $
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $ by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} $ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\}: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{r:Loc-Pack}) - \mathbf{We} \mathbf{have}: \Gamma, t: \mathbf{loc}; \Delta_0 \vdash \langle p, v \rangle: \exists f_0.A \dashv \Delta_1 $ (1)	$ \begin{aligned} & \textbf{Case (T:Frame) - We have:} \\ & \Gamma, t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A + \Delta_1, \Delta_2 & (1) \\ & \rho: \textbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis.} \\ & \Gamma, t: \textbf{loc}; \Delta_0 \vdash e: A + \Delta_1 & (3) \\ & \text{by inversion on (T:Frame) with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + \Delta_1\{\rho/t\} & (4) \\ & \text{by induction hypothesis with (2) and (3).} \\ & \Gamma, t: \textbf{loc} \vdash \Delta_0, \Delta_2 & \text{by typing on (1).} \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & (6) \\ & \text{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ & \text{and by (Ls:4.*).} \\ & \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} & (7) \\ & \text{by (Well-Formed Delta) on (6).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} & (8) \\ & \text{by (T:Frame) on (7) and (4).} \end{aligned} $
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $ (4) by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} $ (6) by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\}: A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We} \ \text{have:} \\ \Gamma, t: \mathbf{loc}; \Delta_0 \vdash \langle p, v \rangle: \exists t_0.A \dashv \Delta_1 $ (1) $\rho: \mathbf{loc} \in \Gamma$ (2)	$ \begin{aligned} \mathbf{Case} & (\mathbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 & (1) \\ & \rho : \mathbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis.} \\ & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 & \text{sy inversion on } (\mathbf{T:Frame}) \text{ with } (1). \\ & \Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & (5) \\ & \text{by typing on } (1). \\ & \Gamma(\rho/t) \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & \text{by typing on } (1). \\ & \Gamma(\rho/t) \vdash \Delta_2\{\rho/t\} & \text{otherwise and by } (\mathbf{LS:4.*}). \\ & \Gamma(\rho/t) \vdash \Delta_2\{\rho/t\} & \text{otherwise } (7) \\ & \text{by } (\text{Well-Formed Delta) on } (6). \\ & \Gamma(\rho/t); \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} & \text{by } (\mathbf{T:Frame}) \text{ on } (7) \text{ and } (4). \\ & \Gamma(\rho/t); (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} & (9) \end{aligned}$
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 \qquad \qquad (4)$ $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} \qquad (5)$ by induction hypothesis with (2) and (4). $\rho\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} \qquad \qquad (6)$ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t \qquad \qquad (7)$ by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} \qquad \qquad (8)$ by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} \qquad \qquad (9)$ by (T.Loc-App) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} \qquad \qquad (10)$ by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{r}: \mathbf{Loc} \cdot \mathbf{PAck}) - \mathbf{We} \ \mathbf{have}:$ $\Gamma, t: \mathbf{loc}; \Delta_0 \vdash \langle p, v \rangle: \exists t_0.A + \Delta_1 \qquad \qquad (1)$ $\rho: \mathbf{loc} \in \Gamma \qquad \qquad (2)$ by hypothesis.	$ \begin{aligned} \mathbf{Case} & & (\mathbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 & (1) \\ & \rho : \mathbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis.} \\ & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 & \text{by inversion on } (\mathbf{T:Frame}) \text{ with } (1). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (4) \\ & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & (5) \\ & \text{by typing on } (1). \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & (6) \\ & \text{by } (\text{Well-Formed Type Substitution - Delta) on } (5) \text{ and } (2) \\ & \text{and by } (\text{Ls:}4.^*). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2[\rho/t] & (8) \\ & \text{by } (\text{T:Frame}) \text{ on } (7) \text{ and } (4). \\ & \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} & (9) \\ & \text{and by } (\text{Ls:}4.^*). \end{aligned}$
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $ (4) by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} $ (6) by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} \dashv \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\}: A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We} \ \text{have:} \\ \Gamma, t: \mathbf{loc}; \Delta_0 \vdash \langle p, v \rangle: \exists t_0.A \dashv \Delta_1 $ (1) $\rho: \mathbf{loc} \in \Gamma$ (2)	$ \begin{aligned} \mathbf{Case} & (\mathbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \mathbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 & (1) \\ & \rho : \mathbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis.} \\ & \Gamma, t : \mathbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 & \text{sy inversion on } (\mathbf{T:Frame}) \text{ with } (1). \\ & \Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma, t : \mathbf{loc} \vdash \Delta_0, \Delta_2 & (5) \\ & \text{by typing on } (1). \\ & \Gamma(\rho/t) \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & \text{by typing on } (1). \\ & \Gamma(\rho/t) \vdash \Delta_2\{\rho/t\} & \text{otherwise and by } (\mathbf{LS:4.*}). \\ & \Gamma(\rho/t) \vdash \Delta_2\{\rho/t\} & \text{otherwise } (7) \\ & \text{by } (\text{Well-Formed Delta) on } (6). \\ & \Gamma(\rho/t); \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} & \text{by } (\mathbf{T:Frame}) \text{ on } (7) \text{ and } (4). \\ & \Gamma(\rho/t); (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} & (9) \end{aligned}$
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $ by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} $ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\}: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We} \mathbf{have}:$ $\Gamma, t: \mathbf{loc}; \Delta_0 \vdash (p, v): \exists t_0.A + \Delta_1 $ (1) $\rho: \mathbf{loc} \in \Gamma $ (2) by hypothesis. $\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: A\{p/t_0\} + \Delta_1 $ (3) by inversion on (T:Loc-Pack) with (1).	$ \begin{array}{llll} \textbf{Case (T:Frame)} & - \text{ We have:} \\ & \Gamma, t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 & (1) \\ & \rho: \textbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis.} \\ & \Gamma, t: \textbf{loc}; \Delta_0 \vdash e: A \dashv \Delta_1 & \text{by inversion on (T:Frame) with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (4) \\ & \text{by induction hypothesis with (2) and (3).} \\ & \Gamma, t: \textbf{loc} \vdash \Delta_0, \Delta_2 & (5) \\ & \text{by typing on (1).} \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) & (6) \\ & \text{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ & & \text{and by (Ls:4.*).} \\ & \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} & \text{by (Well-Formed Delta) on (6).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} & (8) \\ & \text{by (T:Frame) on (7) and (4).} \\ & \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} & \text{and by (Ls:4.*).} \\ & \text{Thus, we conclude.} \end{array} $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1 \qquad \qquad (4)$ by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} \qquad (5)$ by induction hypothesis with (2) and (4). $p\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\} \qquad \qquad (6)$ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t \qquad \qquad (7)$ by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} \qquad (8)$ by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} \qquad (9)$ by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\} : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} \qquad (10)$ by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We} \mathbf{have}:$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash (p, v) : \exists t_0.A + \Delta_1 \qquad (1)$ $\rho : \mathbf{loc} \in \Gamma \qquad (2)$ by hypothesis. $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : A\{p/t_0\} + \Delta_1 \qquad (3)$ by inversion on (T:Loc-Pack) with (1).	$ \begin{array}{l} \textbf{Case (T:Frame) - We have:} \\ \hline \Gamma, t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A + \Delta_1, \Delta_2 \\ \rho: \textbf{loc} \in \Gamma \\ \hline (2) \\ \hline \text{by hypothesis.} \\ \hline \Gamma, t: \textbf{loc}; \Delta_0 \vdash e: A + \Delta_1 \\ \hline \text{by inversion on (T:Frame) with (1).} \\ \hline \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + \Delta_1\{\rho/t\} \\ \hline \text{by induction hypothesis with (2) and (3).} \\ \hline \Gamma, t: \textbf{loc} \vdash \Delta_0, \Delta_2 \\ \hline \text{by typing on (1).} \\ \hline \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ \hline \text{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ \hline \text{and by (Ls:} 4.*).} \\ \hline \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ \hline \text{by (Well-Formed Delta) on (6).} \\ \hline \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ \hline \text{by (T:Frame) on (7) and (4).} \\ \hline \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + (\Delta_1, \Delta_2)\{\rho/t\} \\ \hline \text{and by (Ls:} 4.*).} \\ \hline \text{Thus, we conclude.} \\ \hline \\ \hline \textbf{Case (T:Subsumption) - We have:} \\ \hline \end{array} $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1$ $\Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ by inversion on (τ:Loc-App) with (1). $\Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ by induction hypothesis with (2) and (4). $\rho\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\} $ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ by (Ls:2.8), (7) on (5). $\Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash v\{\rho/t\} [p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ by (ts:2.8), (7) on (6). $\Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash v\{\rho/t\} [p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ by (ts:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{r}.\mathbf{Loc}-\mathbf{Pack}) - \mathbf{We} \mathbf{have}:$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash \langle p, v \rangle : \exists t_0.A + \Delta_1 $ $\rho : \mathbf{loc} \in \Gamma $ by hypothesis. $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : A\{p/t_0\} + \Delta_1 $ by inversion on (τ.Loc-Pack) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : A\{p/t_0\}\{\rho/t\} + \Delta_1\{\rho/t\} $ by inversion on (3) and (2). $t_0 \neq t $ (5)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\Gamma, t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 $ by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $p\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} $ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\}: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We} \mathbf{have}: $ $\Gamma, t: \mathbf{loc}; \Delta_0 \vdash (p, v): \exists t_0.A + \Delta_1 $ (1) $\rho: \mathbf{loc} \in \Gamma $ (2) by hypothesis. $\Gamma, t: \mathbf{loc}; \Delta_0 \vdash (p, v): A\{p/t_0\} + \Delta_1 $ (3) by inversion on (T:Loc-Pack) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: A\{p/t_0\}\{\rho/t\} + \Delta_1\{\rho/t\} $ (4) by induction hypothesis on (3) and (2). $t_0 \neq t $ (5) by def. of substitution up to rename of bounded location variables.	Case (τ:Frame) - We have: $ \Gamma, t: \mathbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 \qquad (1) \\ \rho: \mathbf{loc} \in \Gamma \qquad (2) \\ \text{by hypothesis.} $ $ \Gamma, t: \mathbf{loc}; \Delta_0 \vdash e: A \dashv \Delta_1 \qquad (3) \\ \text{by inversion on (τ:Frame) with (1).} $ $ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\} \qquad (4) \\ \text{by induction hypothesis with (2) and (3).} $ $ \Gamma, t: \mathbf{loc} \vdash \Delta_0, \Delta_2 \qquad (5) \\ \text{by typing on (1).} $ $ \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \qquad \text{by typing on (2).} $ $ \text{by (Well-Formed Type Substitution - Delta) on (5) and (2) } \\ \text{and by (Ls:} A*). $ $ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \qquad \text{by (T:Frame) on (7) and (4).} $ $ \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \qquad \text{on (6)}. $ $ \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \qquad \text{on (7) and (4).} $ $ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \qquad \text{on (9)} $ and by (Ls:4.*). Thus, we conclude. $ \mathbf{Case} \ (\mathbf{r:SUBSUMPTION}) \vdash \mathbf{We} \ \mathbf{have:} $ $ \Gamma, t: \mathbf{loc}; \Delta_0 \vdash e: A_1 \dashv \Delta_1 \qquad (1) \\ \rho: \mathbf{loc} \in \Gamma \qquad (2) $
$\begin{array}{ll} \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 & (4) \\ & \text{by inversion on } (\text{T:Loc-App}) \text{ with } (1). \\ \Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t]: (\forall t_0.A)[\rho/t] \dashv \Delta_1[\rho/t] & (5) \\ & \text{by induction hypothesis with } (2) \text{ and } (4). \\ \rho[\rho/t]: \mathbf{loc} \in \Gamma[\rho/t] & (6) \\ & \text{by induction hypothesis with } (2) \text{ and } (3), \text{ and by } (\text{Ls:3.3}). \\ t_0 \neq t & (7) \\ & \text{by def. of substitution up to rename of bounded location variables.} \\ \Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t]: \forall t_0.A[\rho/t] \dashv \Delta_1[\rho/t] & (8) \\ & \text{by } (\text{Ls:2.8}), (7) \text{ on } (5). \\ \Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t][\rho[\rho/t]]: A[\rho/t]\{\rho/t_0\} \dashv \Delta_1[\rho/t] & (9) \\ & \text{by } (\text{T:Loc-App}) \text{ on } (8) \text{ and } (6). \\ \Gamma[\rho/t]; \Delta_0[\rho/t] \vdash (v[p])[\rho/t]: A[\rho/t]\{\rho/t_0\} \dashv \Delta_1[\rho/t] & (10) \\ & \text{by } (\text{Ls:1.12}) \text{ on } (8). \\ \text{Thus, we conclude.} \\ \\ \textbf{Case } (\text{T:Loc-Pack}) - \text{We have:} \\ \Gamma,t: \mathbf{loc}; \Delta_0 \vdash \langle \rho, v \rangle: \exists t_0.A \dashv \Delta_1 & (1) \\ \rho: \mathbf{loc} \in \Gamma & (2) \\ & \text{by hypothesis.} \\ \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: A[\rho/t_0] \dashv \Delta_1 & (3) \\ & \text{by inversion on } (\text{T:Loc-Pack}) \text{ with } (1). \\ \Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t]: A[\rho/t]\{\rho/t\} \dashv \Delta_1[\rho/t] & (4) \\ & \text{by induction hypothesis on } (3) \text{ and } (2). \\ t_0 \neq t & \text{by induction hypothesis on } (3) \text{ and } (2). \\ t_0 \neq t & \text{by def. of substitution up to rename of bounded location variables.} \\ \Gamma; \Delta_0[\rho/t] \vdash v[\rho/t]: A[\rho/t][\rho/t_0] \dashv \Delta_1[\rho/t] & (6) \\ \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{c} \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 \\ \qquad $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{ll} \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 & (4) \\ \Gamma(\rho/t); \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} & (5) \\ \text{by induction hypothesis with (2) and (4).} \\ \rho\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} & (6) \\ \text{by induction hypothesis with (2) and (3), and by (Ls:3.3).} \\ t_0 \neq t & (7) \\ \text{by def. of substitution up to rename of bounded location variables.} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} & (8) \\ \text{by (Ls:2.8), (7) on (5).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} & (9) \\ \text{by (Ls:2.8), (7) on (8).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} & (10) \\ \text{by (Ls:1.12) on (8).} \\ \text{Thus, we conclude.} \\ \\ \mathbf{Case (r:Loc-Pack)} - \text{ We have:} \\ \Gamma,t: \mathbf{loc}; \Delta_0 \vdash \langle p,v\rangle: \exists t_0.A + \Delta_1 & (1) \\ \rho: \mathbf{loc} \in \Gamma & (2) \\ \text{by hypothesis.} \\ \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: A\{p/t_0\} + \Delta_1\{\rho/t\} & (4) \\ \text{by inversion on (r:Loc-Pack) with (1).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: A\{p/t_0\}\{\rho/t\} + \Delta_1\{\rho/t\} & (4) \\ \text{by induction hypothesis on (3) and (2).} \\ t_0 \neq t & (5) \\ \text{by def. of substitution up to rename of bounded location variables.} \\ \Gamma; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} & (6) \\ \text{by (4) and (5).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \langle p\{\rho/t\}, v\{\rho/t\}: \exists t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} & (7) \\ \end{array}$	$ \begin{array}{c} \textbf{Case (T:Frame) - We have:} \\ \Gamma,t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 \\ \rho: \textbf{loc} \in \Gamma \\ \\ \textbf{by hypothesis.} \\ \Gamma,t: \textbf{loc}; \Delta_0 \vdash e: A \dashv \Delta_1 \\ \\ \textbf{by inversion on (T:Frame) with (1).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\} \\ \\ \textbf{by induction hypothesis with (2) and (3).} \\ \Gamma,t: \textbf{loc} \vdash \Delta_0, \Delta_2 \\ \\ \textbf{by typing on (1).} \\ \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ \\ \textbf{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ \\ \textbf{and by (Ls:4.*).} \\ \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ \\ \textbf{by (Well-Formed Delta) on (6).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ \\ \textbf{by (T:Frame) on (7) and (4).} \\ \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \\ \\ \textbf{on and by (Ls:4.*).} \\ \text{Thus, we conclude.} \\ \\ \textbf{Case (T:SUBSUMPTION) - We have:} \\ \Gamma,t: \textbf{loc}; \Delta_0 \vdash e: A_1 \dashv \Delta_1 \\ \rho: \textbf{loc} \in \Gamma \\ \textbf{(2)} \\ \\ \textbf{by hypothesis.} \\ \Delta_0 <: \Delta_0' \\ \\ \Gamma: \textbf{loc}; \Delta_0' \vdash e: A_0 \dashv \Delta_1' \\ \\ A_0 <: A_1 \\ \end{bmatrix} \tag{9} $
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1$ by inversion on (T:Loc-APP) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $\rho\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\}$ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t$ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} [p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\} : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We} \ \mathbf{have} :$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash \langle \rho, v \rangle : \exists t_0.A + \Delta_1 $ (1) $\rho : \mathbf{loc} \in \Gamma $ (2) by hypothesis. $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : A\{p/t_0\} + \Delta_1 $ (3) by inversion on (T:Loc-Pack) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : A\{p/t_0\}\{\rho/t\} + \Delta_1\{\rho/t\} $ (3) by induction hypothesis on (3) and (2). $t_0 \neq t $ (5) by def. of substitution up to rename of bounded location variables. $\Gamma; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (6) by (4) and (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \langle p\{\rho/t\}, v\{\rho/t\} : \exists t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (7) by (T:Loc-Pack) on (6) and because p must be in Γ .	$ \begin{array}{c} \textbf{Case (T:Frame) - We have:} \\ \Gamma,t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 \\ \rho: \textbf{loc} \in \Gamma \\ \\ \textbf{by hypothesis.} \\ \Gamma,t: \textbf{loc}; \Delta_0 \vdash e: A \dashv \Delta_1 \\ \\ \textbf{by inversion on (T:Frame) with (1).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\} \\ \\ \textbf{by induction hypothesis with (2) and (3).} \\ \Gamma,t: \textbf{loc} \vdash \Delta_0, \Delta_2 \\ \\ \textbf{by typing on (1).} \\ \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ \\ \textbf{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ \\ \textbf{and by (Ls:4.*).} \\ \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ \\ \textbf{by (Well-Formed Delta) on (6).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ \\ \textbf{by (T:Frame) on (7) and (4).} \\ \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \\ \\ \textbf{on and by (Ls:4.*).} \\ \text{Thus, we conclude.} \\ \\ \textbf{Case (T:SUBSUMPTION) - We have:} \\ \Gamma,t: \textbf{loc}; \Delta_0 \vdash e: A_1 \dashv \Delta_1 \\ \rho: \textbf{loc} \in \Gamma \\ \textbf{(2)} \\ \\ \textbf{by hypothesis.} \\ \Delta_0 <: \Delta_0' \\ \\ \Gamma: \textbf{loc}; \Delta_0' \vdash e: A_0 \dashv \Delta_1' \\ \\ A_0 <: A_1 \\ \end{bmatrix} \tag{9} $
$\begin{array}{ll} \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 & (4) \\ \Gamma(\rho/t); \Delta_0[\rho/t] \vdash v\{\rho/t\}: (\forall t_0.A)[\rho/t] + \Delta_1[\rho/t] & (5) \\ \text{by induction hypothesis with (2) and (4).} \\ p\{\rho/t\}: \mathbf{loc} \in \Gamma\{\rho/t\} & (6) \\ \text{by induction hypothesis with (2) and (3), and by (Ls:3.3).} \\ t_0 \neq t & (7) \\ \text{by def. of substitution up to rename of bounded location variables.} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: \forall t_0.A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (8) \\ \text{by (Ls:2.8), (7) on (5).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}[p\{\rho/t\}]: A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} & (9) \\ \text{by (T.Loc-APP) on (8) and (6).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\}: A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} & (10) \\ \text{by (Ls:1.12) on (8).} \\ \text{Thus, we conclude.} \\ \\ \mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We have:} \\ \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: A\{p/t_0\} \dashv \Delta_1 & (1) \\ \rho: \mathbf{loc} \in \Gamma & (2) \\ \text{by hypothesis.} \\ \Gamma,t: \mathbf{loc}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: A\{p/t_0\}\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (4) \\ \text{by induction hypothesis on (3) and (2).} \\ t_0 \neq t & (5) \\ \text{by def. of substitution up to rename of bounded location variables.} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\}: A\{\rho/t\}\{p/t_0\} \dashv \Delta_1\{\rho/t\} & (6) \\ \text{by (4) and (5).} \\ \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \langle p\{\rho/t\}, v\{\rho/t\}: \exists t_0.A\{\rho/t\} \dashv \Delta_1\{\rho/t\} & (7) \\ \text{by (T:Loc-Pack) on (6) and because } p \text{ must be in } \Gamma. \\ \text{(therefore, its substitution must also occurred by (Ls:3.3)).} \end{aligned}$	Case (τ:Frame) - We have:
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A + \Delta_1 $ by inversion on (T:Loc-APP) with (1). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : (\forall t_0.A)[\rho/t] + \Delta_1[\rho/t] $ (5) by induction hypothesis with (2) and (4). $p[\rho/t] : \mathbf{loc} \in \Gamma[\rho/t] $ (6) by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t $ (7) by def. of substitution up to rename of bounded location variables. $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : \forall t_0.A[\rho/t] + \Delta_1[\rho/t] $ (8) by (Ls:2.8), (7) on (5). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t][p[\rho/t]] : A[\rho/t]\{p/t_0\} + \Delta_1[\rho/t] $ (9) by (T:Loc-APP) on (8) and (6). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash (v[p])[\rho/t] : A[\rho/t]\{p/t_0\} + \Delta_1[\rho/t] $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash \langle p, v \rangle : \exists t_0.A + \Delta_1 $ (1) $\rho : \mathbf{loc} \in \Gamma $ (2) by hypothesis. $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : A[\rho/t_0] + \Delta_1 \{\rho/t\} $ by inversion on (T:Loc-Pack) with (1). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : A[\rho/t]\{\rho/t\} + \Delta_1[\rho/t] $ (3) by inversion on (3) and (2). $t_0 \neq t $ by induction hypothesis on (3) and (2). $t_0 \neq t $ (5) by def. of substitution up to rename of bounded location variables. $\Gamma; \Delta_0[\rho/t] \vdash v[\rho/t] : A[\rho/t]\{\rho/t\} + \Delta_1[\rho/t] $ (6) by (4) and (5). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash \langle p[\rho/t], v[\rho/t] : \exists t_0.A[\rho/t] + \Delta_1[\rho/t] $ by (T:Loc-Pack) on (6) and because p must be in Γ. (therefore, its substitution must also occurred by (Ls:3.3)).	$ \begin{array}{c} \textbf{Case (T:Frame) - We have:} \\ \hline \Gamma, t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A + \Delta_1, \Delta_2 \\ \rho: \textbf{loc} \in \Gamma \\ \hline (2) \\ \hline \text{by hypothesis.} \\ \hline \Gamma, t: \textbf{loc}; \Delta_0 \vdash e: A + \Delta_1 \\ \hline \text{by inversion on (T:Frame) with (1).} \\ \hline \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + \Delta_1\{\rho/t\} \\ \hline \text{by induction hypothesis with (2) and (3).} \\ \hline \Gamma, t: \textbf{loc} \vdash \Delta_0, \Delta_2 \\ \hline \text{by typing on (1).} \\ \hline \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ \hline \text{by (Well-Formed Type Substitution - Delta) on (5) and (2)} \\ \hline \text{and by (Ls:} 4.*).} \\ \hline \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ \hline \text{by (Well-Formed Delta) on (6).} \\ \hline \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ \hline \text{by (T:Frame) on (7) and (4).} \\ \hline \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\}: A\{\rho/t\} + (\Delta_1, \Delta_2)\{\rho/t\} \\ \hline \text{and by (Ls:} 4.*).} \\ \hline \text{Thus, we conclude.} \\ \hline \\ \hline \textbf{Case (T:Subsumption) - We have:} \\ \hline \Gamma, t: \textbf{loc}; \Delta_0 \vdash e: A_1 + \Delta_1 \\ \hline \rho: \textbf{loc} \in \Gamma \\ \hline \text{by hypothesis.} \\ \Delta_0 <: \Delta_0' \\ \hline \Lambda_0 <: A_1 \\ \hline \Delta_1' <: \Delta_1 \\ \hline \text{by inversion on (T:Subsumption) with (1).} \\ \hline \Gamma\{\rho/t\}; \lambda_0'\{\rho/t\} \vdash e\{\rho/t\}: A_0\{\rho/t\} + \Delta_1'\{\rho/t\} \\ \hline \text{Otherwise on (T:Subsumption)} \\ \hline \text{Otherwise (T:Subsumption)} \\ \hline O$
$ \begin{array}{c} \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 \\ \qquad $	$ \begin{array}{c} \textbf{Case} \ (\textbf{T:Frame}) - \ \text{We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 \\ & \text{by hypothesis.} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 \\ & \text{by inversion on } (\textbf{T:Frame}) \ \text{with } (1). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} \\ & \text{by induction hypothesis with } (2) \ \text{and } (3). \\ & \Gamma, t : \textbf{loc} \vdash \Delta_0, \Delta_2 \\ & \text{(5)} \\ & \text{by induction hypothesis with } (2) \ \text{and } (3). \\ & \Gamma_{\{\rho/t\}} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ & \text{by (Well-Formed Type Substitution - Delta) on } (5) \ \text{and } (2) \\ & \text{and by } (\textbf{Is:}4.*). \\ & \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ & \text{by (Well-Formed Delta) on } (6). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ & \text{by } (\textbf{T:Frame}) \ \text{on } (7) \ \text{and } (4). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \\ & \text{on } (7) \ \text{and by } (\textbf{Is:}4.*). \\ & \text{Thus, we conclude.} \\ \\ & \textbf{Case} \ (\textbf{T:Subsumption}) - \ \text{We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A_1 \dashv \Delta_1 \\ & \rho : \textbf{loc} \in \Gamma \\ & \text{(2)} \\ & \text{by hypothesis.} \\ & \Delta_0 <: \Delta_0' \\ & \Gamma, t : \textbf{loc}; \Delta_0' \vdash e : A_0 \dashv \Delta_1' \\ & A_0 <: A_1 \\ & \Delta_0 <: A_1 \\ & \text{(5)} \\ & \Delta_1' <: \Delta_1 \\ & \text{(6)} \\ & \text{by inversion on } (\textbf{T:Subsumption}) \ \text{with } (1). \\ & \Gamma\{\rho/t\}; \Delta_0'\{\rho/t\} \vdash e\{\rho/t\} : A_0\{\rho/t\} \dashv \Delta_1'\{\rho/t\} \\ & \text{(6)} \\ & \text{by inversion on } (\textbf{4}) \ \text{with } (2). \\ \end{aligned}$
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A \dashv \Delta_1$ by inversion on (T:Loc-App) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : (\forall t_0.A)\{\rho/t\} + \Delta_1\{\rho/t\} $ (5) by induction hypothesis with (2) and (4). $\rho\{\rho/t\} : \mathbf{loc} \in \Gamma\{\rho/t\}$ by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t$ (7) by def. of substitution up to rename of bounded location variables. $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : \forall t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:2.8), (7) on (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} [p\{\rho/t\}] : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (9) by (T:Loc-App) on (8) and (6). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (v[p])\{\rho/t\} : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{T:Loc-Pack}) - \mathbf{We} \ \text{have}:$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : A\{p/t_0\} + \Delta_1 $ (3) by inversion on (T:Loc-Pack) with (1). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : A\{p/t_0\}\{\rho/t\} + \Delta_1\{\rho/t\} $ (3) by induction hypothesis on (3) and (2). $t_0 \neq t$ (5) by def. of substitution up to rename of bounded location variables. $\Gamma; \Delta_0\{\rho/t\} \vdash v\{\rho/t\} : A\{\rho/t\}\{p/t_0\} + \Delta_1\{\rho/t\} $ (6) by (4) and (5). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \langle p\{\rho/t\}, v\{\rho/t\} : \exists t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (6) by (7) by (T:Loc-Pack) on (6) and because p must be in Γ. (therefore, its substitution must also occurred by (Ls:3.3)). $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \langle p(\rho/t\}, v\{\rho/t\} : \exists t_0.A\{\rho/t\} + \Delta_1\{\rho/t\} $ (8) by (Ls:1.11), (Ls:2.9) on (7), (5). Thus, we conclude.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A + \Delta_1$ by inversion on (T:Loc-APP) with (1). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : (\forall t_0.A)[\rho/t] + \Delta_1[\rho/t]$ by induction hypothesis with (2) and (4). $p[\rho/t] : \mathbf{loc} \in \Gamma[\rho/t]$ by induction hypothesis with (2) and (3), and by (Ls:3,3). $t_0 \neq t$ by def. of substitution up to rename of bounded location variables. $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : \forall t_0.A[\rho/t] + \Delta_1[\rho/t]$ (8) $by (Ls:2.8), (7) \text{ on } (5).$ $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t][p[\rho/t]] : A[\rho/t]\{p/t_0\} + \Delta_1[\rho/t]$ (9) $by (T:Loc-APP) \text{ on } (8) \text{ and } (6).$ $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash (v[p])[\rho/t] : A[\rho/t]\{p/t_0\} + \Delta_1[\rho/t]$ (10) $by (Ls:1.12) \text{ on } (8).$ Thus, we conclude. $\mathbf{Case} (\mathbf{T}:\mathbf{Loc}\cdot\mathbf{Pack}) - \mathbf{We} \text{ have:}$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : A[\rho/t_0] + \Delta_1$ $\rho : \mathbf{loc} \in \Gamma$ (2) $by \text{ hypothesis.}$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : A[\rho/t_0] + \Delta_1$ $\phi : \mathbf{loc} \in \Gamma$ (3) $by \text{ inversion on } (\mathbf{T}:\mathbf{Loc}\cdot\mathbf{Pack}) \text{ with } (1).$ $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : A[\rho/t]\{\rho/t\} + \Delta_1[\rho/t]$ $\phi : \mathbf{loc} \in \Gamma$ (3) $\mathbf{loc} \in \Gamma$ (4) $\mathbf{loc} \in \Gamma$ (5) $\mathbf{loc} \in \Gamma$ (6) $\mathbf{loc} \in \Gamma$ (7) $\mathbf{loc} \in \Gamma$ (8) $\mathbf{loc} = \mathbf{loc} = \mathbf$	$ \begin{array}{c} \textbf{Case (T:Frame) - We have:} \\ \hline \Gamma, t: \textbf{loc}; \Delta_0, \Delta_2 \vdash e: A \dashv \Delta_1, \Delta_2 \\ \hline \rho: \textbf{loc} \in \Gamma \\ \hline \\ (3) \\ \hline \\ (3) \\ \hline \\ (3) \\ \hline \\ (4) \\ \hline \\ (4) \\ \hline \\ (5) \\ \hline \\ (6) \\ \hline \\ (7) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (1) \\ \hline \\ (1) \\ \hline \\ (2) \\ \hline \\ (2) \\ \hline \\ (3) \\ \hline \\ (3) \\ \hline \\ (4) \\ \hline \\ (4) \\ \hline \\ (5) \\ \hline \\ (6) \\ \hline \\ (7) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (7) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (7) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (7) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (8) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (8) \\ \hline \\ (7) \\ \hline \\ (8) \\ \hline \\ (9) \\ (1) \\ \hline \\ (9) \\ \hline \\ (1) \\ (1) \\ (2) \\ \hline \\ (2) \\ \hline \\ (3) \\ \hline \\ (3) \\ \hline \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (5) \\ (4) \\ (4) \\ (4) \\ (4) \\ (5) \\ (5) \\ (4) \\ (4) \\ (4) \\ (5) \\ (5) \\ (4) \\ (4) \\ (4) \\ (5) \\ (5) \\ (5) \\ (4) \\ (4) \\ (5) $
$ \begin{array}{c} \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 \\ \qquad $	$ \begin{array}{c} \textbf{Case} \ (\textbf{T:Frame}) - \ \text{We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0, \Delta_2 \vdash e : A + \Delta_1, \Delta_2 \\ & \text{by hypothesis.} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A + \Delta_1 \\ & \text{by inversion on (T:Frame) with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + \Delta_1\{\rho/t\} \\ & \text{by induction hypothesis with (2) and (3).} \\ & \Gamma, t : \textbf{loc} \vdash \Delta_0, \Delta_2 \\ & \text{by typing on (1).} \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ & \text{by (Well-Formed Type Substitution - Delta) on (5) and (2).} \\ & \text{and by (Ls:4.*).} \\ & \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ & \text{by (Well-Formed Delta) on (6).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ & \text{by (T:Frame) on (7) and (4).} \\ & \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} + (\Delta_1, \Delta_2)\{\rho/t\} \\ & \text{and by (Ls:4.*).} \\ & \text{Thus, we conclude.} \\ \\ & \textbf{Case} \ (\textbf{T:Subsumption}) - \text{We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A_1 + \Delta_1 \\ & \rho : \textbf{loc} \in \Gamma \\ & \text{(2)} \\ & \text{by inversion on (T:Subsumption)} \ \text{with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A_0\{\rho/t\} + \Delta_1^{\prime}\{\rho/t\} \\ & \text{(4)} \\ & A_0 <: A_1 \\ & \text{(5)} \\ & \Delta_1^{\prime} <: \Delta_1 \\ & \text{(by inversion on (T:Subsumption)} \ \text{with (1).} \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A_0\{\rho/t\} + \Delta_1^{\prime}\{\rho/t\} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(1)} \\ & \text{(1)} \\ & \text{(2)} \\ & \text$
$\Gamma, t : \mathbf{loc}; \Delta_0 \vdash v : \forall t_0.A + \Delta_1$ by inversion on (T:Loc-APP) with (1). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : (\forall t_0.A)[\rho/t] + \Delta_1[\rho/t] $ (5) by induction hypothesis with (2) and (4). $\rho[\rho/t] : \mathbf{loc} \in \Gamma[\rho/t]$ (6) by induction hypothesis with (2) and (3), and by (Ls:3.3). $t_0 \neq t$ by def. of substitution up to rename of bounded location variables. $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : \forall t_0.A[\rho/t] + \Delta_1[\rho/t]$ (8) by (Ls:2.8), (7) on (5). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] [p[\rho/t]] : A[\rho/t] [p/t_0] + \Delta_1[\rho/t]$ (10) by (T:Loc-APP) on (8) and (6). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash (v[p])[\rho/t] : A[\rho/t] [p/t_0] + \Delta_1[\rho/t]$ (10) by (Ls:1.12) on (8). Thus, we conclude. $\mathbf{Case} (\mathbf{r} : \mathbf{Loc} \cdot \mathbf{Pack}) - \mathbf{We} \ \text{have}:$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash (p, v) : \exists t_0.A + \Delta_1$ (1) $\rho : \mathbf{loc} \in \Gamma$ (2) by hypothesis. $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash (p, v) : \exists t_0.A + \Delta_1$ (3) by inversion on (T:Loc-Pack) with (1). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash v[\rho/t] : A[\rho/t] \{\rho/t\} + \Delta_1[\rho/t]$ (4) by induction hypothesis on (3) and (2). $t_0 \neq t$ (5) by def. of substitution up to rename of bounded location variables. $\Gamma; \Delta_0[\rho/t] \vdash v[\rho/t] : A[\rho/t] \{p/t_0\} + \Delta_1[\rho/t]$ (6) by (4) and (5). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash \langle p[\rho/t], v[\rho/t] \rangle : \exists t_0.A[\rho/t] + \Delta_1[\rho/t]$ (7) by (T:Loc-Pack) on (6) and because p must be in Γ. (therefore, its substitution must also occurred by (Ls:3.3)). $\Gamma[\rho/t]; \Delta_0[\rho/t] \vdash \langle p[\rho/t], v[\rho/t] \rangle : \exists t_0.A[\rho/t] + \Delta_1[\rho/t]$ (8) by (Ls:1.11), (Ls:2.9) on (7), (5). Thus, we conclude. $\mathbf{Case} (\mathbf{r} : \mathbf{Loc} \cdot \mathbf{OPen}) - \mathbf{We} \ \text{have}:$ $\Gamma, t : \mathbf{loc}; \Delta_0 \vdash \text{open} \langle t_0, x \rangle = v_0 \text{ in } e_1 \text{ end} : A_1 + \Delta_2$ (1) $\rho : \mathbf{loc} \in \Gamma$ (2)	$\begin{array}{c} \textbf{Case} \ (\textbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 \\ & \text{by hypothesis.} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 \\ & \text{by inversion on } (\textbf{T:Frame}) \text{ with } (1). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} \\ & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma, t : \textbf{loc} \vdash \Delta_0, \Delta_2 \\ & \text{(5)} \\ & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ & \text{by (Well-Formed Type Substitution - Delta) on } (5) \text{ and } (2). \\ & \text{and by } (\textbf{Is:}4.*). \\ & \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ & \text{by (Well-Formed Delta) on } (6). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ & \text{by } (\textbf{T:Frame}) \text{ on } (7) \text{ and } (4). \\ & \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \\ & \text{and by } (\textbf{Is:}4.*). \\ & \text{Thus, we conclude.} \\ \\ & \textbf{Case} \ (\textbf{T:Subsumption}) - \text{ We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A_1 \dashv \Delta_1 \\ & \rho : \textbf{loc} \in \Gamma \\ & \text{(2)} \\ & \text{by hypothesis.} \\ & \Delta_0 <: \Delta'_0 \\ & \Lambda_1 <: \Delta_1 \\ & \text{(4)} \\ & A_0 <: A_1 \\ & \Delta_0 <: A_1 \\ & \text{(5)} \\ & \Delta'_1 <: \Delta_1 \\ & \text{(6)} \\ & \text{(5)} \\ & \text{(7)} \\ & \text{(5)} \\ & \text{(6)} \\ & \text{(7)} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(7)} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(1)} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(1)} \\ & \text{(7)} \\ & \text{(8)} \\ & \text{(8)} \\ & \text{(1)} \\ & \text{(1)} \\ & \text{(2)} \\ & \text{(3)} \\ & \text{(4)} \\ & \text{(5)} \\ & \text{(4)} \\ & \text{(5)} \\ & \text{(5)} \\ & \text{(5)} $
$ \begin{array}{c} \Gamma,t: \mathbf{loc}; \Delta_0 \vdash v: \forall t_0.A \dashv \Delta_1 \\ \qquad $	$\begin{array}{c} \textbf{Case} \ (\textbf{T:Frame}) - \text{ We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0, \Delta_2 \vdash e : A \dashv \Delta_1, \Delta_2 \\ & \text{by hypothesis.} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A \dashv \Delta_1 \\ & \text{by inversion on } (\textbf{T:Frame}) \text{ with } (1). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\} \\ & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma, t : \textbf{loc} \vdash \Delta_0, \Delta_2 \\ & \text{(5)} \\ & \text{by induction hypothesis with } (2) \text{ and } (3). \\ & \Gamma\{\rho/t\} \vdash (\Delta_0\{\rho/t\}), (\Delta_2\{\rho/t\}) \\ & \text{by (Well-Formed Type Substitution - Delta) on } (5) \text{ and } (2). \\ & \text{and by } (\textbf{Is:}4.*). \\ & \Gamma\{\rho/t\} \vdash \Delta_2\{\rho/t\} \\ & \text{by (Well-Formed Delta) on } (6). \\ & \Gamma\{\rho/t\}; \Delta_0\{\rho/t\}, \Delta_2\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv \Delta_1\{\rho/t\}, \Delta_2\{\rho/t\} \\ & \text{by } (\textbf{T:Frame}) \text{ on } (7) \text{ and } (4). \\ & \Gamma\{\rho/t\}; (\Delta_0, \Delta_2)\{\rho/t\} \vdash e\{\rho/t\} : A\{\rho/t\} \dashv (\Delta_1, \Delta_2)\{\rho/t\} \\ & \text{and by } (\textbf{Is:}4.*). \\ & \text{Thus, we conclude.} \\ \\ & \textbf{Case} \ (\textbf{T:Subsumption}) - \text{ We have:} \\ & \Gamma, t : \textbf{loc}; \Delta_0 \vdash e : A_1 \dashv \Delta_1 \\ & \rho : \textbf{loc} \in \Gamma \\ & \text{(2)} \\ & \text{by hypothesis.} \\ & \Delta_0 <: \Delta'_0 \\ & \Gamma, t : \textbf{loc}; \Delta'_0 \vdash e : A_0 \dashv \Delta'_1 \\ & A_0 <: A_1 \\ & \text{(4)} \\ & A_0 <: A_1 \\ & \text{(5)} \\ & \Delta'_1 <: \Delta_1 \\ & \text{(by inversion on } (\textbf{T:Subsumption}) \text{ with } (1). \\ & \Gamma\{\rho/t\} \vdash \Delta_0\{\rho/t\} \vdash e\{\rho/t\} : A_0\{\rho/t\} \dashv \Delta'_1\{\rho/t\} \\ & \text{(by induction hypothesis on } (4) \text{ with } (2). \\ & \Gamma, t : \textbf{loc} \vdash \Delta_0 \\ & \text{(by typing on } (1). \\ & \text{(by typing on }$

(5) $\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash v\{\rho/t\} : (\sum_i \mathbf{1}_i \# A_i')\{\rho/t\} \dashv \Delta'\{\rho/t\}$ by induction hypothesis on (3) and (2). $\Gamma\{\rho/t\}; \Delta_1\{\rho/t\} \vdash \nu\{\rho/t\} : \sum_i 1_i \#(A_i'\{\rho/t\}) \dashv \Delta'\{\rho/t\}$ by (Ls:2.18) on (6). $\overline{\Gamma\{\rho/t\}; (\Delta', x_i : A_i')\{\rho/t\} \vdash e_i\{\rho/t\} : A\{\rho/t\} \dashv \Delta_2\{\rho/t\}}$ by induction hypothesis on (4) and (2).

 $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash \mathsf{case}\ v\{\rho/t\}\ \mathsf{of}\ \overline{1_j\#x_j \to e_j\{\rho/t\}}\ \mathsf{end}\ : A\{\rho/t\} \dashv \Delta_2\{\rho/t\}\ (10)$ by (T:Case) on (5), (7) and (9).

 $\Gamma\{\rho/t\}; \Delta_0\{\rho/t\} \vdash (\text{case } v \text{ of } \overline{1_j \# x_j \to e_j} \text{ end})\{\rho/t\} : A\{\rho/t\} \dashv \Delta_2\{\rho/t\}$ (11) by (Ls:1.20) on (10). Thus, we conclude.

Case (T:ALTERNATIVE-LEFT) - Immediate by applying the induction hypothesis on the inversion and then re-applying the rule. Case (T:Let) - Analogous to (T:Loc-OPEN).

 $\overline{\Gamma\{\rho/t\}; \Delta', x_i : A_i'\{\rho/t\} + e_i\{\rho/t\} : A\{\rho/t\} + \Delta_2\{\rho/t\}}$

4. (Type Variable), analogous to the (Location Variable) proof.

B.9 Values Lemma

Lemma 9 (Values Lemma). If v is a closed value such that:

$$\widehat{\Gamma}$$
; $\widehat{\Delta} \vdash v : A \dashv \widehat{\Delta}'$

then:

$$\widehat{\Delta} <: \widehat{\Delta_{\nu}}, \widehat{\Delta'}$$
 $\widehat{\Gamma}; \widehat{\Delta_{\nu}} \vdash \nu : A \dashv \cdot$

Proof. By induction on the typing derivation of $\widehat{\Gamma}$; $\widehat{\Delta} \vdash v : A \dashv \widehat{\Delta}'$.

Case (T:REF) - We have:

$$\widehat{\Gamma}, \rho: \mathbf{loc}; \vdash \rho: \mathbf{ref} \, \rho \dashv \cdot \tag{1}$$
 by hypothesis. Thus, by making:
$$\widehat{\Delta_{\nu}} = \cdot \tag{2}$$

$$\widehat{\Delta'} = \cdot \tag{3}$$

Case (T:PURE) - We have:

We immediately conclude.

Case (T:UNIT) - We have:

$$\widehat{\Gamma}; \vdash \nu : [] \dashv \cdot \\ \text{by hypothesis.}$$
Thus, by making:
$$\widehat{\Delta_{\nu}} = \cdot \\ \widehat{\Delta'} = \cdot \\ \text{We immediately conclude.}$$
 (2)
$$\widehat{\Delta'} = \cdot \\ \text{(3)}$$

Case (T:Pure-Read), (T:LINEAR-READ) - value not closed.

Case (T:PURE-ELIM) - Environment not closed.

Case (T:New), (T:Delete), (T:Assign), (T:Dereference-Linear), (T:Dereference-Pure) -Not a value

Case (T:RECORD) - We have:

 $\widehat{\Gamma}$; $\widehat{\Delta_0} \vdash \{\overline{\mathbf{f} = v}\} : [\overline{\mathbf{f} : A}] \dashv \widehat{\Delta_1}$

(1)

Therefore, by (3) and (5) we conclude.

Case (T:SELECTION) - Not a value. Case (T:APPLICATION) - Not a value. Case (T:Function) - We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \mathsf{fun}(x:A_0).e:A_0 \multimap A_1 \dashv \cdot \tag{1}$$
 by hypothesis. Thus, by making:
$$\widehat{\Delta'} = \cdot \tag{2}$$
 We immediately conclude.

Case (T:FORALL-Loc) - We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \langle t \rangle \, e : \forall t.A \dashv \cdot \tag{1}$$
 by hypothesis. Thus, by making:
$$\widehat{\Delta}' = \cdot \tag{2}$$
 We immediately conclude.

Case (T:Loc-APP) - Not a value. Case (T:Loc-PACK) - We have:

$\widehat{\Gamma}; \widehat{\Delta} \vdash \langle p, v \rangle : \exists t. A \dashv \cdot$	(1)
	by hypothesis.
$\widehat{\Gamma}; \widehat{\Delta} \vdash v : A\{p/t\} \dashv \cdot$	(2)
	by inversion on (T:Loc-PACK) with (1).
$\widehat{\Delta} <: \widehat{\Delta_{\nu}}, \cdot$	(3)
$\widehat{\Gamma}; \widehat{\Delta_{\nu}} \vdash \nu : A\{p/t\} \dashv \cdot$	(4)
	by induction hypothesis on (2).
$\widehat{\Gamma}; \widehat{\Delta_{v}} \vdash \langle p, v \rangle : \exists t. A \dashv \cdot$	(5)
	by (T:Loc-Pack) on (4).
Therefore, by (3) and (5) we conclude.	

Case (T:Loc-Open) - Not a value. Case (T:Forall-Type) - We have:

$$\widehat{\Gamma}; \widehat{\Delta} \vdash \langle X \rangle \, e : \forall X.A \dashv \cdot \tag{1}$$
 by hypothesis. Thus, by making:
$$\widehat{\Delta}' = \cdot \tag{2}$$
 We immediately conclude.

Case (T:Type-App) - Not a value. Case (T:Type-Pack) - We have:

Therefore, by (3) and (5) we conclude.

Case (T:TYPE-OPEN) - Not a value.

Case (T:CAP-ELIM) - Environment not closed.

Case (T:CAP-STACK) - We have:

Note that this application of (T:Frame) can be applied directly since $\widehat{\Delta_{\nu}}$.

$$\widehat{\Gamma}; \widehat{\Delta}_{\nu}, A_1 \vdash \nu : A_0 :: A_1 \dashv \cdot$$
 (6) by (t:Cap-Stack) on (5).

Therefore, by (3) and (6) we conclude.

(note that A_1 is immediate since a defocus-guarantee is not a type)

Case (T:CAP-UNSTACK) - We have:

Therefore, by (7) and (8) we conclude.

Case (T:FRAME) - We have:

$$\begin{array}{cccc} \widehat{\Gamma}; \widehat{\Delta_0}, \widehat{\Delta_2} \vdash \nu : A \dashv \widehat{\Delta_1}, \widehat{\Delta_2} & (1) \\ & & \text{by hypothesis.} \\ \widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu : A \dashv \widehat{\Delta_1} & (2) \\ & \widehat{\Delta_0} <: \widehat{\Delta_v}, \widehat{\Delta_1} & (3) \\ \widehat{\Gamma}; \widehat{\Delta_v} \vdash \nu : A \dashv \cdot & (4) \\ & \widehat{\Delta_0}, \widehat{\Delta_2} <: \widehat{\Delta_v}, \widehat{\Delta_1}, \widehat{\Delta_2} & (5) \\ & & \text{by induction hypothesis on } (2). \\ & & (5) \\ & & \text{by } (3) \text{ with } \widehat{\Delta_2}. \end{array}$$

Therefore, by (4) and (5) we immediately conclude.

Case (T:Subsumption) - We have:

$\widehat{\Gamma}; \widehat{\Delta_0} \vdash v : A_1 \dashv \widehat{\Delta_1}$	(1)
	by hypothesis.
$\widehat{\Delta_0} <: \widehat{\Delta'_0}$	(2)
$ \widehat{\Delta_0} <: \widehat{\Delta'_0} \widehat{\Gamma}; \widehat{\Delta'_0} \vdash \nu : A_0 \dashv \widehat{\Delta'_1} $	(3)
$A_0 <: A_1$	(4)
$\widehat{\Delta_1'} <: \widehat{\Delta_1}$	(5)
	by inversion on (T:Subsumption) with (1).
$\widehat{\Delta_0'} <: \widehat{\Delta_v}, \widehat{\Delta_1'}$ $\widehat{\Gamma}; \widehat{\Delta_v} \vdash v : A_0 \dashv \cdot$	(6)
$\widehat{\Gamma};\widehat{\Delta_{\nu}} \vdash \nu: A_0 \dashv \cdot$	(7)
	by induction hypothesis on (3).
$\widehat{\Delta_0'} <: \widehat{\Delta_v}, \widehat{\Delta_1}$	(8)
	by transitivity of subtyping with (5) and (6).
$\widehat{\Delta_0} <: \widehat{\Delta_{\nu}}, \widehat{\Delta_1}$	(9)
<u> </u>	by transitivity of subtyping with (2) and (8).
$\widehat{\Gamma}; \widehat{\Delta_{\nu}} \vdash \nu : A_1 \dashv \cdot$	(10)
•	ssumption) with (sd:Symmetry) and (4) on (7).
Therefore, by (9) and (10) we conc	lude.

Case (T:TAG) - We have:

Therefore, by (5) and (3) we conclude.

Case (T:Case) - Not a value.

Case (T:ALTERNATIVE-LEFT) - We have:

$\widehat{\Gamma}$; $\widehat{\Delta_0}$, $A_0 \oplus A_1 \vdash v : A_2 \dashv \widehat{\Delta_1}$	(1)
	by hypothesis.
$ \widehat{\Gamma}; \widehat{\Delta_0}, A_0 \vdash v : A_2 \dashv \widehat{\Delta_1} \widehat{\Gamma}; \widehat{\Delta_0}, A_1 \vdash v : A_2 \dashv \widehat{\Delta_1} $	(2)
$\widehat{\Gamma}; \widehat{\Delta_0}, A_1 \vdash \nu : A_2 \dashv \widehat{\Delta_1}$	(3)
	by inversion on (T:Alternative-Left) with (1).
$\widehat{\Delta_0}, A_0 <: \widehat{\Delta_v}, \widehat{\Delta_1}$ $\widehat{\Gamma}; \widehat{\Delta_v} \vdash v : A_2 \dashv \cdot$	(4)
$\widehat{\Gamma}$; $\widehat{\Delta_{\nu}} \vdash \nu : A_2 \dashv \cdot$	(5)
	by induction hypothesis on (2).
$\widehat{\Delta_0}, A_1 <: \widehat{\Delta_{\nu}}, \widehat{\Delta_1}$	(6)
$\widehat{\Gamma}; \widehat{\Delta_{\nu}} \vdash \nu : A_2 \dashv \cdot$	(7)
	by induction hypothesis on (3).
$\widehat{\Delta_0}, A_0 \oplus A_1 <: \widehat{\Delta_v}, \widehat{\Delta_1}$	(8)
	by (sd:Alternative-L) on (4) and (6).
Therefore, by (8) and (5) we con	clude.

Case (T:LET) Not a value.

B.10 Preservation

Theorem 1 (Preservation). If e_0 is a closed expression such that:

$$\widehat{\Gamma_0}$$
; $\widehat{\Delta_0} \vdash e_0 : A \dashv \widehat{\Delta}$

$$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \qquad \langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$$

then:

$$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_1 \qquad \widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e_1 : A \dashv \widehat{\Delta}$$

for some $\widehat{\Delta}_1$, $\widehat{\Gamma}_1$.

Proof. By induction on the typing derivation of $\widehat{\Gamma}_0$; $\widehat{\Delta}_0 \vdash e_0 : A \dashv \widehat{\Delta}$.

Case (T:REF), (T:PURE), (T:UNIT) - are values.

Case (T:PURE-READ), (T:LINEAR-READ), (T:PURE-ELIM) - not applicable, environments not closed.

Case (T:NEW) - We have:

$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{new } v : \exists t. (\text{ref } t :: \text{rw } t A) \dashv \widehat{\Delta}$	(1)
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H$	(2)
$\langle H \parallel new \ v \ \rangle \mapsto \langle H \ , \ \rho \hookrightarrow v \parallel \langle \rho, \rho \rangle \ \rangle$	(3)
	by hypothesis, with (D:NEW).
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \nu : A \dashv \widehat{\Delta}$	(4)
	by inversion on (T:NEW) with (1).
$\widehat{\Delta_0} <: \widehat{\Delta_ u}, \widehat{\Delta}$	(5)
$\widehat{\Gamma_0}; \widehat{\Delta_v} \vdash v : A \dashv \cdot$	(6)

by (Values Lemma) with (4). ρ fresh by inversion on (D:NEW) with (3).

 $\widehat{\Gamma_0}$: $\widehat{\Delta_v}$, $\widehat{\Delta} \vdash H$ by (Subtyping Store Typing) with (2) and (5).

Thus, if we make: $\widehat{\Gamma_1} = \rho : \mathbf{loc}$

We have that: (10)

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_v} \vdash v : A \dashv \cdot$ by (Weakening) (6) with $\widehat{\Gamma}_1$. (note that weakening is only valid in the lexical environments, Γ)

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_v}, \widehat{\Delta} \vdash H$ (11)by (str:Loc) with $\widehat{\Gamma}_1$ (that contains ρ) on (8).

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta}, \mathbf{rw} \, \rho \, A \vdash H, \, \rho \hookrightarrow v$

by (str:Binding) with (10) and (11) with ρ .

Thus, if we make: $\widehat{\Delta_1} = \widehat{\Delta}, \mathbf{rw} \, \rho \, A$ (13)

We have that: $\widehat{\Gamma_0},\widehat{\Gamma_1}$; $\vdash \rho : \mathbf{ref} \ \rho \dashv \cdot$ (14)

by (T:Ref) with ρ . $\widehat{\Gamma_0}$, $\widehat{\Gamma_1}$; $\widehat{\Delta_1} \vdash \rho : \operatorname{ref} \rho \dashv \widehat{\Delta_1}$ by (T:Frame) on (14) with $\widehat{\Delta_1}$ (since \cdot is empty, frame is immediate).

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash \rho : \mathbf{ref} \ \rho :: \mathbf{rw} \ \rho \ A \dashv \widehat{\Delta}$ by (T:CAP-STACK) on (15) noting that (13).

If t fresh then:

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash \rho : (\mathbf{ref} \ \rho :: \mathbf{rw} \ \rho \ A) \{ \rho/t \} \dashv \widehat{\Delta}$

by type substitution on (16).

Note that, by (4), ρ cannot occur in A since it is a fresh location constant not

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash \langle \rho, \rho \rangle : \exists t. (\mathbf{ref}\ t :: \mathbf{rw}\ t\ A) \dashv \widehat{\Delta}$ (18)

by (T:Loc-Pack) on (17).

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash \langle \rho, \rho \rangle : \exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A) \dashv \widehat{\Delta}$ (19)

for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. by (18).

Therefore, by (12) and (19) we conclude.

Case (T:DELETE) - We have:

 $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \mathsf{delete} \langle \rho, \rho \rangle : \exists t. A \dashv \widehat{\Delta}$ (1) $\widehat{\Gamma_0}$; $\widehat{\Delta_0} \vdash H$, $\rho \hookrightarrow v$ (2) $\langle H, \rho \hookrightarrow v \parallel \text{ delete } \langle \rho, \rho \rangle \rangle \mapsto \langle H \parallel \langle \rho, v \rangle \rangle$ (3) by hypothesis, with (D:DELETE). $\widehat{\Gamma_0}$; $\widehat{\Delta_0} \vdash \langle \rho, \rho \rangle$: $\exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A) \dashv \widehat{\Delta}$

by inversion on (T:DELETE) with (1). $\widehat{\Delta_0} <: \widehat{\Delta_\rho}, \widehat{\Delta}$ (5)

 $\widehat{\Gamma_0}$; $\widehat{\Delta_o} \vdash \langle \rho, \rho \rangle$: $\exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A) \dashv \cdot$ (6) by (Values Lemma) with (4). (note that we will omit the G syntax until relevant, for clarity)

 $\widehat{\Gamma_0}$; $\widehat{\Delta_\rho} \vdash \rho : (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A) \{\rho/t\} \dashv \cdot$ by (Values Inversion Lemma) with (6).

 $\widehat{\Gamma_0}; \widehat{\Delta_\rho} \vdash \rho : \mathbf{ref} \ \rho :: \mathbf{rw} \ \rho \ A\{\rho/t\} \dashv \cdot$ by (Ls:2.6), (Ls:2.10), (Ls:2.1), (Ls:2.12) with (7).

 $\widehat{\Gamma_0};\widehat{\Delta_\rho}\vdash \rho: \mathbf{ref}\,\rho\dashv \mathbf{rw}\,\rho\,A\{\rho/t\}$

by (Values Inversion Lemma) with (8). $\widehat{\Delta_{\rho}} <: \widehat{\Delta'_{\rho}}, \mathbf{rw} \, \rho \, A\{\rho/t\}$ (10)

 $\widehat{\Gamma_0}$; $\widehat{\Delta'_{\rho}} \vdash \rho : \mathbf{ref} \rho \dashv \cdot$ (11)by (Values Lemma) with (9).

 $\widehat{\Delta'_{o}} = \cdot$ (12)by inversion on (T:Ref) with (11).

Therefore:

 $\widehat{\Gamma_0}$; $\widehat{\Delta'_{\rho}}$, **rw** ρ $A\{\rho/t\}$, $\widehat{\Delta} \vdash H$, $\rho \hookrightarrow v$ i.e.: $\widehat{\Gamma_0}$; **rw** $\rho A\{\rho/t\}, \widehat{\Delta} \vdash H, \rho \hookrightarrow v$ (13)

by (Subtyping Store Typing) using (2), (10) and (12). $\widehat{\Gamma_0}$; $\widehat{\Delta_v}$, $\widehat{\Delta} \vdash H$

(14) $\widehat{\Gamma_0}$; $\widehat{\Delta_v} \vdash v : A\{\rho/t\} \dashv \cdot$

by (Store Typing Inversion Lemma) with (13).

 $\widehat{\Gamma_0}$; $\widehat{\Delta_v} \vdash \langle \rho, v \rangle$: $\exists t.A \dashv \cdot$ (16)by (T:Loc-Pack) with (15) using ρ .

 $\widehat{\Gamma_0}$; $\widehat{\Delta_v}$, $\widehat{\Delta} \vdash \langle \rho, v \rangle$: $\exists t.A \dashv \widehat{\Delta}$ (17)by (T:Frame) with (16) using $\widehat{\Delta}$.

Using: $\widehat{\Gamma_1} = \cdot$ (18)

 $\widehat{\Delta_1} = \widehat{\Delta_{\nu}}, \widehat{\Delta}$ (19)

We have: $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash \langle \rho, v \rangle : \exists t.A \vdash \widehat{\Delta}$ (20)

by (17) with (18) and (19). $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H$ (21)

by (14) with (18) and (19).

Therefore, by (20) and (21) we conclude.

Case (T:Assign) - We have:

 $\widehat{\Gamma_0}$; $\widehat{\Delta_0} \vdash \rho := v_1 : A_1 \dashv \widehat{\Delta}$, $\mathbf{rw} \rho A_0$ (1)

 $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H, \ \rho \hookrightarrow v_0$ (2)

 $\langle H, \rho \hookrightarrow v_0 \parallel \rho := v_1 \rangle \mapsto \langle H, \rho \hookrightarrow v_1 \parallel v_0 \rangle$ (3) by hypothesis.

 $\widehat{\Gamma_0}$; $\widehat{\Delta_0} \vdash v_1 : A_0 \dashv \widehat{\Delta'}$ (4) $\widehat{\Gamma_0}$; $\widehat{\Delta'} \vdash \rho : \mathbf{ref} \ \rho \dashv \widehat{\Delta}$, $\mathbf{rw} \ \rho \ A_1$

by inversion on (T:Assign) with (1). $\widehat{\Delta_0} <: \widehat{\Delta_{\nu_1}}, \widehat{\Delta'}$ (6) $\widehat{\Gamma_0}$; $\widehat{\Delta_{v_1}} \vdash v_1 : A_0 \dashv \cdot$

by (Values Lemma) on (4). $\widehat{\Delta}' <: \widehat{\Delta}_{\rho}, \widehat{\Delta}, \mathbf{rw} \, \rho \, A_1$ (8)

 $\widehat{\Gamma_0}$; $\widehat{\Delta_\rho} \vdash \rho : \mathbf{ref} \ \rho \dashv \cdot$ (9) by (Values Lemma) on (5).

by inversion on (T:REF) with (9).

 $\widehat{\Gamma_0}$; $\widehat{\Delta_{\nu_1}}$, $\widehat{\Delta}$, $\mathbf{rw} \, \rho \, A_1 \vdash H$, $\rho \hookrightarrow \nu_0$ (11)by (Subtyping Store Typing) with (2), (6) and (8).

 $\widehat{\Gamma_0}$; $\widehat{\Delta_{v_1}}$, $\widehat{\Delta_{v_0}}$, $\widehat{\Delta} \vdash H$ (13)

 $\widehat{\Gamma_0}; \widehat{\Delta_{\nu_0}} \vdash \widehat{\nu_0} : A_1 \dashv \cdot$ by (Store Typing Inversion Lemma) on (11).

 $\widehat{\Gamma_0}; \widehat{\Delta_{\nu_0}}, \widehat{\Delta}, \mathbf{rw} \, \rho \, A_0 \vdash H \, , \, \rho \hookrightarrow \nu_1$ (14)by (str:Binding) with ρ on (7) and (12).

by making:

 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_{\nu_0}}, \widehat{\Delta}, \mathbf{rw} \, \rho \, A_0 \vdash H, \, \rho \hookrightarrow \nu_1$ (16)

by (Weakening) with (14). $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_{v_0}} \vdash v_0 : A_1 \dashv \cdot$ (17)

by (Weakening) on (13). $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_{\nu_0}}, \widehat{\Delta}, \mathbf{rw} \, \rho \, A_0 \vdash \nu_0 : A_1 \dashv \widehat{\Delta}, \mathbf{rw} \, \rho \, A_0$

by (T:Frame) using $\widehat{\Delta}$, $\mathbf{rw} \rho A_0$ with (17). Therefore, by (16) and (18) we conclude.

Case (T:Dereference-Linear) - We have:

 $\widehat{\Gamma_0}$; $\widehat{\Delta_0} \vdash !\rho : A \dashv \widehat{\Delta}$, **rw** ρ [] (1) (2)

 $\begin{array}{c} \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H \;,\; \rho \hookrightarrow v \\ \langle \; H \;,\; \rho \hookrightarrow v \; | \; ! \rho \; \rangle \mapsto \langle \; H \;,\; \rho \hookrightarrow v \; | \; v \; \rangle \end{array}$ (3) by hypothesis, (D:Dereference).

 $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \rho : \mathbf{ref} \, \rho \dashv \widehat{\Delta}, \mathbf{rw} \, \rho \, []$ by inversion on (T:Dereference-Linear) with (1).

$\widehat{\Delta_0} <: \widehat{\Delta_{ ho}}, \widehat{\Delta}, \mathbf{rw} \rho A$	(5)	$\widehat{\Gamma_0}; \widehat{\Delta}', \widehat{\Delta} \vdash v_i : A_i \dashv \widehat{\Delta}$ (8)
$\widehat{\Gamma_0}$; $\widehat{\Delta_\rho}$ $\vdash \rho$: ref $\rho \dashv \cdot$	(6)	by (T:Frame) with $\widehat{\Delta}$ with (7) ($\widehat{\Delta}'$ by (Values Lemma))
$1_0, \Delta_\rho \vdash \rho$. Let $\rho \dashv \cdot$	by (Values Lemma) on (4).	$\widehat{\Gamma_0}; \widehat{\Delta'}, \widehat{\Delta} \vdash H$ (9)
$\widehat{\Delta_{\rho}} = \cdot$	(7)	by (Subtyping Store Typing) with (2) and (5
•	by (Values Inversion Lemma) on (6).	Therefore, by making:
$\widehat{\Delta_0} <: \widehat{\Delta}, \mathbf{rw} \ \rho \ A$	(8)	$\Gamma_1 = \cdot$ (10
s :	by rewriting (5) with (7).	$\widehat{\Delta_1} = \widehat{\Delta'}, \widehat{\Delta} \tag{1}$
$\widehat{\Gamma_0}; \widehat{\Delta}, \mathbf{rw} \rho A \vdash H , \rho \hookrightarrow v$	(9) by (Subtyping Store Typing) with (8) and (2).	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H$ (12)
$\widehat{\Gamma_0}; \widehat{\Delta_v} \vdash v : A \dashv \cdot$	(10)	by (Weakening) with (10) on (9) and rewriting (9) using (11 $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash v_i : A_i + \widehat{\Delta}$ (13
$\widehat{\Gamma}_0; \widehat{\Delta}_{\mathcal{V}}, \widehat{\Delta}_{\mathcal{V}} \vdash H$	(11)	$\Gamma_0, \Gamma_1; \Delta_1 \vdash \nu_i : A_i \dashv \Delta$ (13 by (Weakening) with (10) on (8) and rewriting (8) using (11
10, 4, 4, 11	by (Store Typing Inversion Lemma) on (9).	Therefore, by (12) and (13) we conclude.
$\widehat{\Gamma_0}$; $\cdot \vdash v : [] \dashv \cdot$	(12)	
	by (T:UNIT) with value v .	Case (T:APPLICATION) - We have:
$\widehat{\Gamma_0}; \widehat{\Delta}, \widehat{\Delta_v}, \mathbf{rw} \rho [] \vdash H , \rho \hookrightarrow v$	(13)	$\widehat{F} : \widehat{A} : \langle h_{\text{top}}(a, A) \rangle \otimes a : A : \widehat{A}$
by making:	by (str:Binding) using ρ , (11) and (12).	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash (\operatorname{fun}(x : A_0).e) \ v : A_1 \dashv \widehat{\Delta} $ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 $ (1)
$\widehat{\Gamma}_1 = \cdot$	(14)	$ \langle H_0 \mid (\operatorname{fun}(x : A_0).e) v \rangle \mapsto \langle H_0 \mid e\{v/x\} \rangle $
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta}, \widehat{\Delta_{\nu}}, \mathbf{rw} \rho [] \vdash H, \rho \hookrightarrow$		by hypothesis
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	by (Weakening) using $\widehat{\Gamma}_1$ on (13).	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \nu : A_0 \dashv \widehat{\Delta'} $
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_v} \vdash v : A \dashv \cdot$	(16)	$\widehat{\Gamma_0}; \widehat{\Delta'} \vdash fun(x : A_0).e : A_0 \multimap A_1 \dashv \widehat{\Delta}$ (5)
	by (Weakening) using $\widehat{\Gamma}_1$ on (10).	by inversion on (T:Application) with (1)
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_v}, \widehat{\Delta}, \mathbf{rw} \rho [] \vdash v : A \dashv \widehat{\Delta},$		$\widehat{\Delta_0} <: \widehat{\Omega'}, \widehat{\Delta_{\nu}} $ (6
	by (T:Frame) using $\widehat{\Delta}$, $\mathbf{rw} \rho$ [] on (16).	$\widehat{\Gamma_0}; \widehat{\Delta_v} \vdash v : A_0 \dashv \cdot$ (7) by (Volume Lemma) on (4)
Therefore, by (15) and (17) we c	onclude.	by (Values Lemma) on (4 $\widehat{\Delta'} <: \widehat{\Delta}, \widehat{\Delta'_{\nu}}$
e (T:Dereference-Pure) - We have	ve•	$\begin{array}{ll} \Delta' <: \Delta, \Delta'_{v} \\ \widehat{\Gamma}_{0}; \widehat{\Delta'_{v}} + \operatorname{fun}(x: A_{0}).e: A_{0} \multimap A_{1} \dashv \cdot \end{array} \tag{S}$
(DEREFERENCE-I URE) - WC Hd		by (Values Lemma) on (5
$\widehat{\Gamma_0}$; $\widehat{\Delta_0} \vdash !\rho : !A \dashv \widehat{\Delta}$, $\mathbf{rw} \rho !A$	(1)	$\widehat{\Gamma_0}; \widehat{\Delta'_{\nu}}, x : A_0 \vdash e : A_1 \dashv \cdot$ (10)
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H, \ \rho \hookrightarrow v$	(2)	$v = \operatorname{fun}(x : A_0).e \tag{11}$
$\langle H, \rho \hookrightarrow v \parallel !\rho \rangle \mapsto \langle H, \rho \hookrightarrow$		$A_0 <: A_0$ (12)
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \rho : \mathbf{ref} \ \rho \dashv \widehat{\Delta}, \mathbf{rw} \ \rho \ !A$	by hypothesis, with (D:Dereference).	by (Values Inversion Lemma) with (9) $\widehat{\Gamma_0}; \widehat{\Delta_v}, \widehat{\Delta_v}, \widehat{\Delta} \vdash v : A_0 \dashv \widehat{\Delta_v'}, \widehat{\Delta} $ (13)
$1_0, \Delta_0 \vdash \rho$. Fet $\rho \dashv \Delta$, FW $\rho : A$	(4) by inversion on (T:Dereference-Pure) with (1).	$\Gamma_0; \Delta_v, \Delta_v', \Delta \vdash v : A_0 \dashv \Delta_v', \Delta$ (13 by (T:Frame) on (7) with $\widehat{\Delta_v'}, \widehat{\Delta}$
$\widehat{\Delta_0} <: \widehat{\Delta_\rho}, \widehat{\Delta}, \mathbf{rw} \rho !A$	(5)	$\widehat{\Gamma_0}; \widehat{\Delta'_{\nu}}, x : A_0, \widehat{\Delta} \vdash e : A_1 \dashv \widehat{\Delta}$ (14) (14)
$\widehat{\Gamma_0}$; $\widehat{\Delta_\rho} \vdash \rho : \mathbf{ref} \ \rho \dashv \cdot$	(6)	by (T:Frame) on (10) with $\widehat{\Delta}$
, , , , , , , , , , , , , , , , , , , ,	by (Values Lemma) on (4).	$\widehat{\Gamma_0}; \widehat{\Delta_v}, \widehat{\Delta_v'}, \widehat{\Delta} \vdash e\{v/x\} : A_1 \dashv \widehat{\Delta} $ (15)
$\widehat{\Delta_{\rho}} = \cdot$	(7)	by (Substitution Lemma - Linear) with (13) and (14)
Â	by (Values Inversion Lemma) on (6).	By making:
$\widehat{\Delta_0} <: \widehat{\Delta}, \mathbf{rw} \rho ! A$	(8) by rewriting (5) with (7).	$\widehat{\Gamma}_1 = \cdot$
$\widehat{\Gamma_0}$; $\widehat{\Delta}$, $\mathbf{rw} \rho ! A \vdash H$, $\rho \hookrightarrow v$	(9)	$\widehat{\Delta_1} = \widehat{\Delta_{\nu}}, \widehat{\Delta'_{\nu}}, \widehat{\Delta}$ We immediately have:
10,2,100	by (Subtyping Store Typing) with (8) and (2).	we ininiculately have. $\widehat{\Gamma}_0, \widehat{\Gamma}_1; \widehat{\Delta}_1 \vdash e\{v/x\} : A_1 \dashv \widehat{\Delta}$ (16)
$\widehat{\Gamma_0}$; $\widehat{\Delta_v} \vdash v : !A \dashv \cdot$	(10)	$\Gamma_{0},\Gamma_{1},\Delta_{1} \vdash \epsilon(v/x): A_{1} \vdash \Delta$ with (15)
$\widehat{\Gamma_0}; \widehat{\Delta}, \widehat{\Delta_v} \vdash H$	(11)	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, \widehat{\Delta_v} \vdash H_0$ (17)
~	by (Store Typing Inversion Lemma) with (9).	by (Subtyping Store Typing) with (2) and (6)
$\widehat{\Delta_{\nu}} = \cdot$	(12)	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta}, \widehat{\Delta'_{\nu}}, \widehat{\Delta_{\nu}} \vdash H_0 \tag{18}$
$\widehat{\Gamma_0}$; $\cdot \vdash v : !A \dashv \cdot$	by (Values Inversion Lemma) on (10).	by (Subtyping Store Typing) with (17) and (8)
$\widehat{\Gamma_0}; \widehat{\Delta} \vdash H$	by (values inversion Lemma) on (10). (14)	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_0$ (19)
· U, · · · · · · · ·	by rewriting (11) with (12) .	by renaming the environmen Therefore, by (16) and (19) we conclude.
by making:	, 3x / ··· x =/·	
$\widehat{\Gamma_1} = \cdot$	(15)	Case (T:Function) - is a value.
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta}, \mathbf{rw} \rho !A \vdash H , \rho \hookrightarrow v$	(16)	Case (T:Forall-Loc) - is a value.
£ £	by (Weakening) using Γ_1 on (9).	Case (T:Loc-APP) - We have:
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \cdot \vdash v : !A \dashv \cdot$	(17) $h_{V}(Waskaning) using \widehat{F} \text{ on } (12)$	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash (\langle t \rangle e)[\rho] : A\{\rho/t\} + \widehat{\Delta}$ (
$\widehat{\Gamma}_0, \widehat{\Gamma}_1; \widehat{\Delta}, \mathbf{rw} \rho : A \vdash v : A \dashv \widehat{\Delta}, \mathbf{rv}$	by (Weakening) using $\widehat{\Gamma}_1$ on (13).	$\Gamma_0; \Delta_0 \vdash (\langle t \rangle e)[\rho] : A\{\rho/t\} + \Delta $ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 $ (6)
$1_{0}, 1_{1}; \Delta, \mathbf{rw} \rho : A \vdash v : A \dashv \Delta, \mathbf{rv}$	$\mathbf{v} \rho : A$ (18) by (T:Frame) using $\widehat{\Delta}$, $\mathbf{r} \mathbf{w} \rho : A$ on (17).	$ \langle H_0 \mid (\langle t \rangle e)[\rho] \rangle \mapsto \langle H_0 \mid e\{\rho/t\} \rangle $ $ (2)$
Therefore, by (16) and (18) we c		by hypothesis, with (D:LocApp
		$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \langle t \rangle e : \forall t.A \dashv \widehat{\Delta}$ (4)
e (T:Record) - is a value.		$\rho: \mathbf{loc} \in \Gamma_0 \tag{2}$
e (T:Selection) - We have:		by inversion on (r.Loc-App) with (1 $\widehat{\Delta_0} <: \widehat{\Delta}, \widehat{\Delta_v}$
^ ~ <u> </u>	(1)	$\begin{array}{ll} \Delta_0 <: \Delta, \Delta_{\nu} \\ \widehat{\Gamma_0}; \widehat{\Delta_{\nu}} + \langle t \rangle e : \forall t. A \dashv \cdot \end{array} \tag{6}$
$\Gamma_0 \cdot \Lambda_0 \vdash \{f = v\} f : \cdot \Delta \cdot \dashv \Lambda$	(1)	Γ_0 ; $\Delta_v \vdash \langle t \rangle e : \forall t.A \dashv \cdot$ by (Values Lemma) on (4
$\widehat{\Gamma_0}$; $\widehat{\Delta_0} \vdash \{\overline{\mathbf{f} = v}\}.\mathbf{f}_i : A_i \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}$: $\widehat{\Lambda_0} \vdash H$	(3)	$\widehat{\Gamma_0}, t: \mathbf{loc}; \widehat{\Delta_v} \vdash e: A \dashv \cdot$ (8)
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H$		
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H \atop \langle H \parallel \{ \mathbf{f} = v \}. \mathbf{f}_i \rangle \mapsto \langle H \parallel v_i \rangle$	by hypothesis, with (D:SELECTION).	
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H$	by hypothesis, with (D:SELECTION). (4)	$\widehat{\Gamma_0}, t: \mathbf{loc}; \widehat{\Delta}_{\nu}, \widehat{\Delta} \vdash e: A + \widehat{\Delta} $
$\begin{split} &\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \underline{H} \\ &\Big\langle H \parallel \{\overline{\mathbf{f} = v}\}.\mathbf{f}_i \Big\rangle \mapsto \langle H \parallel v_i \Big\rangle \\ &\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \{\overline{\mathbf{f} = v}\} : [\overline{\mathbf{f} : A}] + \widehat{\Delta} \end{split}$	by hypothesis, with (d:Selection). (4) by inversion on (T:Selection) with (1).	$\widehat{\Gamma_0}, t: \mathbf{loc}; \widehat{\Delta_{\nu}}, \widehat{\Delta} \vdash e: A \dashv \widehat{\Delta}$ (9 by (T:Frame) with $\widehat{\Delta}$ on (8)
$\begin{split} &\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \underline{H} \\ &\Big\langle H \parallel \{\overline{\mathbf{f} = v}\}.\mathbf{f}_i \Big\rangle \mapsto \langle H \parallel v_i \Big\rangle \\ &\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \{\overline{\mathbf{f} = v}\} : [\overline{\mathbf{f} : A}] + \widehat{\Delta} \end{split}$	by hypothesis, with (d:Selection). (4) by inversion on (t:Selection) with (1). (5)	by (T:Frame) with $\widehat{\Delta}$ on (8) $\widehat{\Gamma_0}[\rho/t]; \widehat{\Delta_v}[\rho/t], \widehat{\Delta}[\rho/t] \vdash e[\rho/t] : A[\rho/t] \dashv \widehat{\Delta}[\rho/t] $ (10)
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H \atop \langle H \parallel \{ \mathbf{f} = v \}. \mathbf{f}_i \rangle \mapsto \langle H \parallel v_i \rangle$	by hypothesis, with (d:Selection). (4) by inversion on (T:Selection) with (1). (5) (6)	$\widehat{\Gamma_0}, t : \mathbf{loc}; \widehat{\Delta_{\nu}}, \widehat{\Delta} \vdash e : A \dashv \widehat{\Delta} $
$\begin{split} &\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \underline{H} \\ &\Big\langle H \parallel \{\overline{\mathbf{f} = v}\}.\mathbf{f}_i \Big\rangle \mapsto \langle H \parallel v_i \Big\rangle \\ &\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \{\overline{\mathbf{f} = v}\} : [\overline{\mathbf{f} : A}] + \widehat{\Delta} \end{split}$	by hypothesis, with (d:Selection). (4) by inversion on (t:Selection) with (1). (5)	$\widehat{\Gamma_0}, t: \mathbf{loc}; \widehat{\Delta_{\nu}}, \widehat{\Delta} \vdash e: A \dashv \widehat{\Delta}$ (9 by (t:Frame) with $\widehat{\Delta}$ on (8)

26 2013/11/3

$\widehat{\Gamma_1} = \cdot$	by inversion on (T:Cap-Unstack) on (1).
$\widehat{\Delta_1} = \widehat{\Delta_{v}}, \widehat{\Delta}$	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_1$ (5)
We trivially have:	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e_1 : A_0 :: A_1 \dashv \widehat{\Delta} $ (6)
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e(\rho/t) : A(\rho/t) + \widehat{\Delta}$ (12)	for some $\widehat{\Delta_1}$, $\widehat{\Gamma_1}$.
with (11).	by induction hypothesis on (2), (3) and (4).
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_0$ (13)	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e_1 : A_0 \dashv \widehat{\Delta}, A_1 \tag{7}$
by (Subtyping Store Typing) using with (2) and (6).	for some $\widehat{\Delta}_1, \widehat{\Gamma}_1$.
Therefore, by (12) and (13) we conclude.	by (T:CAP-UNSTACK) on (6).
	Therefore, by (5) and (7) we conclude.
Case (T.Loc-Pack) - Is a value.	Case (T:Subsumption) - We have:
Case (T:Loc-Open) - We have:	Case (T.Subsumption) - We have:
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{open } \langle t, x \rangle = \langle \rho, v \rangle \text{ in } e \text{ end } : A_1 \dashv \widehat{\Delta}$ (1)	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_1 \dashv \widehat{\Delta} \tag{1}$
$\widehat{\Gamma}_0; \widehat{\Delta}_0 \vdash H_0$ (2)	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ (2)
$\langle H_0 \mid \text{ open } \langle t, x \rangle = \langle \rho, v \rangle \text{ in } e \text{ end } \rangle \mapsto \langle H_0 \mid e\{\rho/t\}\{v/x\} \rangle $ (3)	$\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle \tag{3}$
by hypothesis, (p:LocOpen).	by hypothesis.
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \langle \rho, \nu \rangle : \exists t. A_0 \dashv \widehat{\Delta'} $ $\tag{4}$	$ \widehat{\Delta_0} <: \widehat{\Delta'_0} \widehat{\Gamma_0}; \widehat{\Delta'_0} + e_0 : A_0 + \widehat{\Delta'} $ (4) (5)
$\widehat{\Gamma}_{0}, t: \mathbf{loc}; \widehat{\Delta'}, x: A_{0} \vdash e: A_{1} \dashv \widehat{\Delta} $ (5)	$\widehat{\Gamma_0}; \widehat{\Delta'_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'} \tag{5}$
by inversion on (T:Loc-Open) with (1).	$A_0 < A_1 $ $\widehat{\Delta}' < \widehat{\Delta} $ (6) (7)
$\widehat{\Delta_0} <: \widehat{\Delta_v}, \widehat{\Delta'}$ (6)	$\widehat{\Delta'} <: \widehat{\Delta}$ (7)
$\widehat{\Gamma_0}; \widehat{\Delta_v} \vdash \langle \rho, \nu \rangle : \exists t. A_0 \dashv \cdot \tag{7}$	by inversion on (T:Subsumption) with (1).
by (Values Lemma) with (4).	$\widehat{\Gamma_0}; \widehat{\Delta'_0} \vdash H_0$ (8)
$\widehat{\Gamma_0}; \widehat{\Delta_v} \vdash v : A_0\{\rho/t\} \dashv \cdot$ (8)	by (Subtyping Store Typing) with (2) and (4).
by (Values Inversion Lemma) with (7).	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_1 \tag{9}$
$\rho: \mathbf{loc} \in \widehat{\Gamma_0} \tag{9}$	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} + e_1 : A_0 + \widehat{\Delta'} $ (10)
by well-formed types of (8).	for some $\Delta_1, \widehat{\Gamma_1}$.
$\widehat{\Gamma_0}\{\rho/t\}; \widehat{\Delta}'\{\rho/t\}, x : A_0\{\rho/t\} \vdash e\{\rho/t\} : A_1\{\rho/t\} + \widehat{\Delta}\{\rho/t\} $ (10)	by induction hypothesis on (3), (5) and (8).
by (Substitution Lemma - Location Variable) with (5) and (9).	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e_1 : A_1 \dashv \widehat{\Delta} $ $\widehat{(11)}$
$\widehat{\Gamma_0}; \widehat{\Delta'}, \widehat{\Delta_{\nu}} \vdash \nu : A_0\{\rho/t\} \dashv \widehat{\Delta'} $ (11)	by (T.Subsumption) with (6), (7) and (10) noting that $\widehat{\Delta_1} <: \widehat{\Delta_1}$.
by (T.Frame) with $\widehat{\Delta'}$ on (8).	Therefore, by (9) and (11) we conclude.
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \nu : A_0\{\rho/t\} \dashv \widehat{\Delta'} $ (12)	Case (T:TAG) - is a value.
by (T:Subsumption) with (6) and (11).	Case (T:Case) - We have:
$\widehat{\Gamma_0}\{\rho/t\}; \widehat{\Delta_0}\{\rho/t\} \vdash \nu\{\rho/t\} : A_0\{\rho/t\} + \widehat{\Delta'}\{\rho/t\} $ (13)	
by (Substitution Lemma - Location Variable) with (9) and (12).	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash case \ 1_i \# v_i \ of \ \overline{1_j \# x_j \to e_j} \ end : A \dashv \widehat{\Delta}$ (1)
$\widehat{\Gamma_0}\{\rho/t\}; \widehat{\Delta_0}\{\rho/t\} \vdash e\{\rho/t\}\{v/x\} : A_1\{\rho/t\} + \widehat{\Delta}\{\rho/t\} $ (14)	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ (2)
by (Substitution Lemma - Linear) with (13) and (10). By making:	$\langle H_0 \parallel \text{case } 1_i \# v_i \text{ of } \overline{1_j \# x_j \to e_j} \text{ end } \rangle \mapsto \langle H_0 \parallel e_i \{v_i / x_i\} \rangle$ (3)
$\widehat{\Gamma_{l}} = \cdot$	by hypothesis, (D:CASE).
$\widehat{\Delta}_1 = \widehat{\Delta}_0$	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash 1_i \# \nu_i : \sum_i 1_i \# A_i \dashv \widehat{\Delta'} $ $\tag{4}$
We immediately have:	$ \frac{\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash 1_i \# v_i : \sum_i 1_i \# A_i \dashv \widehat{\Delta'}}{\widehat{\Gamma_0}; \widehat{\Delta'}, x_i : A_i \vdash e_i : A \dashv \widehat{\Delta}} \tag{4} $
$\widehat{\Gamma_0}\{\rho/t\}, \widehat{\Gamma_1}; \widehat{\Delta_1}\{\rho/t\} \vdash e\{\rho/t\}\{\nu/x\} : A_1\{\rho/t\} \dashv \widehat{\Delta}\{\rho/t\} $ (15)	$i \le j$ (6)
with (14).	by inversion on (D:CASE) with (1).
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e\{\rho/t\}\{v/x\} : A_1 \dashv \widehat{\Delta} $ (16)	$\widehat{\Delta_0} <: \widehat{\Delta_\nu}, \widehat{\Delta'} \tag{7}$
since $\widehat{\Gamma_0}$, $\widehat{\Delta_1}$ and $\widehat{\Delta}$ are closed, t is fresh in the conclusion and (14).	$\widehat{\Gamma_0}; \widehat{\Delta_v} \vdash 1_i \# v_i : \sum_i 1_i \# A_i \dashv \cdot $ (8)
$\widehat{\Gamma}_0, \widehat{\Gamma}_1; \widehat{\Delta}_1 \vdash H_0$ (17)	by (Values Lemma) with (4).
by (Weakening) with $\widehat{\Gamma}_1$ on (2).	$\widehat{\Gamma}_0; \widehat{\Delta}_{\nu} \vdash \nu_i : A_i \dashv \cdot \tag{9}$
Therefore, by (16) and (17) we conclude.	for some i.
	by (Values Inversion Lemma) with (8). $\widehat{\Gamma_0}; \widehat{\Delta_v}, \widehat{\Delta'} \vdash v_i : A_i + \widehat{\Delta} $ (10)
Case (T:FORALL-TYPE) - is a value.	
Case (T:Type-App) - Analogous to (T:Loc-App).	by (T.Frame) on (9) with Δ' .
Case (T:Type-Pack) - is a value.	$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_i\{v_i/x_i\} : A + \widehat{\Delta} $ (11)
Case (T:Type-Open) - Analogous to (T:Loc-Open).	by (Substitution Lemma - Linear) with (10) and (5), for some <i>i</i> . By making:
Case (T:CAP-ELIM) - Not applicable, environment not closed.	$\widehat{\Gamma}_1 = \cdot$
Case (T:CAP-STACK) - We have:	$\widehat{\Delta}_1 = \widehat{\Delta}_0$
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 :: A_1 + \widehat{\Delta} $ (1)	We trivially have:
$\widehat{\Gamma}_0; \widehat{\Delta}_0 \vdash \ell_0 : A_0 :: A_1 \dashv \Delta$ $\widehat{\Gamma}_0; \widehat{\Delta}_0 \vdash \ell_0$ (2)	$\widehat{\Gamma}_0, \widehat{\Gamma}_1; \widehat{\Delta}_1 \vdash e_i\{v_i/x_i\} : A \dashv \widehat{\Delta} $ (12)
$\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle \tag{3}$	by (11).
by hypothesis.	$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_0$ (13)
$\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta}, A_1 \tag{4}$	by (2).
by inversion on (T:CAP-STACK) on (1).	Thus, by (12) and (13) we conclude.
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_1$ (5)	
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e_1 : A_0 \dashv \widehat{\Delta}, A_1 $ (6)	Case (T:Alternative-Left) - We have:
for some $\widehat{\Delta}_1$, $\widehat{\Gamma}_1$.	$\widehat{\Gamma_0}; \widehat{\Delta_0}, A_0 \oplus A_1 \vdash e_0 : A_2 \dashv \widehat{\Delta} $ (1)
by induction hypothesis on (2), (3) and (4).	$\Gamma_0; \Delta_0, A_0 \oplus A_1 \vdash e_0 : A_2 \dashv \Delta $ $\widehat{\Gamma_0}; \widehat{\Delta_0}, A_0 \oplus A_1 \vdash H_0 $ (2)
$\widehat{\Gamma}_0, \widehat{\Gamma}_1; \widehat{\Delta}_1 \vdash e_1 : A_0 :: A_1 \dashv \widehat{\Delta}$ (7)	$ \begin{array}{c} 1_0; \Delta_0, A_0 \oplus A_1 \vdash H_0 \\ \langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle \end{array} $ (2)
by (T.CAP-STACK) on (6).	by hypothesis.
Therefore, by (5) and (7) we conclude.	$\widehat{\Gamma_0}; \widehat{\Delta_0}, A_0 \vdash e_0 : A_2 \dashv \widehat{\Delta} \tag{4}$
Case (T:CAP-UNSTACK) - We have:	$\widehat{\Gamma}_0; \widehat{\Delta}_0, A_1 \vdash e_0 : A_2 \dashv \widehat{\Delta} $ (5)
Cust (1.Car-Unstack) - WC Have.	by inversion on (T:Alternative-Left) with (1).

(1)

(2)

(4)

by hypothesis.

 $\begin{array}{l} \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta}, A_1 \\ \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \\ \langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle \end{array}$

 $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 :: A_1 \dashv \widehat{\Delta}$

27 2013/11/3

By (Store Typing Inversion Lemma) on (2), we have that either:

• $\widehat{\Gamma_0}$; $\widehat{\Delta_0}$, $A_0 \vdash H_0$

 $\begin{array}{l} \widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_1 \\ \widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e_1 : A_2 \dashv \widehat{\Delta} \end{array}$

(1.1)

(1.2)

(1.3)

by sub-case hypothesis.

for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$.	by induction hypothesis with (1.1), (3) and (4).
Therefore, we conclude. $\bullet \widehat{\Gamma}_0; \widehat{\Delta}_0, A_1 \vdash H_0$	(2.1)
Thus, we conclude.	analogous to previous sub-case but using (5).
Case (T:FRAME) - We have:	
$\begin{array}{l} \widehat{\Gamma_0}; \widehat{\Delta_0}, \widehat{\Delta_2} \vdash e_0 : A \dashv \widehat{\Delta}, \widehat{\Delta_2} \\ \widehat{\Gamma_0}; \widehat{\Delta_0}, \widehat{\Delta_2} \vdash H_0 \\ \langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle \end{array}$	(1) (2) (3) by hypothesis.
$\widehat{\Gamma_0};\widehat{\Delta_0} \vdash e_0: A \dashv \widehat{\Delta}$	(4)
$H_0 = H_0', H_0''$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0'$ $\widehat{\Gamma_0}; \widehat{\Delta_2} \vdash H_0''$	by inversion on (T:Frame) with (1). (5) (6) (7)
by store typin $\langle H_0', H_0'' \parallel e_0 \rangle \mapsto \langle H_1', H_0'' \parallel e_1 \rangle$	ng definition since capabilities are disjoint on (2)
$\langle H'_0 \parallel e_0 \rangle \mapsto \langle H'_1 \parallel e_1 \rangle$	by the support of the expression and (3). (9)
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H'_1$	by (8) since H_0'' part of the heap is not used. (10)
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash e_1 : A \dashv \widehat{\Delta}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$.	(11)
For some Δ_1, Υ_1 . $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1}, \widehat{\Delta_2} \vdash e_1 : A \dashv \widehat{\Delta}, \widehat{\Delta_2}$	by induction hypothesis on (4), (6) and (9). (12)
$\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1}, \widehat{\Delta_2} \vdash H'_1, H''_0$	by (T:Frame) on (11) using $\widehat{\Delta_2}$. (13)
by (Weakeni $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1}, \widehat{\Delta_2} \vdash H_1$	ng) and store typing definition with (7) and (10). (14)
Therefore, by (12) and (14) we c	by rewriting (13).
Case (T:LET) - We have two reduction	
1. Sub-Case (D:LetCong):	
1. Sub-Case (b:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end}$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$	(2)
1. Sub-Case (b:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \\ \langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{3}$ by hypothesis.
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \\ \langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{2}$ by hypothesis. (4) $\text{by inversion on (b:LetCong) with (3).}$
1. Sub-Case (b:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \\ \langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{2}$ by hypothesis: (4) by inversion on (D:LetCong) with (3). (5) (6)
1. Sub-Case (b:LerCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{A_0}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_1$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{2}$ by hypothesis (4) $\text{by inversion on (b:LetCong) with (3)}.$ (5) (6) $\text{by inversion on (T:Let) with (1)}.$ (6)
1. Sub-Case (b:LerCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \\ \langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{2}$ by hypothesis. (4) $\text{by inversion on (D:LetCong) with (3).}$ (5) (6) $\text{by inversion on (T:Let) with (1).}$ (6) (7)
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \\ \langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash H_1$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$.	\mapsto $\langle H_1 \parallel$ let $x = e_1$ in e_2 end \rangle (2) by hypothesis. (4) by inversion on (D:LetCong) with (3). (5) (6) by inversion on (T:Let) with (1). (6) (7)
1. Sub-Case (b:LerCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_1} \vdash H_1$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$	$\mapsto \langle \ H_1 \ \ \text{let} \ x = e_1 \ \text{in} \ e_2 \ \text{end} \ \rangle \ \ \ \ \ \ \ \ \ \ \ \ $
1. Sub-Case (p:LerCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0 \\ \langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$.	$\mapsto \langle \ H_1 \ \ \text{let} \ x = e_1 \ \text{in} \ e_2 \ \text{end} \ \rangle \tag{2}$ by hypothesis: (4) by inversion on (b:LetCong) with (3). (5) (6) (6) by inversion on (t:Let) with (1). (6) (6) (7) by induction hypothesis on (2), (4) and (5). $\widehat{\Delta} \tag{8}$ by (Weakening) on (6). (6) end: $A_1 \dashv \widehat{\Delta} \tag{9}$ by (t:Let) with (7) and (8).
1. Sub-Case (p:LerCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta'}$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{2}$ by hypothesis. (4) $\text{by inversion on (D:LetCong) with (3).}$ (5) (6) $\text{by inversion on (T:Let) with (1).}$ (6) (7) $\text{by induction hypothesis on (2), (4) and (5).}$ $\widehat{\Delta} \tag{8}$ $\text{by (Weakening) on (6).}$ $\text{end : } A_1 \dashv \widehat{\Delta} \tag{9}$ $\text{by (T:Let) with (7) and (8).}$ et conclude.
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash \text{let } x = e_1 \text{ in } e_2 \dashv$ Therefore, by (9) and (6) we 2. Sub-Case (p:Let): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$	$\mapsto \langle \ H_1 \ \ \text{let} \ x = e_1 \ \text{in} \ e_2 \ \text{end} \ \rangle \qquad \qquad (2)$ by hypothesis. (4) by inversion on (D:LetCong) with (3). (5) (6) (6) by inversion on (T:Let) with (1). (6) (6) (7) by induction hypothesis on (2), (4) and (5). $\widehat{\Delta} \qquad \qquad (8)$ by (Weakening) on (6). (8) end: $A_1 \dashv \widehat{\Delta} \qquad \qquad (9)$ by (T:Let) with (7) and (8). (2) conclude. $(4) \dashv \widehat{\Delta} \qquad \qquad (1)$ (2) $(4) \dashv e\{v/x\} \ \rangle \qquad (3)$
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta'}$ Therefore, by (9) and (6) we 2. Sub-Case (p:Let): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$	$\mapsto \langle \ H_1 \ \ \text{let} \ x = e_1 \ \text{in} \ e_2 \ \text{end} \ \rangle \qquad \qquad (2)$ by hypothesis. (4) by inversion on (D:LetCong) with (3). (5) (6) by inversion on (T:Let) with (1). (6) (6) (7) by induction hypothesis on (2), (4) and (5). $\widehat{\Delta} \qquad \qquad (8)$ by (Weakening) on (6). end: $A_1 \dashv \widehat{\Delta} \qquad \qquad (9)$ by (T:Let) with (7) and (8). exconclude. $(A_1 \dashv \widehat{\Delta} \qquad \qquad (1)$ (2)
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_1 \text{ in } e_2 \dashv$ Therefore, by (9) and (6) we 2. Sub-Case (p:Let): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H \qquad \langle H \parallel \text{let } x = v \text{ in } e \text{ end } \rangle \mapsto$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash v : A_0 \dashv \widehat{\Delta'}$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle $ (2) (3) by hypothesis: (4) by inversion on (D:LetCong) with (3). (5) (6) (6) by inversion on (T:Let) with (1). (6) (7) by induction hypothesis on (2), (4) and (5). $\widehat{\Delta} \qquad \qquad$
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta'}$ Therefore, by (9) and (6) we 2. Sub-Case (p:Let): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } : \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H$ $\langle H \parallel \text{let } x = v \text{ in } e \text{ end } \rangle \mapsto$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash v : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e : A_1 \dashv \widehat{\Delta}$ $\widehat{\Delta_0} <: \widehat{\Delta_v}, \widehat{\Delta'}$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{2}$ by hypothesis. (4) $\text{by inversion on (D:LetCong) with (3).}$ (5) (6) $\text{by inversion on (T:Let) with (1).}$ (6) (7) $\text{by induction hypothesis on (2), (4) and (5).}$ $\widehat{\Delta} \tag{8}$ $\text{by (Weakening) on (6).}$ $\text{end : } A_1 + \widehat{\Delta} \tag{9}$ $\text{by (T:Let) with (7) and (8).}$ econclude. $A_1 + \widehat{\Delta} \tag{1}$ (2) $\langle H \parallel e\{v/x\} \rangle \tag{3}$ by hypothesis (5) (6) $\text{by inversion on (T:Let) with (1).}$ (7) (8) $\text{by (Values Lemma) with (4).}$
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Lambda_0}; \widehat{\Lambda_0} \vdash \text{let } x = e_1 \text{ in } e_2 \dashv$ Therefore, by (9) and (6) we 2. Sub-Case (p:Let): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H \qquad \langle H \parallel \text{let } x = v \text{ in } e \text{ end } \rangle \mapsto$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash V : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e : A_1 \dashv \widehat{\Delta}$ $\widehat{\Delta_0} := \widehat{\Delta_v}, \widehat{\Delta'} \vdash$ $\widehat{\Gamma_0}; \widehat{\Delta_v}, \widehat{\Delta'} \vdash v : A_0 \dashv$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle $ (3) by hypothesis. (4) by inversion on (D:LetCong) with (3). (5) (6) (6) by inversion on (T:Let) with (1). (6) (7) by induction hypothesis on (2), (4) and (5). $\widehat{\Delta}$ (8) by (Weakening) on (6). end: $A_1 \dashv \widehat{\Delta}$ (9) by (T:Let) with (7) and (8). et conclude. (1) (2) ($A_1 \dashv \widehat{\Delta}$ (1) (2) (3) by hypothesis (5) (6) by inversion on (T:Let) with (1). (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
1. Sub-Case (p:LetCong): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = e_0 \text{ in } e_2 \text{ end } \widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H_0$ $\langle H_0 \parallel \text{let } x = e_0 \text{ in } e_2 \text{ end } \rangle$ $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv \widehat{\Delta}$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta_0} \vdash e_1 : A_0 \dashv \widehat{\Delta'}$ for some $\widehat{\Delta_1}, \widehat{\Gamma_1}$. $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Gamma_1}; \widehat{\Delta'}, x : A_0 \vdash e_2 : A_1 \dashv$ $\widehat{\Gamma_0}, \widehat{\Lambda_0}; \widehat{\Lambda_0} \vdash \text{let } x = e_1 \text{ in } e_2 \dashv$ Therefore, by (9) and (6) we 2. Sub-Case (p:Let): $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash \text{let } x = v \text{ in } e \text{ end } :$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash H \qquad \langle H \parallel \text{let } x = v \text{ in } e \text{ end } \rangle \mapsto$ $\widehat{\Gamma_0}; \widehat{\Delta_0} \vdash V : A_0 \dashv \widehat{\Delta'}$ $\widehat{\Gamma_0}; \widehat{\Delta'}, x : A_0 \vdash e : A_1 \dashv \widehat{\Delta}$ $\widehat{\Delta_0} := \widehat{\Delta_v}, \widehat{\Delta'} \vdash$ $\widehat{\Gamma_0}; \widehat{\Delta_v}, \widehat{\Delta'} \vdash v : A_0 \dashv$	$\mapsto \langle H_1 \parallel \text{let } x = e_1 \text{ in } e_2 \text{ end } \rangle \tag{2}$ by hypothesis. (4) $\text{by inversion on (D:LetCong) with (3).}$ (5) (6) $\text{by inversion on (T:Let) with (1).}$ (6) (7) $\text{by induction hypothesis on (2), (4) and (5).}$ $\widehat{\Delta} \tag{8}$ $\text{by (Weakening) on (6).}$ $\text{end : } A_1 + \widehat{\Delta} \tag{9}$ $\text{by (T:Let) with (7) and (8).}$ conclude. $A_1 + \widehat{\Delta} \tag{1}$ (2) $\langle H \parallel e\{v/x\} \rangle \tag{3}$ by hypothesis (5) (6) $\text{by inversion on (T:Let) with (1).}$ (7) (8) $\text{by (Values Lemma) with (4).}$ (9) $\text{by (T:Frame) with (8).}$

28

B.11 Progress

Theorem 2 (Progress). If e_0 is a closed expression such that

$$\widehat{\Gamma}$$
; $\widehat{\Delta_0} \vdash e_0 : A \dashv \widehat{\Delta_1}$

then either:

(value) e_0 is a value (v), or;

(**steps**) if exists H_0 such that $\widehat{\Gamma}$; $\widehat{\Delta}_0 \vdash H_0$ then $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_1 \rangle.$

Proof. By induction on the typing derivation of $\widehat{\Gamma}$; $\widehat{\Delta_0} \vdash e_0 : A \dashv \widehat{\Delta}$.

Case (T:Ref), (T:PURE), (T:UNIT), (T:PURE-READ), (T:LINEAR-READ), (T:PURE-ELIM) are all values or the environments are not closed.

Case (T:NEW) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \mathsf{new} \ \nu : \exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A) \dashv \widehat{\Delta_1}$$
 (1) by hypothesis.

Which is not a value but transitions by (D:NEW).

Thus, we conclude.

Case (T:DELETE) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \mathsf{delete} \ v : \exists t.A \dashv \widehat{\Delta_1} \tag{1}$$
 by hypothesis.
$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash v : \exists t. (\mathbf{ref} \ t :: \mathbf{rw} \ t \ A) \dashv \widehat{\Delta_1} \tag{2}$$
 by inversion on (T:Delete) with (1).

by (Values Lemma) and (Values Inversion Lemma) on (2).

Thus, by (D:Delete) the expression transitions.

Case (T:Assign) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash v_0 := v_1 : A_1 \dashv \widehat{\Delta_2}, \operatorname{rw} \rho A_0$$
 (1)

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu_1 : A_0 \dashv \widehat{\Delta_1}$$
 by hypothesis. (2)
$$\widehat{\Gamma}; \widehat{\Delta_1} \vdash \nu_0 : \mathbf{ref} \rho \dashv \widehat{\Delta_2}, \mathbf{rw} \rho A_1$$
 (3)

$$\Gamma; \Delta_1 \vdash v_0 : \mathbf{ref} \ \rho \dashv \Delta_2, \mathbf{rw} \ \rho \ A_1$$
 (3)
by inversion on (T.Assign) with (1).

by (Values Lemma) and (Values Inversion Lemma) with (3). Thus, by (D:Assign) the expression transitions.

Case (T:Dereference-Linear) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash !\nu : A + \widehat{\Delta_1}, \mathbf{rw} \rho []$$
by hypothesis.

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu : \mathbf{ref} \rho \dashv \widehat{\Delta_1}, \mathbf{rw} \rho A$$
 (2) by inversion on (T.Dereference-Linear) with (1).

by (Values Lemma) and (Values Inversion Lemma) with (2).

Thus, by (D:Dereference) the expression transitions.

Case (T:Dereference-Pure) - Analogous to (T:Dereference-Linear).

Case (T:RECORD) - is a value.

Case (T:SELECTION) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu. \mathbf{f}_i : A_i \dashv \widehat{\Delta_1}$$
 (1) by hypothesis.

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu : [\overline{\mathbf{f} : A}] \dashv \widehat{\Delta_1}$$
 (2)

$$v = \{\overline{\mathbf{f} = v'}\}\$$
 by (Values Lemma) and (Values Inversion Lemma) with (2).

Thus, by (D:SELECTION) the expression transitions.

Case (T:APPLICATION) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu_0 \; \nu_1 : A_1 \dashv \widehat{\Delta_2} \tag{1}$$
 by hypothesis.

$$\begin{array}{c} \widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu_1 : A_0 \dashv \widehat{\Delta_1} \\ \widehat{\Gamma}; \widehat{\Delta_1} \vdash \nu_0 : A_0 \multimap A_1 \dashv \widehat{\Delta_2} \end{array} \tag{2}$$

by inversion on (T:Application) with (1).
$$v_0 = \text{fun}(x:A'').e$$
 $A_0 <: A''$ (4)

by (Values Lemma) and (Values Inversion Lemma) with (3).

Thus, by (D:APPLICATION) the expression transitions.

Case (T:Function) - is a value.

Case (T:FORALL-Loc) - is a value.

Case (T:Loc-APP) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu[\rho] : A\{\rho/t\} \dashv \widehat{\Delta_1}$$
(1)

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu : \forall t. A \dashv \widehat{\Delta_1}$$
 by hypothesis. (2)

by inversion on (T.Loc-App) with (1).
$$v = \langle t \rangle e$$
 (3)

by (Values Lemma) and (Values Inversion Lemma) with (2). Thus, by (D:LocAPP) the expression transitions.

Case (T:Loc-Open) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \operatorname{open} \langle t, x \rangle = v \text{ in } e \text{ end } : A_1 \dashv \widehat{\Delta_2}$$
 (1)

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu : \exists t. A_0 \dashv \widehat{\Delta_1}$$
 by hypothesis. (2)

$$\widehat{\Gamma}, t : \mathbf{loc}; \widehat{\Delta_1}, x : A_0 \vdash e : A_1 \dashv \widehat{\Delta_2}$$
 (3)

by inversion on (T.Loc-OPEN) with (1).
$$v = \langle \alpha, v' \rangle$$

by (Values Lemma) and (Values Inversion Lemma) with (2). Thus, by (D:LocOPEN) the expression transitions.

Case (T:Loc-PACK) - is a value.

Case (T:FORALL-TYPE) - is a value.

Case (T:Type-App) - Analogous to (T:Loc-App) but using (D:TypeApp).

Case (T:Type-Open) - Analogous to (T:Loc-Open) but using (D:TypeOpen).

Case (T:TYPE-PACK) - is a value.

Case (T:CAP-ELIM) - Environment not closed.

Case (T:CAP-STACK), (T:CAP-UNSTACK) - By direct application of induction hypothesis on the inversion of each of the typing rules.

Case (T:FRAME) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0}, \widehat{\Delta_2} \vdash e : A_0 \dashv \widehat{\Delta_1}, \widehat{\Delta_2}$$
 (1)

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash e : A_0 + \widehat{\Delta_1}$$
 by hypothesis. (2)

by inversion on (T:FRAME) with (1).

Then, by induction hypothesis on (2), we have that either:

•
$$e$$
 is a value (v) , or; (3)

• if exists
$$H_0$$
 such that $\widehat{\Gamma}$; $\widehat{\Delta_0} \vdash H_0$ then $\langle H_0 \parallel e \rangle \mapsto \langle H'_0 \parallel e' \rangle$ (4)

Then, since we know that
$$\widehat{\Delta_0}$$
, $\widehat{\Delta_2}$ then exists H_2 such that:
 $\widehat{\Gamma}$; $\widehat{\Delta_0}$, $\widehat{\Delta_2}$ $\vdash H_0$, H_2 (5)

$$\Gamma$$
; Δ_0 , $\Delta_2 \vdash H_0$, H_2 (2)
Therefore, by (5), (3) and (4) we conclude.

Case (T:Subsumption) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash e : A_1 \dashv \widehat{\Delta_3} \tag{1}$$

$$\widehat{\Delta_0} <: \widehat{\Delta_1}$$
 by hypothesis. (2)

$$\widehat{\Delta_0} <: \widehat{\Delta_1}$$

$$\widehat{\Gamma}; \widehat{\Delta_1} \vdash e : A_0 \dashv \widehat{\Delta_2}$$
(2)
(3)

$$\Gamma; \Delta_1 \vdash e : A_0 \dashv \Delta_2 \tag{3}$$

$$A_0 \lt: A_1 \tag{4}$$

$$\widehat{\Delta_2} <: \widehat{\Delta_3}$$
 (5)

If exists
$$H_0$$
 such that:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash H_0$$
 (6)
 $\widehat{\Gamma}; \widehat{\Delta_1} \vdash H_0$ (7)

• or
$$\langle H_0 \parallel e \rangle \mapsto \langle H_1 \parallel e' \rangle$$
 (9)

• or
$$\langle H_0 \parallel e \rangle \mapsto \langle H_1 \parallel e' \rangle$$
 (9)
Therefore, we conclude

Case (T:TAG) - is a value.

Case (T:CASE) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \mathsf{case} \ v \ \mathsf{of} \ \overline{1_j \# x_j \to e_j} \ \mathsf{end} : A \dashv \widehat{\Delta_1}$$
 (1) by hypothesis.

$$\widehat{\Gamma}; \widehat{\Delta_0} \vdash \nu : \sum_i 1_i \# A_i + \widehat{\Delta_1}$$
(2)

$$\widehat{\widehat{\Gamma}}; \widehat{\Delta_1}, x_i : A_i \vdash e_i : A + \widehat{\Delta_2}$$

$$i \le i$$
(3)

$$v = 1_i \# v_i$$
 (5)
by (Values Lemma) and (Values Inversion Lemma) with (2).

Thus, by (D:CASE) the expression transitions.

Case (T:ALTERNATIVE-LEFT) - We have:

$$\widehat{\Gamma}; \widehat{\Delta_0}, A_0 \oplus A_1 \vdash e : A_2 \dashv \widehat{\Delta_1}$$
 (1)

$$\widehat{\Gamma}; \widehat{\Delta_0}, A_0 \vdash e : A_2 \dashv \widehat{\Delta_1}$$
 by hypothesis. (2)

$$\widehat{\Gamma}; \widehat{\Delta_0}, A_1 \vdash e : A_2 \dashv \widehat{\Delta_1}$$
 by inversion on (T:Alternative-Left) with (1).

•
$$e$$
 is a value (v) ; (4)

Therefore the expression is a <i>value</i> .	
• If exists H_0 such that $\widehat{\Gamma}$; $\widehat{\Delta_0}$, $A_0 \oplus A_1 \vdash H_0$	(5
By (Store Typing Inversion Lemma) on (5), we have that either:	
$\diamond \widehat{\Gamma}; \widehat{\Delta_0}, A_0 \vdash H_0$	(6
Then by induction hypothesis on (2), we conclude that:	
$\langle H_0 \parallel e \rangle \mapsto \langle H'_0 \parallel e' \rangle$	(7
Thus, the expression steps, since e cannot be a value.	
$\diamond \widehat{\Gamma}; \widehat{\Delta_0}, A_1 \vdash H_0$	(8
Then by induction hypothesis on (3), we conclude that:	
$\langle H_0 \parallel e \rangle \mapsto \langle H'_0 \parallel e' \rangle$	(9
Thus, the expression steps, since e cannot be a value.	
Therefore, we conclude.	

Case (T:Let) - We have:

 $\widehat{\Gamma};\widehat{\Delta_0} \vdash \operatorname{let} x = e_0 \operatorname{in} e_1 \operatorname{end} : A \dashv \widehat{\Delta_1}$ (1) by hypothesis. $\begin{array}{l} \widehat{\Gamma}; \widehat{\Delta_0} \vdash e_0 : A_0 \dashv \widehat{\Delta_1} \\ \widehat{\Gamma}; \widehat{\Delta_1}, x : A_0 \vdash e_1 : A_1 \dashv \widehat{\Delta_2} \end{array}$ (2) (2)
(3)
by inversion on (T:Let) with (1).

By induction hypothesis on (2), we have that either:
• e_0 is a value (ν) ; (4)
Thus, by (p:Let) the expression transitions.
• if exists H_0 such that $\widehat{\Gamma}; \widehat{\Delta_0} \vdash H_0$ (5) $\langle H_0 \parallel e_0 \rangle \mapsto \langle H_1 \parallel e_0' \rangle$ (6)
Thus, by (p:LetCong) the expression (1) transitions.
Therefore, we conclude.