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Unlabeled pairs (and their generalization, tuples), which can
be encoded as function and application.

Our core language only includes choice labeled products, so
that the programmer must pick one (and only one) of a set of
available fields — all of which produce the same effect in the A
environment. The alternative would be to require a// fields to be
used, so that it is a linear labeled pair (where the order matters).

‘We now show how unlabeled pairs can be encoded in the lan-
guage, and leave out the generalization for arbitrary (but fixed
length) tuples since it is straightforward.
;A0 Feo:Ag 4 Ay AL Fep i AL 4 A
I3 Ao Ffeo,er} : [Aog, A1l 4 Ay

A0 Feg : [Ag, A1l 4 Ay
F;Al,xo 1 Ap,x1 P AL F e 2A2 4 Az

T; Ao Flet[xg,x1]=epine;end: Ay 4 Ay
Can be encoded as:

(x0, x1 fresh in conclusion)

{eo, e1} < et Xp = e in

letx; = ey in

<R>fun(f:Ag o A; = R).(fxpx1)
end
end

let [xo,x1] =e,inesend= letp = ¢,in
p[Af] (fun(xo : Ao).fun(xl : A]).ef )
end

where ey : Ap,e; : Ay and ef : Ay,

Recursion: We use the traditional call-by-value Y-combinator
encoded in our core language to provide recursion without
using additional typing rules or reductions.

Note that using a special construct, such as “rec x.e” would
require changing the subtitution lemma since if rec is a value,

1 2013/11/3



[ S

then no further reductions can occur, and if it is not a value,
then the substitution lemma must account for expressions, not
just values.
let fix = <A><B>fun( f : !( (A - B) - (A —-B))).

let r = fun( x : rec X.!( X - (A - B))).

fCfunCv: AD).xE)DW ) in
rr
end : IVAVB(!((A—-B)—o(A—oB)—o(A—oB))

Noting that x in line 3 has types:
I(rec X.!(X o (A—-oB))—o(A—-B))
rec X.!(X - (A—-B))

Making the argument of £ in that line to be A — B, and r to be
of type:

(function)
(argument)

rec X.!(X -(A—-oB))—-o(A—B)

which, applied to itself, yields the type of the function without
the recursive argument visible (A — B).

Therefore, to use recursion, we must create a function that takes
the recursive function as argument as shown in the literature.

In the examples, we make use of the construct “rec x.e” to
define a recursive function (with body e), without having to
use the expanded notation, and that automatically threads all
location variables through its argument(s).

Shorter delete rule.
In the examples, we use a shorter (and more limited) delete
typing rule to avoid having to carry existential types around.

delete open <ty,y>=(delete <t x> )inyend

A
examples ¥ =

where x : ref ¢, and y : A where ¢, does not occur in A (and
therefore does not need to be packed to leave that scope).

Similar functionality could be achieved with the following typ-
ing rule (that is used in the prototype):
(T:DELETE-PROTOTYPE)

IAgre:refp4 A, rwp A
I';Ag+deletee: A4 A

Girards’ encoding of existential types.

However, this abbreviation is not used since it makes the use of
existential types slightly more complex and less clear. Nonethe-
less, we leave it here as an observation on how it could be
achieved.

An existential type can be encoded into an universal type by
consider the packed type to be hidden inside an universally
quantified function that is not directly usable to client:

XA £ VR(VX.(A - R)—=R)

where R is the result of the expression that uses the packed
existential and where X cannot occur in R.

Pack if we have:
<A(), e) :dXA,
then it can be encoded as:
(R)(fun(x : VX.(A; — R)).(x[Ap](e)) )

so that it is a polymorphic function on R, i.e. the result of
opening the packed existential.

Open if we have:
open (X,x) =epine; end: A
where ¢( : AX.Ay, then it can be encoded as:
eo[A1]( (X) (fun(x: Ag ).e; ) )

provided the resulting types Ay, A; are known.
It works in identical ways to abstract locations:
At A £ VR.(Vt.(A —-R)—-oR)

but the result must always be a type (not a location) since that
is the type of the expression that is used on the open/pack
constructs.
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B. Proofs
B.1 Well-Formed Types and Environments

Our well-formed definition ensures that types are properly formed
(i.e. type formation), be it in the environments or just in a regular
type. Therefore, each type must have all the location variables it
depends on declared in the corresponding I' environment so that
all location variables must be known in the same scope as the
capability that refers a certain location variable. An analogous
condition must hold for type variables.

Definition 1 (Well-Formed). We have the following cases (defined
by induction on the structure of the type/environment):

. (Gamma)
r wf I wf I wf I'r A type
-wlf [,p:loc wf T, ,X:type wf Ix:A wf
[T aw] Detta
I'r A wf I'rA type
T'r- wf F'tAx:A wf
I'rA wf I'-A type
F'rAA wf
o [T+ Atype (Type)
I'+ A type I'+ A; type
I' A type [+ [f: A] type
I'+ A type I'+ A, type p:locel I'+ A type

I'F (A — A)) type 'k (rw p A) type

I, p : loc + (ref p) type I, X type + X type

I'F Aj type ' A type
I'F(Ag it A)) type

'+ A type ' A type
'+ (A = A;) type

I',t:loc+ A type I',t:loc+ A type

I'+ Vt.A type I''+ 3t.A type
I, X type I A type I, X type I A type
'+ VXA type I' - 3X A type
'+ A type ' A, type

I' - none type I'rAy® A, type

I'F A, type
'+ Y L#A, type

Note that well-formed conditions are not explicitly mentioned
and are assumed to be present whenever they are relevant.

I, X type + A type

I' + rec X.A type

B.2 Subtyping Inversion Lemma

Lemma 1 (Subtyping Inversion Lemma). We have the following
cases for types (A) and for the linear typing environment (A):

e (Type) If A <: A’ then one of the following holds:
1

VA=A
2. if A =!A( then either:
(a) A’ = Ay, or;
(b) A’ =1A; and Ay <: Ay, or;
(©) A’ =[]

3.ifA= A() —o A] then A’ = A2 —o A3 and Al < A3 and A2 <: Aop.
L ifA=Ag:: Aythen A’ = A :: Az and Ap <: A; and A, <: Aj3.
5. if A = [£ : A] then either:
(@) A=[f:A fi:Aj]and A’ = [£: A]andi > 0.
(b) A=[f:A £ :Agland A’ = [£: A, £; : Aj]and Ag <: A).
(c) A=[f:!A]land A’ =![f :1A].
.if A=rwpApthen A” =rw p A and Ap <: A;.
. if A =3r.Ag then A” = Ar.A; and Ay <: Aj.
. if A =Vt.Apthen A’ =Vr.A; and Ag <: Aj.
9. if A = 9X.Ap then A’ = AX.A; and Ay <: A;.
10. if A = VX.Ag then A’ = YX.A| and Ag <: A;.
11. if A = ref p then A” = !(ref p).
12. if A = Ag * A} then either:
(a) A’ = Ay = Ag, or;
(b) A = Ag x Ay andA1 <:Aj.
(c) if Ag = (Aj * Aj) then A" = A[ = (Aj * Ay).
13. if A=Y, 1;#A; then A" = 1'#A” + }; Li#A,.
14. if A = Ap{X/rec X.Ap} then A’ = rec X.Ag.
15. if A = rec X.A the either:
(a) A’ =rec X.A| and Ag <: Ay, or;
(b) A’ = A1{X/rec X.A1}.
e (Delta) If A <: A’ then one of the following holds:
1. A=A
2. if A=Ag,x:Agthen A’ = Ay, x: Ay and
Ap <:Ajand Ag <: Aj.
3. if A = Ag, Ag then either:
(@) A" =A,A; and Ay <: Ay and Ay <: Aj.
(b) A" = Ag,Ag® A;.
4. if A = Ay, A, A; then either:
(a) A = Ag,Ag = Ay, or;
(b) case (3) with Ay, or;
(c) case (3) with Aj.
5. if A =Ag,Ag *Aj then A’ = Ay, Ap,Aj.
6. if A = Ag,none then A’ = Ag.
7. A’ = A,none.
8. if A = Ag,Ag ® Aj then Ag,Ag <: A’ and Ay, A <: A'.

~

[N e}

Proof. We only very informally sketch the proof, without going into detail on each
case since they are straightforward to show.

1. (Type) By induction on the derivation of A <: A”.
Case (sT:SyMMETRY) Case 1 of the definition.
Case (st:ToLinear) Case 2 (a) of the definition.
Case (s:Pure) Case 2 (b) of the definition.
Case (s:Top) Case 2 (c) of the definition.

Case (s:Rer) Case 11 of the definition.

Case (sT:Function) Case 3 of the definition.
Case (st:Loc-Exists) Case 7 of the definition.
Case (st:Loc-ForaLr) Case 8 of the definition.
Case (st:Type-Exists) Case 9 of the definition.
Case (st:Type-ForaLr) Case 10 of the definition.
Case (sT:Recorp) Case 5 (b) of the definition.
Case (st:Discarp) Case 5 (a) of the definition.
Case (st:PuriryREc) Case 5 (c) of the definition.
Case (sT:Stack) Case 4 of the definition.

Case (sT:Cap) Case 6 of the definition.

Case (st:Com) Case 12 (a) of the definition.
Case (sT:Cong) Case 12 (b) of the definition.
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Case (st:Assoc) Case 12 (c) of the definition.
Case (s:Sum) Case 13 of the definition.

Case (st:FoLp) Case 14 of the definition.

Case (st:UnroLp) Case 15 (a) of the definition.
Case (sT:Rec) Case 15 (b) of the definition.

. (Delta) By induction on the derivation of A <: A’.
Case (sp:SYMMETRY) - Case | of the definition.
Case (sp:VAR) - Case 2 of the definition.

Case (sp:TypE) - Case 3 (a), 4 (b) and 4 (c) of the definition.
Case (sp:STAR), right - Case 4 of the definition.
Case (sp:STaRr), left - Case 5 of the definition.

Case (sp:Nong) - Cases 7 (for <:, right) and 6 (for :>, left) of the definition.

Case (sp:ALTERNATIVE-R) - Case 3 (b) of the definition.
Case (sp: ALTERNATIVE-L) - Case 8 of the definition.

B.3 Store Typing

We use the notation T to mean that I is closed in the sense of only
containing (p : loc) elements and nothing else. Therefore, it only
lists the known location constants. Similarly, we use A to mean
that A is closed, so that it only includes capabilities (of the form:
rw p A — note the location constant p). There is no inconsistency
with the notation of A since if such type can only depend on closed
environments (in order to be well-formed), then it too must be
closed or it would not be well-formed.

Definition 2 (Store Typing).

(sTR:LoOC) (STR:STAR)
(STR:EMmPTY) A+ H ;A Ap, A+ H
R F,p:loc;KkH F;K,AO*AIFH
(STR NONE) (STR ALTERNATWE)
F AvH F A Ao+ H
F;A,nonekH F;A,AgéBA] +FH

(STR:BINDING)

f;Z,AAvFH f;&,l—v:A+

F;Z,rpr FHp—>v
Note that, since the added capability on (sTR:BiNDING) must still
be well-formed, such implies that I" must contain p. For the same

reason, p must also not appear in A or H. On (STR: ALTERNATIVE), We
only need one rule because such type is assumed to be commuta-
tive.

Lemma 2 (Store Typing Inversion Lemma). If
F; ArH
then one of the following holds:

1.T=-andA=-andH = -.
2.ifT=T",p:locthen I’; Ar+H.

3.if A=A, A+ A, then T, AV, Ay, A, + H.

4.1fA A’rprandH H’,p < v then
FA A\,FH’andFA Fv:Ad-.

5. if A= A’ none then T; A" + H.

6. ifA=N ,Ap ® A then either:
. f;Z,AO + H, or;
eT;AA +H.

(note that & is commutative)

P }’()Of Straightforward induction on the derivation of T A+ H. O

2013/11/3



Lemma 3 (Subtyping Store Typing). If T;A+Hand A <: A’ then
A FH.

Proof. By induction on the derivation of T:A+r H.

Case (str:EmprY) We have:

Sk )
SN @
by hypothesis

By (Subtyping Inversion Lemma) on (2), we have that either:

o[l] AV =- (1.1)

Thus, we conclude by (1).

o [7] A = -,none 2.1

-;-,none r - 2.2)
by (sTrR:NONE) on (1).

Thus, we conclude.

Case (str:Loc) We have:

F,p:loc;Zb—H (1)
A< N 2
by hypothesis.

T;ArH 3)
by inversion on (sTr:Loc) with (1).

TN vH @)
by induction hypothesis with (3) and (2).

F,p : loc;& +H 5)

by (str:Loc) with p and (4).
Thus, we conclude.

Case (sTr:BINDING) We have:

T:ArwpAr Hp—v )
K, rwpA<: A 2)

by hypothesis.
F;E, & +H 3)
T:A FviAd- )

by inversion on (sTrR:BINDING) with (1).
By (Subtyping Inversion Lemma) on (2), we have that either:
o[1] NV =A,rwp A 1.1
by sub-case hypothesis.
Thus, we conclude by (1).

o [3(a)] A" =Ag, A 2.1
A< by 2.2)
rwpA <:Ap 2.3)

by sub-case hypothesis.

A(] =TrwWp A1 (24)

A< A (2.5)

by (Subtyping Inversion Lemma) with (2.3).
(note the symmetric case is immediate, so we omit it).

’I:;Kvl—v:Al-r (2.6)
by (T:SuBsumPTION) on (4) with (2.5).

T:Ao, A+ H Q.7
by induction hypothesis on (3) and (2.2) noting that A, is unchanged.
F;Z;,rprl FH,p—v (2.8)
by (sTr:BINDING) With (2.6) and (2.7) with p.

TN +Hpov (2.9)

by rewriting (2.8) with (2.1) and (2.4).
Thus, we conclude.

e[3()] N =A,(xwp A) ® A, @3.1)
by sub-case hypothesis.
A @wpA)®A FH,p—>v 3.2)

by (STR:ALTERNATIVE) on (1).
Thus, we conclude.

e [71A = A,rw p A, none .1)
by sub-case hypothesis.
T:A,rwp A,none + H,p — v 4.2)

by (sTrR:NONE) on (1).
Thus, we conclude.

Case (sTrR:STAR) We have:

T:AAg« A+ H 1
A Agx A < NV @)

by hypothesis.
T:A Ao, A+ H @3)

by inversion on (sTR:STAR) on (1).
by (Subtyping Inversion Lemma) on (2) we have that either:

o[1] &V =24, Ag A 1.1
Thus, we conclude by (1).
o [3(@] A" = A”,Aand
A< A7 2.
AgxA; <: A (2.2)
By (Subtyping Inversion Lemma) on (2.2) we have that either:

o [12(a)] A=A, x Ao

N =77 Ay Ay (2.3)
by rewriting hypothesis.

A7, Ay Ay <: N7, Ay, Ay (2.4)
by (sp:Star) on (2.3).

T:A", Ag, Ay + H (2.5)
by induction hypothesis on (3) with (2.1).

T:A", A, Ao+ H (2.6)

since A is a set, re-ordering is allowed.
Thus, we conclude by (2.6).
o [12(b)] A=Ap*Arand A} <: Ay

N =N A * Ay 3.1)
by rewriting hypothesis.

A, Ag * Ay <: A, Ag, As (3.2)
by (sp:Star) on (3.1).

T.A Ao, Ay v H (323)

by induction hypothesis on (3) with A; <: A,.
Thus, we conclude.
o [12(0)] if Ag = A} = A7 then A = A} x (A7 % A)

N =D, Ay« A« Ay .1
A, (A) * Ay, Ar v H “4.2)
by rewriting hypothesis.

Ty A AL (A« AV H 4.3)
since A is a set, re-ordering is allowed on (4.2).

T, A, AL A AY FH @.4)
by (Store Typing Inversion Lemma) on (4.3).

T, A, A AL A FH (4.5)
since A is a set, re-ordering is allowed on (4.4).

Ty A A (A A v H (4.6)
by (sTR:STAR) on (4.5).

TyA A+ (A *AD + H “.7)

by (sTR:STAR) on (4.6).
Thus, we conclude.
o [3(D)] A=A, (AgxA)) @ A,.
Thus, we conclude by (STR:ALTERNATIVE) on (1).
o [5] A" =A,Ap, Ay
Thus, we conclude by (3).
o [7] A’ = A,none.
Thus, we conclude by (sTr:NoNE) on (1).

Case (str:NoNE) We have:

T:A,none + H (Y]
K, none <: A/ 2)

by hypothesis.
T:ArH 3)

by inversion on (sTR:STAR) on (1).
By (Subtyping Inversion Lemma) on (2), we have that either:
e [1] A’ = A,none
Thus, we conclude by (1).
o[6] NN =A
Thus, we conclude by (3).

Case (STR:ALTERNATIVE) We have:

T:AAg @A + H 1
ANAyDA < N 2
by hypothesis.

By (Subtyping Inversion Lemma) on (2), we have that either:

o[1] A=A Ag® A, (1.1)

Thus, we conclude by (1).

e B@] A =Ag, A @1
A< Ay (2.2)
Ag®A; <A (2.3)

by sub-case hypothesis.

A=A)®A 24

by (Subtyping Inversion Lemma) on (2.3).

By inversion on (1) we have that either:
o TiAAgF H 2.5)
A, Ao <: Ao, Ao (2.6)
by (sp:TypE) on (2.2) and (sT:SYMMETRY) with Ay.
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TiB0. Ao+ H 2.7 B.4 Values Inversion Lemma
by induction hypothesis on (2.5) and (2.6).

T80, Ao ® A, + H (2.8)
by (STR:ALTERNATIVE) on (2.7).

Lemma 4 (Values Inversion Lemma). If v is a value such that:

F;EI—VZAO-P

Thus, we conclude.

e LAA FH A _ _ A @9 then one of the following holds:
Analogous to the previous case, noting that @ is commutative.
3D A =R (A @A) A, A)) 1. if Ay = [] then:
Thus, we conclude by (STR:ALTERNATIVE) on (1) with A;. . -
o [7] A’ =A,A)®A;,none 4.1) A= orv:i[]4-
Thus, we conclude by (sTr:NonE) on (1). . \
o [8] AAg <: NV (5.1) 2. lfA() = 'Al then:
AA <N (5.2) N . T . . .
By inversion on (1) we have that either: A= LbviAr4
o LiAARH (3 3.if Ay = A :: A, then:
AN FH (5.4) —_—

by induction hypothesis on (5.1) and sub-case hypothesis. ARV AL HA,
o AA +FH (5.5) .
Analogous to the previous case, using (5.2). 4. if Ag = ref P then:

= v=p p:loc e T A=-

5.i1fAg = A — A’ then:
A< A" v=fun(x:A").e f;E,x A" ke A A
6. if Ag = Vt.A then:
v={_the F,t:loc;KFeIA4'
7. if Ag = 3t.A then:
v={p,V) T;A Y Alp/ty -
8. if Ay = [£ : A] then:
v={f=v} TArv: A

(Note that, although the record value can have more fields than
those that are listed in the type, only the fields that are in the
type will appear in the inversion.)

9. if Ay = VX A then:

v=(X)e f,X:type;K»—e:A-r
10. if Ap = AX.A then:
y=(A,v)Y ARV AA/X)A-
11. if Ag = X; 1 #A; then:
v=1#v; T;AFv:AA-

for some i.
12. if Ay = rec X.A then

F;E Fv:A{rec X.A/X} -
13. if A= A',A; ® A, then
f;&,Ali-v:AO-b F;X',Azl-viAo-i‘
Proof. By induction on the derivation of [; A v : Ag A -.
Case (1:ReF) - We have:
fp:loc;-»—p:refp—(- (1)
by hypothesis.

Thus, we conclude by case 4 of the definition.

Case (:Purg) - We have:

Toobv:ilA 4 ()]
by hypothesis.
IorviAp4- (2)

by inversion on (T:PURE).
Thus, we conclude by case 2 of the definition.

Case (T:UniT) - We have:
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Torv:[l4- (1
by hypothesis.
Thus, we conclude by case 1 of the definition.

Case (1:Pure-READ), (T:LINEAR-READ), (T:PURE-ELIM), (T:NEW) - Not applicable.

Case (T:DELETE), (T:ASSIGN), (T:DEREFERENCE-LINEAR), (T:DEREFERENCE-PURE) - Not
applicable.

Case (T:RECORD) - We have:

T:Ar{f=v}:[f:Al4- )
by hypothesis.
TiAFvi:Ai4- @

by inversion on (T:RECORD).
Thus, we conclude by case 8 of the definition.

Case (T:SELECTION), (T:APPLICATION) - Not applicable.
Case (T:Funcrion) - We have:

’I:;IA\#fun(x:AO).e:AO—OAl H- [€)]
by hypothesis.

F;K,XZA()FEZA|<I- 2)
by inversion on (T:FUNCTION).

Ag <: Ag 3)

by (sT:SYMMETRY) with Ag.
Thus, we conclude by case 5 of the definition.

Case (1:Cap-ELv) - Not applicable.
Case (T:Cap-Stack) - We have:

F;KFV:A022A1<|~ (1)
by hypothesis.
T;AFv:AgHA 2)

by inversion on (1:CAP-STACK).
Thus, we conclude by case 3 of the definition.

Case (1:CAP-UNSTACK), (T:APPLICATION) - Not applicable.
Case (T:ForaLL-Loc) We have:

TAF (e : VA - 1
by hypothesis.
It:loc;Are:AH- 2)

by inversion on (1:ForaLL-Loc) with (1).
Thus, we conclude by case 6 of the definition.

Case (1:Loc-Arp) Not applicable.
Case (T:Loc-Pack) We have:

T:Ar(p,vy:IAA- )
by hypothesis.
ARV Alp/thA- 2)

by inversion on (1:Loc-Pack) with (1).
Thus, we conclude by case 7 of the definition.

Case (1:Loc-OpreN) Not applicable.
Case (T:ForaLL-TyPE) We have:

T:AF(X)e:VXAH- )
by hypothesis.
I X:type;Are:AH- 2)

by inversion on (1:ForaLL-Loc) with (1).
Thus, we conclude by case 9 of the definition.

Case (1:Type-App) Not applicable.
Case (1:Type-Pack) We have:

T5A F (Ag,v) : AXA 4+ (1
by hypothesis.
T:AFv:A{Ag/X}H- 2

by inversion on (T:TyPe-Pack) with (1).
Thus, we conclude by case 10 of the definition.

Case (1:Typre-OpEN) Not applicable.
Case (1:Tac) We have:

T.AF v : 1#A 4 - )
by hypothesis.
FAFv:iAA- 2)

by inversion on (1:TaG).
Thus, we conclude by case 11 of the definition.

Case (1:Casg) Not applicable.
Case (T: ALTERNATIVE-LEFT) We have:

T:AA)®A Fv:AsA- )

by hypothesis.
T:AApFv:As - 2)
T:AA Fv:As - 3)

by inversion on (T:ALTERNATIVE-LEFT).
Thus, we conclude by case 13 of the definition.

Case (T:FraME) Not applicable, A environment on right is empty, otherwise direct
application of induction hypothesis.
Case (T:SussumpTiOoN) We have:

T:Arv:A 4- M

by hypothesis.
A< N )
T:A FvidAgH- 3)
Ag <t A C]
e ®)

by inversion on (T:SUBSUMPTION).
By induction hypothesis on (3) we have that one of the following holds:

1. if Ag =[] then:

N (1.1)
Toorvi[]4- 1.2)
[1<: Ay (1.3)

by case 1 of the hypothesis and rewriting (4).
Then, by (Subtyping Inversion Lemma) on (1.3) we have that either:

o[1] Ay =] (1.4)
and we conclude as case 1 of the definition.
e [5(c)] A =] (1.5)

and we conclude as case 2 of the definition.

2. if Ap =!A then:

A= 2.1)
IiorviA4- 2.2)
1A <t Ay (2.3)

by case 2 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (2.3) we have that either:
o[1] A=A
Thus, we conclude by case 2 of the definition through (2.2).
°[2(a)] Ay =A
Thus, we conclude by induction hypothesis on (2.2).
o [2(b)] A; =!A"and A <: A’
Tobv:iA 4 2.4)
by (1:SuBsumpTION) on (2.2) with A <: A’.
Thus, we conclude by case 2 of the definition with (2.4).
e [2(0] A=
Tiorvi[l4- (2.5)
by (1:UNIT) on v.
Thus, we conclude by case 2 of the definition.

3. if Ag = A — A’ then:

v=fun(x:A).e 3.1)
A, x:Are: A - 3.2)
A—o A <A (3.3)

by case 5 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (3.3) we have that:
(note: we omit the case A; = Ay, since it is immediate)

A =A" - A" 3.4)
A < A (3.5)
A <A (3.6)
TN, x:Are: A" 4 (3.7

by (1:SussumpTiON) on (3.2) and (3.5)
F;K,X:A Fe:A” 4- (3.8)

by (1:SusumpTiON) on (3.7) and (sp:VAR) with (2).
(a defocus-guarantee can never be introduced by subtyping, thus A)
Thus, with (3.8), (3.6) and (3.1) we conclude by case 5 of the definition.

4. if Ag = A :: A then:
f;&#v:A-lA’ “.1
A A < A 4.2)
by case 3 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (4.2) we have that:
(note: we omit the case A; = Ay, since it is immediate)

A =A" A" 4.3)
A< A 4.4)
A < A" 4.5)
F;K Fv:A” 4A" (4.6)

by (1:SussumpTiON) on (4.1) with (4.4) and (4.5).
Thus, we conclude by case 3 of the definition.
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5.

if Ag = [f: A] then:

v={f=v} 5.1)
F;AA’FVE: AiA- 5.2)
[£:A] <A (5.5)

by case 8 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (5.5) we have that either:
(note: we omit the case A; = Ay, since it is immediate)
o[5(b)] Ag=[f:A, £f;:A'land
A =[f:A, £:A"] (5.6)
A < A (5.7
Thus, by (1:SussumpTioN) on (5.2) and (5.7) we conclude by case 8 of the
definition.
e [5(@)] Ao =[f: A, £;: Aland
Ay =[f:Alandi>0.
Thus, by (T:Recorp) with (5.1) and ignoring the dropped field, we conclude
by case 8 of the definition. Note that all fields have the same effect and by
i > 0 we ensure that subtyping leaves at least one field to do such effect.
o [5(c)] Ag =[f:!A] and

A =1[f:1A] (5.8)
TN HV) 1A A (5.9
by rewriting (5.2) with (5.8).

T kv 1A 4 (5.10)
by induction hypothesis on (5.9), note the ! type.

T (f=v):[f:1A]4- (5.11)
by (1:RECcOrD) on (5.9).

Thus, we conclude by case 2 of the definition.

. if Ag = 3t.A then:

Y\:ﬁ(p,v’) 6.1)
;A FV D Alp/thA- (6.2)
A < Ay 6.3)

by case 7 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (6.3) we have that:
(note: we omit the case A; = Ay, since it is immediate)

Ay = 3rA (64)
A< A (6.5)
LAY DA p/t} - (6.6)

by (1:SusumpTION) on (6.2) and (6.5).
Thus, we conclude by case 7 of the definition.

. if Ag = Vt.A then:

v={_t)e 7.1
It:loc;A"Fe:AH- (7.2)
VA <: Ay (7.3)

by case 6 of the hypothesis and rewriting (4).
by (Subtyping Inversion Lemma) on (7.3) we have that:
(note: we omit the case A} = Ay, since it is immediate)

Ap = VLA (7.4)
A< A (1.5)
T,t:loc;Are: A 4- (7.2)

by (T:SuBsumpTION) on (7.2) and (7.5).
(note that a defocus-guarantee cannot be introduced by subtyping)
Thus, we conclude by case 6 of the definition.

. if Ag = ref p then:

v=p (8.1)
piloc eT (8.2)
A=- 8.3)
refp <: A; (8.4)

by case 4 of the hypothesis and rewriting (4).
(note: we omit the case A = Ay, since it is immediate)
by (Subtyping Inversion Lemma) on (8.4) we have:
e [11] Al =\(ref p)
Thus, we conclude by case 2 of the definition.

. if Ag = IX.A, analogous to Jr.A.
. if Ag = VX.A, analogous to Vt.A.

. if Ag = X; 1;#A] then:

v =Li#; (11.1)
TN by A4 11.2)

for some i.
i li#Al’, <Ay (11.3)

(note: we omit the case A| = 3; 1;#A], since it is immediate)

by (Subtyping Inversion Lemma) on (8.4) we have that:

Ap = V#A + 3,144 (11.4)
Thus, by (11.2) we conclude by case 11 of the definition.
12. if Ay = rec X.A then:
TSN v Afrec X.A/X} A - (12.1)
rec X.A <: A, (12.2)
by case 12 of the hypothesis and rewriting (4).
(note: we omit the case A; = Ay, since it is immediate)
by (Subtyping Inversion Lemma) on (12.2) we have that either:
o [15(a)] Al =recX.Aand A <: A’
T:AFv:A{rec X.A"/X} 4 - (12.3)
by (1:SuBsumpTION) on (12.1).
Thus, we conclude by case 12 of the definition.
o [15(b)] Al = A{X/rec X.A}
Thus, we conclude by induction hypothesis on (12.1) combined with
(T:SuBSUMPTION) on each case.
13. if A = A’,A; @ Aj; then:
T:A, Ay Fv:AgH- 13.1)
T:A, Ay Fv:Ag- (13.2)
Ap <: A (13.3)
By induction hypothesis on each case and then (T:SUBSUMPTION).
Case (T:LET) Not a value.
[ul
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B.5 Substitution

For clarity, substitution is defined on constructs that allow expressions even though our grammar (in some places) only allows values since
such difference has no impact in the following definitions and is generally more readable.

1. Variable Substitution, (vs:*)

We define the usual capture-avoiding (i.e. up to renaming of bounded variables) substitution rules:

eo{v/x} = e

(vs:1)
(vs:2)
(vs:3)
(vs:4)
(vs:5)
(vs:6)
(vs:7)
(vs:8)
(vs:9)
(vs:10)
(vs:11)
(vs:12)
(vs:13)
(vs:14)
(vs:15)
(vs:16)
(vs:17)
(vs:18)
(vs:19)
(vs:20)
(vs:21)
(vs:22)

Xofv/xi

(fun(xo : A).eq){v/xi
{f=elv/x
(e.H){v/x

(eg en){v/x

(new e){v/x

(delete e){v/x
(te){v/x

(e :=ep)fv/x

}
}
}
}
}
}
}
}
}
}
}
(p.e){v/x}
}
}
}
}
}
}
}
}
}
}

elpliv/x
(ne)v/x

(open (t,xp) = eg in ey end){v/x;

EIAJ{V/x

X)e)v/x

(open (X, xo) = eg in ey end){v/x;
(L#te){v/x

(case e of 1;#x; — ¢; end){v/x
(let xg = eg in ey end){v/x)

P
v

X0

fun(xg : A).ep{v/x1}

{£f = efv/x}}

e{v/x}.f

eo{v/x} er{v/x}

new e{v/x}

delete e{v/x}

le{v/x}

eofv/x} := er{v/x}

(p. elv/x})

e{v/x}[p]

(t) efv/x}

open (t,xp) = eo{v/x1}inei{v/x;} end
(A, efv/x})

efv/x}[A]

(X) e{v/x}

open (X, xo) = epfv/x1}iner{v/x;} end
1#e{v/x}

case e{v/x} of 1;#x; — e;{v/x} end

let xo = ep{v/x1}ine;{v/x;} end

(xo # x1)
(x0 # x1)

(xp # x1)

(x0 # x1)

(x; # x)
(x0 # x1)
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2. Location Variable Substitution, (Ls:¥)
Similarly, we define location substitution (but here up to renaming of bounded location variables) as:

eolp/t} = el
(Ls:1.1) elp/ty = p
(Ls:1.2) x{p/ty = x
(Ls:1.3) (fun(x : A).e){p/t} = fun(x:A{p/t}).el{p/t}
(s:1.4) {f=elp/t} = {f=elp/t}}
(Ls:1.5) (e.f){p/t} = elp/t}.f
(Ls:1.6) (eo ep/t} = eolp/tteilp/t}
(Ls:1.7) (new e){p/t} = newe{p/t}
(Ls:1.8) (delete e){p/t} = deletee{p/t}
(Ls:1.9) (le{p/ty = lelp/t}
(Ls:1.10) (eo :=efp/ty = eolp/t}:=elp/t)
(us:1.11) (po,e¥{pi/t} = (polpi/thelpi/t})
(Ls:1.12) elpolipi/tt = elpi/Blpoip1/}]
(Ls:1.13) (oye)lp/n} = <(n)elp/u} (to # 1)
(Ls:1.14)  (open (ty,x) = epine; end){p/ti} = open (ty,x) =eof{p/t1}ine{p/ti}end (to # 1)
(Ls:1.15) A,e){p/ty = (Alp/t},elp/th
(Ls:1.16) e[Al{p/t} = elp/t[A{p/1}]
(Ls:1.17) Xyelp/tt = (Xyelp/t}
(Ls:1.18) (open (X,x) =egine; end){p/t} = open (X,x)=eo{p/t}ine{p/t} end
(Ls:1.19) (L#te){p/ty = 1l#e{p/t}
(Ls:1.20) (case e of 1;#x; — e; end){p/t} = case e{p/t} of 1;#x; — e;{p/t} end
(Ls:1.21) (letx =egine; end){p/t} = letxyg=eo{p/t}inei{p/t} end
(Ls:2.1) plp/t p
(Ls:2.2) Hp/t P
(Ls:2.3) tofp/n fo (to # 11)
(Ls:2.4) (1A){p/t 1A{p/t}
(s2.5) (A9 — AD{p/t Aolp/t) — Arlp/1)
(Ls:2.6) (Ao :: Apip/t Aolp/t} - Ailp/t}
(Ls:2.7) [£:Al{p/t [£: A{p/t}]
(Ls:2.8) (Y10.A){p/n Vio.Alp/n} (to # 11)
(Ls:2.9) (Jt0.A){p/11 dr0.A{p/t1} (to # 11)
ref po{p1/t}

(1Ls:2.12)  (rw po A){p1/t
(Ls:2.13)  (Ag*Ap{p/t

rw polp1/t} Alp1/1}
Ao{p/t} = Ai{p/1}

}
}
}
}
}
}
}
}
}
(Ls:2.10) (ref po){p1/t}
}
}
}
}
}
}
}
}
}

(Ls:2.14) VX.A)p/t VX.A{p/t}
(Ls:2.15) AX.A){p/t AX.A{p/1}
(Ls:2.16) X{p/t X

(Ls:2.17) (rec X.A){p/t rec X.A{p/t}
@s2.18)  (X; L#A)(p/t X LA p/1)
(Ls:2.19) (Ao @ Ap)ip/t Aolp/tt® Ar{p/t}
(Ls:2.20) none{p/t none

(1s:3.1) {p/t
(1s:3.2) (T, x: A)ip/t
1s:3.3) (It : loc){p/n
(1s:3.4) (T, X : type){p/t

ip/th,x : Alp/t}
F{p/tl},to : loc (to # 11)
p/1}, X : type

(Ls:4.1) Ap/t} =
s:4.2) (A, x:A)p/ty= Alp/t},x: Alp/t}
(Ls:4.3) A Alp/tt = Alp/th, Alp/t}
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3. Type Variable Substitution, (Ts:*)

Finally, we define type substitution (up to renaming of bounded #ype variables) as:

e{A/X} = e
(ts:1.1) plA/X} =
(1s:1.2) xA/X} =
(1s:1.3) (fun(x : Ag).e){A1/X} =
(1s:1.4) {f=eHA/X} =
(1s:1.5) (e.D){A/X} =
(1s:1.6) (eg ef{A/X} =
(1s:1.7) (new e){A/X} =
(1s:1.8) (delete e){A/X} =
(1s:1.9) (le{A/X} =
(1s:1.10) (eg :=e){A/X} =
(ts:1.11) (p,e)y{A/X} =
(1s:1.12) e[pl{A/X} =
(1s:1.13) (ye)lA/X} =
(1s:1.14) (open (t,x) = egine; end){A/X} =
(ts:1.15) (Ao, e){A1/X} =
(1s:1.16) e[AplfA1/X} =
(18:1.17) (XoyelA/ X1} =
(1s:1.18)  (open (Xp, x) = eg ine; end){A/X;} =
(1s:1.19) #te){A/X} =
(1s:1.20) (case e of 1;#x; — ¢; end){A/X} =
(1s:1.21) (letx=epine; end){A/X} =
Ao{A1/X} = Ay
(1s:2.1) plA/X} =
(1s:2.2) HA/X} =
(1s:2.3) X{A/X} =
(18:2.4) XolA/ X} =
(18:2.5) (o)A /Xy =
(15:2.6) (Ag = AfAr/X} =
(18:2.7) (Ag - AD{A2/X) =
(1s:2.8) [f:Al{Ao/X} =
(1s:2.9) Vt.A)AL/X} =
(18:2.10) ArAp)A1 /X =
(1s:2.11) (ref p){A/X} =
(1s:2.13) (rw p Ag){A1/X} =
(18:2.14) (Ap * AD{AL/X) =
(TSZ2.15) (VX().Ao){Al/Xl} =
(1s:2.16) (AXo.A0){A1/X,} =
(TSZZ.]7) (rec X().AU){A| /X] } =
(18:2.18) (2 Li#ANA/XY =
(18:2.19) (Ag®ANA/X) =
(18:2.20) none{A/X} =
LofA/X} =
(1s:3.1) {A/X} =
(1s:3.2) T, x: Ap)fA1/X} =
(1s:3.3) T, t:loc){A/X} =
(1s:3.4) ([T, Xo : type){A/ X} =
(1s:4.1) {A/X
(1s:4.2) (A, x:Ag)fA1/X
(1s:4.3) (A, Ap){A1/X

P

X

fun(x : Ap{A1/X}).e{A1/X}
{f = efA/X}}

efA/X}).£

eo{A/X} el{A/ X}

new e{A/X}

delete e{A/X}

le{A/X}

eolA/X} = el{A/X}
(p,elA/X})

e{A/X}[p]

() efA/ X}

open (t,x) = epfA/X} in e;{A/X} end
(Ao{A1/X}, efAr /X))

e{A1/X}[Ao{A1/X}]

(Xo) efA/ X1} (Xo # X1)
open (Xo, x) = eo{A/X1}ine{A/X1}end  (Xo # X1)
1#e{A/X}

case e{A/X} of 1,#x; — e;{A/X} end
let xg = ep{A/X}in e {A/X} end

o

p
A

Xo

1Ap{A1/X}

AofA2/X} — A{A2/X}
ApfA2/X} it Aj{A2/ X}
[£: A{Ao/X}]
Vt.Ao{A1/X}
dr.AofA1/X}

ref p

rw p Ap{A1/X}
AofA2/X} + A1{A2/X}
¥Xo.Ao{A1/X1}
IXo0.Ao{A1/ X1}

rec Xo.Ao{A1/X1}

2i Li#A{A/X}
AolA/X} ® Al{A/ X}
none

(Xo # X1)

(Xo # X1)
(Xo # X1)
(Xo # X1)

T{A1/X}, x : AofA1/X}
T{A/X},t : loc

{A/X1}, Xo : type (Xo # X1)

A{A1/X}, x 2 AolA1/X)

}
}
b= AlA1/X}, AolAL/X}
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B.6 Free Variables Lemma

Lemma 5 (Free Variables Lemma). If I';Ag, x : Ag e : Aj 4 Ay

and x € fv(e) then x ¢ A;.
fv(e) £ “set of all free variables inside the expression ¢”

PVOOf. We proceed by induction on the derivation of I'; Ag, x: Ag F e : A} 4 Ay.

Case (T:REF), (T:PURE), (T:UNIT), (T:PURE-READ) - A is empty.
Case (T:LINearR-READ) - We have:

ix:Arx:AA- (D)

x € fv(x) )
by hypothesis.

Therefore, we immediately conclude x ¢ -.

Case (T:Pure-ELIM) - We have:

A0, x:!1AgFe: Ap 4 A (D)

x € fv(e) ?2)
by hypothesis.

r,XZA(];A(])-elAl-lAl (3)

by inversion on (1:Pure-ELim).

x ¢ A

“)

because x is in the linear environment (and cannot appear duplicated in A’s).

Therefore, we conclude.

(Note: the case when x is not the one use in the (T:Pure-ELmm) rule is a direct

application of the induction hypothesis.)
Case (T:NEw) - We have:

A0, x:Ag Fnew v : de.(ref - rwit A) 4 Ay (D)
x € fv(new v) 2)

by hypothesis.
T A0, x:AgFv:A4A 3)

by inversion on (T:New) with (1).

x € fv(v) ()]
[ fv(new v) = fv(v) ]

by definition of fv and (2).

X ¢ A (5)

by induction hypothesis on (3) and (4).

Therefore, we conclude.

Case (T:DELETE) - We have:

I Ag,x: Ag -delete v: Ar.A 4 Ay (1)
x € fv(delete v) 2)

by hypothesis.
A0, x:Ag v dr(refr:rwtA) 4 A 3)

by inversion on (1:DELETE) with (1).
x € fv(v) 4)
[ fv(delete v) = fv(v) ]
by definition of £v and (2).
x ¢ A (5)
by induction hypothesis on (3) and (4).

Therefore, we conclude.

Case (1:AssiGN) - We have:

A, x Ak vy :i=vy AL 4 A, tw p Ag (1)
x € fv(vy :=vy) 2)

by hypothesis.
F;Ao,XZAi—VllAg-lA[ (3)
I5A Fvycref p4 Ay, rw p Ay 4)

by inversion on (T:AssiGN) with (1).
[ £v(vo := v1) = £v(vo) U £v(vy) ]

Therefore, we have the following possibilities:
1. x € fv(vo) A x & fv(vy)

(x:A) el (1.1
by x ¢ fv(vy).

X ¢ Ay, tW p Ay (1.2)
by induction hypothesis on (4) with (1.1).

x ¢ Ay, rw p Ay (1.3)

since the capability trivially obeys the restriction (since x is not a type).
Thus, we conclude.
2. x e fv(v)) A x ¢ fv(vg)

x¢ A 2.1
by induction hypothesis on (3) and case assumption.

X¢ N, rwp Ay 2.2)
by (2.1) and (4).

x ¢ Ay, rw p Ap 2.3)

since the capability trivially obeys the restriction on (2.2).
Thus, we conclude.
3. x € fv(vy) A x € fv(vy)
x ¢ A @3.1)
by induction hypothesis on (3) and case assumption.
We reach a contradiction since vy is well-typed by (4) but x € fv(v)
contradicts (3.1). Thus, such case is impossible to occur in a well-typed
expression.
Thus, we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:

T;A0,x: AgFIvi A4 AL Twp ] (€))
x € fv(lv) 2)

by hypothesis.
A, x:Agrvirefp+4 A, tWwp A 3)

by inversion on (T:DEREFERENCE-LINEAR).
[ fv(lv) = fv(v) ]

x € fv(v) 4)
by definition of fv and (2).

x¢AL,rwpA 5)
by induction hypothesis on (3) and (4).

x¢A,rwp (] (6)

by (5) and since x cannot be in rw p [].
Thus, we conclude.

Case (T:DEREFERENCE-PURE) - We have:

F;AQ,XZA() F!VI!A[‘{A],I‘Wp!A] (1)
x € fv(lv) 2)

by hypothesis.
T;A0,x:Agrv:ref p+4 A, rwp lA; 3)

by inversion on (T:DEREFERENCE-PURE).
[ fv(le) = fv(v) ]

x € fv(v) 4
by definition of fv and (2).
x ¢ AL,rwplA; 5)

by induction hypothesis on (3) and (4).
Thus, we conclude.

Case (T:RECORD) - We have:

A x: Aok (F=v): [£: A]4- 6}
x e fv({f =) 2
by hypothesis.

Therefore, we immediately conclude x ¢ -.

Case (1:SELECTION) - We have:

F;Ao,x : A() F V.f,‘ ZA,' 4 A]
x € fv(v.f)

T;Ap,x:Ag kv [£: A4 A

x € fv(v)
x & A

Thus, we conclude.

Case (T:AppPLICATION) - We have:

A x:Arvgvy i AL 4 A
x € fv(vy vy)

A0 Ryt Ag 4 A
;A Fvg i Ag o Ay 4 Ay

(D

(@)

by hypothesis.

3

by inversion on (T:SELECTION).

[ fv(v.f) = fv(v) ]

(C)

by definition of fv and (2).

(5)

by induction hypothesis on (3) and (4).

(€3}

2)

[ £v(vo vi) = £v(vo) U £v(v) |
by hypothesis.

3)

@)

by inversion on (1:AppLicATION) With (1).

Therefore, we have the following possibilities:

1. x e fv(vo) A x ¢ fv(vy)
F;AQI—V] iAo-lA/l
A=Al x: A
AL x:Arvy i Ag = Ap 44,

x¢& A

(1.1)

(1.2)

by x ¢ fv(vy).

(1.3)

by rewriting (4) with (1.2).
(1.4)
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Thus, we conclude.
. x € fv(vg) A x € fv(vy)
xX¢A 2.1)
by induction hypothesis on (3) and case assumption.

We reach a contradiction since vy is well-typed by (4) but x € fv(v)
contradicts (2.1). Thus, such case is impossible to occur in a well-typed
expression. Therefore, we conclude.

3. xe fv(vy) A x ¢ fv(vy)
x & A

3.1

by induction hypothesis on (3) and case assumption.

x¢ A,

Thus, we conclude.

Case (T:FuncTioN) - We have:

(3.2)
by (3.1) and (4).

F;A,XZAol—fUn(X(] ZAz).eZAz — A H- (1)
x € fv(fun(xy : Ay).e) 2)

by hypothesis.
x¢- 3)

Thus, we conclude.

Case (T:ForaLL-Loc) - We have:

since it is the empty environment.

A x:AgF(tYe:VL.AH - [€))]
x € fv((t)e) 2)

by hypothesis.
x¢- 3)

Thus, we conclude.

Case (1:Loc-Arp) - We have:

since it is the empty environment.

TA x Ao Fvlpl s Alp/t} 4 Ay (1)
x € fv(v[p]) (€3]

by hypothesis.
p:locel 3)
A x:Agkv: YEAAA 4)

by inversion on (1:Loc-App) on (1).
[ £fv(vpD) = £v(v) |

x € fv(v) (©)
by definition of fv and (2).
x ¢ A (6)

Thus, we conclude.

Case (1:Loc-OpPEN) - We have:

by induction hypothesis on (5) and (4).

I3 Ao, x : A opendt,xp) =vpine;end: A; 4 Ay (1)

x € fv(open (t, xp) = vo in e; end)

2

[ fv(open(t, xo) = vo in e; end) = £v(vy) U fv(ey) |

by hypothesis.
T Ag,x: Ay dLAg 4 Ay 3)
r,l:lOC;Al,xUZAOFe‘]2A1-|A2 (4)

by inversion on (1:Loc-OpeN) with (1).

Therefore, we have the following possibilities:

1. x € fv(e;) A x & £v(v)

(x:A)e A (L.1)
by x ¢ fv(vp).
x¢ A (1.2)

Thus, we conclude.
2. x € fv(vy) A x € fv(ey)
x ¢ A

by induction hypothesis on (4) with (1.1).

@.1)

by induction hypothesis on (3) and case assumption.

We reach a contradiction since vy is well-typed by (4) but x € fv(e;)
contradicts (2.1). Thus, such case is impossible to occur in a well-typed

expression.
3. x € fv(vy) A x ¢ fv(ey)
x ¢ A

3.1

by induction hypothesis on (3) and case assumption.

x &N

Thus, we conclude.

Case (1:Loc-Pack) - We have:

3.2)
by (3.1) and (4).

A x:Ag F(p,v): JtA4 A
x € fv((p,v))

A x:AgFv: Alp/ty4 A

x € fv(v)
x & A
Thus, we conclude.
Case (T:ForaLL-TYPE) - We have:

A x:AgF{(X)e:VYXAA-
x € fv((X)e)

Xé¢-
Thus, we conclude.

Case (1:Type-Arp) - We have:

TiA x Ao FV[A]: Ax{A1/X) 4 Ay
x € fv(v[A])

T'F A type

A x:Ag kv VXA 4 A
x € fv(v)

x ¢ A

Thus, we conclude.

Case (1:Type-Pack) - We have:

F;A,XZA() F (A[,V) : 3X.A2 -IAl
x € fV((A1.v)

T;A x:Ag b v Ax{A/X)H A

x € fv(v)
xé N

Thus, we conclude.

(€Y}

2

by hypothesis.

3

by inversion on (1:Loc-Pack) on (1).

[ £v({p,v)) = £v(v) ]

()

by definition of fv and (2).

5

by induction hypothesis on (4) and (3).

(6]
(@)
by hypothesis.
3

since it is the empty environment.

)

(@)

by hypothesis.

(3)

)

by inversion on (1:TYPE-APp) on (1).
[ £v(v[A(]) = £v(v) ]

(5)

by definition of fv and (2).

(6)

by induction hypothesis on (5) and (4).

()]

(@)

by hypothesis.

(3)

by inversion on (1:TyPE-Pack) on (1).

[ £v({AL,v) = fv(v) ]

()

by definition of £v and (2).

(5)

by induction hypothesis on (4) and (3).

Case (1:Type-OPEN) - Analogous to (T:Loc-OPEN).

Case (1:Car-ELIM) - We have:

F;AQ,XZA] 21A2}-62An 4 A
x € fv(e)

I Ag,x: A, Ay ket Ag 4 A
x & A
Thus, we conclude.

Case (1:CAP-STACK) - We have:

T;Ap,x:Agkre: Ay n Ay 4 A
x € fv(e)

iAo Fe: Ay 4AL Ay
x¢ AL A

x ¢ A

Thus, we conclude.

Case (1:Capr-UNSTACK) - We have:

r;AQ,XZAo )—€:A1 -1A1,A2
x € fv(e)

A, x:Ag ket Ay i Ay H A

x¢A

()]

(@)

by hypothesis.

(3)

by inversion on (1:Cap-ELim) on (1).
()

by induction hypothesis on (2) and (3).

(6]
(@)
by hypothesis.
3)

by inversion on (1:Cap-Stack) on (1).
()

by induction hypothesis on (3) and (2).
(5)

by (4).

D

(@)

by hypothesis.

(3)

by inversion on (1:Cap-Unstack) with (1).
(C))

by induction hypothesis with (3) and (2).
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Thus, we conclude.

Case (T:Framg) - We have:

r;(Ao,xle),Azl—eiA-lAl,Az (1)
x € fv(e) 2)
by hypothesis.

A, x:AgFe: A4 A 3)
by inversion on (T:Framg) with (1), note by (2) x must be in environment.

x ¢ A ()]
by induction hypothesis.

x ¢ (A1, Ar) (5

since by (1) x cannot be in A,.
Thus, we conclude.

Case (T:SuBsumMpTION) - We have:

A, x:ArFe: A A (1)
x € fv(e) 2)
by hypothesis.

Ag,x 1 A <t Aj,x: A 3)
LA Fe:Ag A} 4)
Ap < Ay (5)
A <t A (6)
by inversion on (1:SusumpTiON) with (1).

x g A 7
by induction hypothesis on (2) and (4).

x ¢ A (3)

by (6) and (7) noting the members of A; and A} are the same.
Thus, we conclude.

Case (1:Tac) - We have:

A0, x: Ag F 1yt Ap 4 A (1)
x € fv(1#v) (@)

by hypothesis.
F;Ao,XZA(])-VZAl-lAl 3)

by inversion on (1:Tac) with (1).
[ fv(1#v) = £fv(v) ]

x € fv(e) 4)
by definition of f£v and (2).
x ¢ A (5)

by induction hypothesis on (3) and (4).
Thus, we conclude.

Case (1:Casg) - We have:

TiAp,x: A’ rcasevof 1i#x; - ejend: A4 A (1)
x € fv(case v of 1 ;#x; — ¢; end) 2)
[ fv(case v of 1 #x; — e; end) = fv(v) U fv(e;) ], for some i < j

by hypothesis.

TiAg,x: A kv Y L#A AN 3)
r;A/,Xl’:A,')-el’:A-IA] (4)
i<j (5)

by inversion on (1:Casg) with (1).

Therefore, we have the following possibilities:
1. xe fv(v) A x ¢ fv(e;)

xgn (1.1
by induction hypothesis on (3) and case assumption.
X ¢ A (1.2)

by (1.1) and (4).
Thus, we conclude.
2. x ¢ fv(v) A x € fv(e;)

(x:A)eN 2.1)
by x ¢ fv(e).
x ¢ A 2.2)

by induction hypothesis on (4) and (2.1).
Thus, we conclude.
3. x € fv(v) A x € fv(e;)
x ¢ A

3.1
by induction hypothesis on (3) and sub-case hypothesis.

‘We reach a contradiction since v is well-typed by (4) but x € fv(e;) contra-
dicts (3.1). Thus, such case is impossible to occur in a well-typed expression.
Case (T: ALTERNATIVE-LEFT) - We have:

T; A0, x:Ag, Al @Ay Fe: Az 4 A (D)
x € fv(e) 2)

by hypothesis.
r;AQ,XZA(],All—eZA:; -IAl (3)
F;AQ,XIA(],AQ !—e:Aj, -IAl (4)

by inversion on (T: ALTERNATIVE-LEFT) with (1).
x¢ A (5)
by induction hypothesis with (2) and (3).

Thus, we conclude.

Case (T:LET) - We have:

T;A0,x:Arletxyg =epine;end: A 4 A (1)
x € fv(let xg = eg in e; end) 2)
[ fv(let xo = eg in e; end) = fv(ey) U fv(e;) ]

by hypothesis.

A0, x:AFep:AgHA 3)
;AL xg:Ag ke i AL A A 4)

by inversion on (T:LET) with (1).

Therefore, we have the following possibilities:
1. x € fv(e;) A x ¢ fv(ey)

(x:A)e A (L.1)
by x ¢ fv(ep).
x¢ M (1.2)

by induction hypothesis on (4) with (1.1).

Thus, we conclude.
2. x € fv(ep) A x € fv(ey)
x ¢ A 2.1)
by induction hypothesis on (3) and case assumption.

We reach a contradiction since eg is well-typed by (4) but x € fv(e;)
contradicts (2.1). Thus, such case is impossible to occur in a well-typed

expression.
3. x € fv(ep) A x ¢ fv(ey)
x ¢ A 3.1
by induction hypothesis on (3) and case assumption.
xX¢ N 3.2)

by (3.1) and (4).
Thus, we conclude.
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B.7 Well-Form Lemmas
Lemma 6 (Well-Formed Type Substitution). We have:

e For location variables:

1. If
I,t:loc wf p:locel
then ['{p/1} wf.
2. If
I,t:loc+ A wf p:locel
then ['{p/1} + Alp/t} wi.
3. If
I't:locr A type p:locel’
then I'{p/t} + A{p/t} type.
e For type variables:
1. If
I, X type wf I'+ A type
then I'{A/X} wf.
2. If
I, X type - A wf I'+ A type
then ['{A/X} + A{A/X} wf.
3. If
I, X type - A type '+ A type

then T{A’/X} + A{A’/X} type.

Proof. Straightforward by induction on the structure of T, A and types.

Lemma 7 (Well-Formed Subtyping). We have two cases:

1. (Type) IfI'+ A typeand A <: A" then '+ A’ type.
2. (Delta) If '+ A wfand A <: A’ then ' + A" wf.

PrOOf. Straightforward by induction on the definition of <: for types and A, respec-

tively.

[m]

B.8 Substitution Lemma

Lemma 8 (Substitution Lemma). We have the following substitu-
tion properties for both expression typing and type formation:

1. (Linear) If

A FV i Ag 4 A ALx:Agre: A HA,

then
A Fe{v/x} A4 A
2. (Pure) If
orvilAgH- Oox:ApsAgre: A 4 A
then

;Ao e{v/x} i Ay 4 A

(note that due to the required pure types, the A environments to
check v must be empty)

3. (Location Variable) If

It:loc;AgFe:AH4A; p:locel

then
ip/t}; Aolp/ty + elp/1} - Alp/t} 4 Arlp/1}
Note that, since t may appear free in all typing environments,

the expression and in its type, we must substitute into all those
elements.

4. (Type Variable) If

X type;Agte:Ap A ' A type
then
T{A /XY AofA /X + efAr /X 2 Ap{A1/ X} 4 AfA/X)

(replaces X in all places it may occur free)

Proof. We split the proof on each of the lemma’s sub-parts:

1. (Linear)

P rOOf. ‘We proceed by induction on the typing derivation of

r;Al,X:Ao Fe 2A1 4 Az.

Case (1:REF), (1:PURE), (T:UNIT), (T:PURE-READ) - Not applicable since these
rules require an empty A environment.

Case (T:LINEAR-READ) - We have:

TAFV:iAA- (1
ix:Arx:A4- 2)
by hypothesis.

(note v’s ending environment must be - to apply (T:LINEAR-READ)).

;AR x{v/x} A4 3)

by (vs:2) with (1) and x.
Thus, we conclude.

Case (T:Pure-ELim) - We have:

I‘;A(]!—VZA()-lAl (1)
r;A],X]Z!Az,X()ZA[)I—EZAl-lAz (2)

by hypothesis.
Tx) 1A A, xp tAg ket A A, 3)

by inversion on (T:PURE-ELim) with (2).

F,xl ZAz;Al !—e[V/Xo] :Al -1A2 (4)
by induction hypothesis on (3) with (1).
T AL x) Ay Fe{v/xo) i Ay 4 Ay 5)

by (t:Pure-ELim) with (4).
Thus, we conclude.

Case (1:NEw) - We have:

;A0 kv Ag A )
T;A1,x:Ag Fnew v : Jr.(refr:rwrAp) 4 A, ?2)
by hypothesis.

A Lx: Aok vyt A A A 3)
by inversion on (:NEw) with (2).

T; Ao Fvo{v/x): A4 Ay @)
by induction hypothesis with (1) and (3).

;A0 F new vo{v/x} : Ae.(refr :rwit Ay) 4 Ay 5)
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by (T:NEw) with (4).
T;Ag F (new vo){v/x} : Ar.(refr:rwi Ay)) 4 Ay 6)
by (vs:8) with (5).

Thus, we conclude.

Case (T:DELETE) - We have:

F;A()}—VZA(]-lA] (1)
;A 1, x:Ag +delete vy : At.A; 4 A, 2)
by hypothesis.

T;A,x:AgFvo: de(refr:rwrA)) 4 A, 3)
by inversion on (1:DELETE) with (2).

;A0 Fvolv/x): Ar(refr:irwi Ay) 4 Ay 4)
by induction hypothesis with (1) and (3).

T; Ag + delete vo{v/x} : At.A| 4 Ay 5)
by (T:DELETE) with (4).

T; Ag + (delete vo){v/x} : AL 4 Ay (6)

by (vs:9) with (5).
Thus, we conclude.

Case (T:AssiGN) - We have:

T;A0Fv:AgHA; (1)
ALx:AgFvy i=vy 1A 4 A, W p Ay 2)

by hypothesis.
r;Al,XZA(]FvliAz-lA/ (3)
;A Fvyirefp+4Ay,rwpA @

by inversion on (T:AssiGN) with (2).
‘We have that either:
(a) x e fv(v))

x¢N (1.1)
by (Free Variables Lemma) on (3).

T3 A Fvofv/x}cref p 4 As,tw p Ay (1.2)
since x cannot occur in ey by (1.1).

LA Fvi{v/x} i Ay 4 A (1.3)
by induction hypothesis on (1) and (3).

;A1 Fvolv/x) i=vi{v/x} i Ay A Ap,tw p Ay (1.4)
by (1:AssigN) on (1.2) and (1.3).

F;A] F(vo = V]){V/X}IA] -IAz,l'WpAz (15)

by (vs:11) on (1.4).
Thus, we conclude.

(b) x ¢ fv(vy)
(x:Ag) € 2.1
by (9) and x ¢ fv(vy).
;A" Fvo{v/x) i ref p 4 Ay, tw p A 2.2)

by induction hypothesis (since it is applied to x wherever is in the
environment) and where A” is the same as A’ without x.
A Fvifv/x) Ay 4 A7 (2.3)
since x cannot occur in e; by x ¢ fv(e;).
;A1 Fvolv/x) i=vi{v/x} t Ap 4 Ay, rw p Ay 2.4)
by (1:AssIGN) using (2.4) and (2.5).
;A1 F (vo = vi){v/x} t A 4 Ay, rw p Ay 2.5)
by (vs:11) on (2.6).

Thus, we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:

T;A0Fv:AgHA; (€))
r;Al,XZAo )—!Vo:AlﬁAz,l‘Wp[] (2)
by hypothesis.

T5ALx:AgFvo:refp4 Ay, rwp A 3)
by inversion on (T:DEREFERENCE-LINEAR) on (2).

T;A1 Fvolv/x) i ref p4 Ay, rw p Ay 4)
by induction hypothesis with (1) and (3).

A Flvofv/x) Ay 4 Ag,ew p (] 5)
by (T:DEREFERENCE-LINEAR) On (4).

LA F (vo){v/x} s Ay 4 Ag,rw p [] (6)

by (vs:10) on (5).
Thus, we conclude.

o by (T:RECORD) On (4).
LA F{f=vDlv/x}: [£: AT (6)
by (vs:5) on (5).

Thus, we conclude.

Case (1:SELECTION) - We have:

I‘;Aoi—VZAo-lAl (1)
F;A],XZA()FVo.fZAl-iAz (2)

by hypothesis.
AL x Ao kv i [£:A1]4 A 3)

by inversion on (T:SELECTION) with (2).

A Fvofv/x} i [£: A4 A 4)
by induction hypothesis on (3) with (1).

LA Fvo{v/x)f:[£:A1]4 A 5)
by (T:SELECTION) on (4).

LA F (o D){v/x} i [£: A1 4 A (6)
by (vs:6) on (5).

Thus, we conclude.

Case (T:ApPLICATION) - We have:

F;AQP—VZA()-lAl (1)
F;A|,X02A()FV()V]2A]4A2 (2)

by hypothesis.
T5A0,%0 : Ag F vy i A 4 A 3)
r;A/)-VQZAz—OA]-lAz (4)

by inversion on (T:AppLICATION) With (2).
‘We have that either:
(a) x e fv(yy)

xgN (1.1)
by (Free Variables Lemma) on (3).

T5A Fvofv/x) Ay o A4 Ay (1.2)
since x cannot occur in eg by (1.1).

A0 Fvifv/x}: Ay 4 A (1.3)
by induction hypothesis with (1) and (3).

T; Ag Fvo{v/x} vi{v/x}: Ay 4 Ay (1.4)
by (T:AppLicaTiON) with (1.2) and (1.3).

A0 F (o vi{v/x} t Ay 4 Ay (1.5)

by (vs:7) on (1.4).
Thus, we conclude.

(b) x ¢ fv(v)
(x:Ag) e 2.1)
by x ¢ fv(vy).
;A" Fvolv/x} i Ay = A4 Ay 2.2)
by induction hypothesis where A" is A’ without x.
;A0 Fvifv/x}: Ay 4 A” (2.3)
since x cannot occur in v; by x ¢ fv(v;) and (2.1).
T; Ag Fvolv/x} vifv/xt: Ay 4 Ay 2.4)
by (T:AppLICATION) on (2.2) and (2.3).
;A0 F (o vi{v/x} 1 Ay 4 Ay (2.5)

by (vs:7) on (2.4).
Thus, we conclude.

Case (T:Funcrion) - We have:

F;AQFV:A04A1 (1)
T5A1,x0 0 Ag Ffun(x) : Aj).e: A o Ax 4 - 2)
by hypothesis.

r;Al,XliAl,XoiAol—eiAz-l' (3)
X1 # X0 4)
by def. of substitution up to rename of bounded variables.

;AL x A Fefv/x) i Ap 4 5)
by induction hypothesis with (1) and (3).

A Ffun(xg t Ap.efv/x} A < Ay 4 - ©6)
by (1:Funcrion) with (5).

;A1 F (fun(xy t Ay).e){v/xt: Ap o Ay - 7
by (vs:4) on (6) and (4).

Thus, we conclude.

Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR). Case (1:ForaLL-Loc) - We have:

;A0 Fv:iAgHA (1)
Case (T:RECORD) - We have: T:ALx:AgF(De: VtA;l A - 2
;A0 Fv:Ag 4 A (1) by hypothesis.
TALx:Agr{f=Vv}:[£:A]4- ?2) I,t:loc;A,x:Agre: Ay H- 3)
by hypothesis. by inversion on (T:ForaLL-Loc) with (2).
F§A1‘X5A0FV§2AH' 3) I,t:loc; A Fe{v/x}:Ap4- ‘ ' o 4)
by inversion with (T:REcorD) on (2). by induction hypothesis with (1) and (3).
LA FVv/x) - Ai 4 “ LArk elv/x): Ve - by (T:ForaLL-Loc) on (5‘5))
by induction hypothesis with (1) and (3). FoA () @) v/a)  VEA; - ©
LA F{E=v{v/x}} [£:A]4- 5)
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by (vs:14) on (5).
Thus, we conclude.

Case (1:Loc-Arp) - We have:

T;A0 kv :Ag A )
[5A1,x 0 Ao Fwolpl - Arp/th 4 Ay (2)
by hypothesis.

p:locel 3)
;AL x:AgFvy i VLA 4 Ay “4)
by inversion on (1:Loc-App) with (2).

T Ap Fvofv/x} i VA 4 Ay 5)
by induction hypothesis on (4) and (1).

T34+ volv/xlp] - Aidp/t) 4 Ay ©®)
by (t:Loc-App) on (5) and (3).

;A1 (olpD{v/x) - Ap/th 4 Ay (@)

by (vs:13) on (6).
Thus, we conclude.

Case (1:Loc-Pack) - We have:

F;A()}—VZA(]-lA] (1)
T5AL, x:Ag F(p,vo) : A 4 A 2)
by hypothesis.

T;A1,x: Ag Fvo s Ailp/th 4 A, (3
by inversion on (1:Loc-Pack) with (2).

LA Fwolv/xh s Ai{p/th 4 A2 ()
by induction hypothesis on (1) and (3).

T5A1 F{p,voiv/x}y : LA 4 A, 5)
by (1:Loc-Pack) on (4).

LA F (povoniv/xt : 3LA A Ay (6)

by (vs:12) on (5).
Thus, we conclude.

Case (1:Loc-OpPEN) - We have:

T;A0Fv:AgHA; (1)
T;A1,x0 : Ao Fopendt,x;) =voine; end: A 4 Ay 2)

by hypothesis.
T;A1,x0:Ag kv : Jt.Ar 4 A 3)
It:loc; A x) Ay ket A4 A 4)

by inversion on (1:Loc-OpeN) with (2).
‘We have that either:
(a) xo € £v(vg)

xo ¢ A (1.1)
by (Free Variables Lemma) on (3).

Xo # X1 (1.2)
by def. of substitution up to rename of bounded variables.
T,t:loc; A x) Ay ke{v/xo) : Al 4 A, (1.3)
since xo cannot occur in e and by (1.1) nor in " by (3).

T35 A1 Fvofv/xo) s 3tAz 4 A (1.4)
by induction hypothesis on (1) and (3).

;A Fopendt,x;) = vofv/xo}inei{v/xolend : A; 4 Ay (1.5)
by (1:Loc-OpeN) on (1.3) and (1.4).

;A F (opendt, x1) = vp ine; end){v/xo} : A 4 Az (1.6)

by (vs:15) on (1.6) and (1.2).
Thus, we conclude.

() xo ¢ £v(vo)

(x0 : Ag) € A 2.1)
by xo ¢ £v(vo).

Xo # X1 2.2)
by def. of substitution up to rename of bounded variables.

T,t:loc; A, x; i Ay Fep{v/xp): Ay 4 Ay 2.3)
by induction hypothesis with A” equal to A’ without xo.

;A Fvolv/xe) - At.AZ 4 A7 2.4)
since xo cannot occur in vy by xo ¢ £v(vp).

;A1 Fopendt,x;) =vo{v/xo}line{v/xolend : A; 4 Ay 2.5)
by (1:Loc-OpEN) on (2.3) and (2.4).

T;Ap + (open(t, x;) = v ine; end){v/xp} : Ay 4 Ay 2.6)

by (vs:15) on (2.2) and (2.5).
Thus, we conclude.

Case (T:ForaLL-TYPE) - Analogous to (T:ForaLL-Loc) with (vs:18).
Case (T:Type-Arp) - Analogous to (T:Loc-App) with (vs:17).

Case (1:Type-Pack) - Analogous to (T:Loc-Pack) with (vs:16).
Case (1:Type-OPEN) - Analogous to (1:Loc-OpeN) with (vs:19).
Case (1:Cap-ELIM) - We have:

A0 Fv:iAg4AL Xt Ay it As (1)
r;Al,XliAz ZIA3,X()ZA[)I—€ZA1-|A2 (2)

by hypothesis.
;AL X Ay, Az, xp tAg ket A 4 Ay 3)

by inversion on (1:Cap-ELim) with (2).

TiAL X1 1 Az, Az Fefv/xo) 1 Ay 4 Ay “4)

by induction hypothesis with (1) and (3).

F;A],xl Ay ZCA3}—€{V/.X0}ZA1 -IAZ (5)

Thus, we conclude.

Case (1:CaP-StACK) - We have:
;A0 Fv:iAgHA
TALx:Agke: Ay n Ay 4 Ay
F;A],XZA() fe:Al -{Az,Az
;A Fefv/x}: Ay 4 A, A,
F;A1 F e[v/x} . A] Ay A Az
Thus, we conclude.

Case (T:Cap-UnsTACK) - We have:
;A0 Fv:AgHA
ALx:Agre: Ay 4 A2, A;
r;Al,XIA() fe:Al ZZAZ -IAZ
DA Fefv/x} i Ay i Ay 4 A
A Fefv/x) i Ay 4 A, Ay
Thus, we conclude.

Case (T:SusumpTION) - We have:
F;AQFVZA() 4 A
;AL x:Agre: AL 4 A
Ap,x:Ag <t Al x Ay
AL x:Ajre: Ay 4 A
Ag <ZA1
A <ty

Ag <t Aj

by (1:Cap-ELim) with (4).

()}

2

by hypothesis.

3

by inversion on (T:CaP-Stack) with (2).
()

by induction hypothesis with (1) and (3).
(5

by (1:CaP-StACK) on (4).

(6]
(@)
by hypothesis.
3)

by inversion (1:Cap-UNnsTack) with (2).
(C))

by induction hypothesis with (1) and (3).
(5)

by (1:Cap-Unstack) with (4).

()]

(@)

by hypothesis.

3)

(C))

(5)

(6)

by inversion on (T:SUBSUMPTION) on (2).

(@]

by (Subtyping Inversion Lemma) on (3) on x.

T5A0 Fv:AGH A,
LA Fefv/x}: Ay 4 A
Ap <: A

F;A] !—E{V/X}ZA] -IAZ

(3)

by (1:SussumpTioN) on (1) with (7).

)]

by induction hypothesis on (4) and (8).
(10)

by (Subtyping Inversion Lemma) on (3).
(11

by (1:SuBsumpTION) on (9) with (10), (5) and (6).

Thus, we conclude.

Case (T:FrRAME) - We have:
A0 Fv:iAg 44

T5(ALxAg), Az ke Ay 4 Ay, A3

AL x:Agre: A 4 A,
T; A Fefv/x}: Ay 4 Ay
T3AL A3 Fefv/x) i Ay 4 A, A
Thus, we conclude.

Case (1:Tac) - We have:
T;A0Fv:AgHA;
T3A 1, x: Ag - 1#vy 1 1#A| 4 Ay
AL x:Agkvg i A A A,
T A Fvplv/x) A A,
T5A1 F 1#vp{v/x)  1#A 4 Ay
;A F (L#tvg){v/x) 2 1#A| 4 Ay

Thus, we conclude.

Case (1:Casg) - We have:
;A0 Fv:iAgHA

(€Y}

2

by hypothesis.

3

by inversion on (1:FraMmE) with (2).

()

by induction hypothesis with (1) and (3).
)

by (1:FraMmE) on (4) with Az.

(1)
(2)
by hypothesis.
(3)

by inversion (1:Tac) with (2).

()

by induction hypothesis with (1) and (3).
(5)

by (1:Tac) with (4).

(6)

by (vs:20) on (5).

(O]

2013/11/3



;A x:AgFcase vy of 1i#x; — ejend: A4 Ay 2)

by hypothesis.
T;A1L x:Ag kv @ 3 Li#A] A A 3)
DA Xt Al ket A4 A 4)
i<j (5)

by inversion (T:Casg) with (2).
‘We have that either:

(a) x e fv(vy)

xgN (1.1)
by (Free Variables Lemma) on (3).

X # X (1.2)
by def. of substitution up to rename of bounded variables.

DA, Xt ALk ev/x} A4 A (1.3)
since x cannot occur in ¢; and by (1.1) nor in I by (3).

LA x: Ag Fvolv/x): X LH#AL A N (1.4)
by induction hypothesis on (1) and (3).

T; Ar + case vo{v/x} of 1#x; — ej{v/x}end: A4 Ay (1.5)
by (1:Case) on (5), (1.3) and (1.4).

T A; F (case vg of 1j#x; — ejend){v/x} : A4 Ay (1.6)

by (vs:21) on (1.6) and (1.2).
Thus, we conclude.

(b) x ¢ fv(vo)
(x:Ag) e N Q@.1)
by x ¢ fv(e).
X # Xj 2.2)
by def. of substitution up to rename of bounded variables.
LA, xi D Al kefv/x} i AH Ay 2.3)
by induction hypothesis where A" is same as A’ without .
;A1 Fvofv/x} 0 X Li#A] 4 A” 2.4)
since x cannot occur in e by x ¢ fv(e).
T; Ay + case vo{v/x} of 1#x; — ej{v/x}end: A4 Ay (2.5)
by (1:Case) on (5), (2.3) and (2.4).
T:A; F (case vg of 1j#x; — ejend){v/x} : A4 Ay (2.6)

by (vs:21) on (2.1) and (2.5).
Thus, we conclude.

Case (T:ALTERNATIVE-LEFT) - Immediate by applying the induction hypothesis on
the inversion and then re-applying the rule.
Case (T:LET) - Analogous to previous cases.

a
. (Pure)
P r{)of. We proceed by induction on the typing derivation of
Iox:Ag;AgFe: A 4 A
Case (T:ReF) - We have:
T,p:loc;-+vp:!ApH- (1)
T,p:loc,x:Ap;-Fp:refpH- 2)
by hypothesis.
T,p:loc;-+Fp:refp-- 3)
by x ¢ fv(p) on (2).
T,p:loc;-+p{v/x}:refp-- 4)

by (vs:1) on (3) using x and v.
Thus, we conclude.

Case (1:Pure) - We have:

T kv :lAg - (€))
Ixg:Ap;-Fvy DA A 2)

by hypothesis.
Ioxg:Ags- kvt ApH- 3)

by inversion on (T:Pure) with (2).

Tixg:!Agkvi i AL - 4)
by (1:Pure-ELim) on (3) with xp.

5k vifvo/xott Ap 4+ 5)
by (Substitution Lemma - Linear) with (1) and (4).

5 Fvifvo/xo) i 1A 4 - (6)

by (1:PUrE) on (5).
Thus, we conclude.

Case (T:Unit) - We have:

T kv :lAg - (1
Tox:Aogs-Fvic[l4- 2)

by hypothesis.
L-kvifvo/xb o [14- 3

substitution on x cannot change the type since [] is always valid by (T:UniT).
(and substitution cannot change a value to become an expression).
Thus, we conclude.

Case (T:PUrRe-READ) - We have:
- rvilAg - (1)
T,x0:Ap;-Fx; 1A - 2)
by hypothesis (matching environments and type with (T:PURE-READ)).
‘We have that either:

(@) xo =x
T kvilAd- (1.1)
Fox:A;-Fx:1A4- (1.2)

by restated hypothesis with x = xp = x;.
and with A = Ap = A;.
Tk x{y/x} 1A (1.3)
by (vs:2) on (1.1) using x and v.
Thus, we conclude.

(b) xo # x1
l";-i—xl ZIA] 4 (21)
by xo ¢ fv(x;) on (2).
Tk xp{v/xo} 1A 4 - 2.2)

by (vs:3) on (2.1) using xo and v.
Thus, we conclude.

Case (T:LINearR-READ) - We have:

TiorvilAgH- (1)
T,x0:A0;x1 : A Fxp t AL H- 2)

by hypothesis.
X0 F X1 3)

since I' and A identifiers cannot collide.
F;X] ZA] }-xl{v/xo}:Al - (4)
by (vs:3) on (2) using xo and v.

Thus, we conclude.

Case (T:Pure-ELIM) - We have:

orvilAgH- (D)
T,xo 0 AgsAg,x1 : 1Ay ket Ay 4 A ?2)
by hypothesis.

F,X(]iA(),X]ZAz;A()I—eZA]-IA] (3)
by inversion on (T:Pure-ELim) with (2)

Tox; t Axs Ao +Fefv/xo) i A 4 A 4)
by induction hypothesis on (1) with (3).

r;AQ,X] Z!Az I—E{V/xo} ZA] -IA] (5)

by (1:Pure-ELim) on (4).
Thus, we conclude.

Case (T:NEw) - We have:
TorvilAg - (1)
[x:Ap; Ao -new vy : Jr.(refr::rwitAy) 4 A 2)
by hypothesis.
F,X:AQ;AQFVQZAl-lA] 3)
by inversion on (T:New) with (2).

;A0 Fvolv/x} t Ap 4 A 4)
by induction hypothesis with (3) and (1).

T;Ag Fnew vo{v/x} : Ar.(refr::rwi A)) 4 Ay 5)
by (1:New) with (4).

;A0 F (new vo){v/x} : At.(refr::rwir A)) 4 A (6)

by (vs:8) on (5).
Thus, we conclude.

Case (T:DELETE) - We have:
I-rvilAgH- (D)
T, x: Ao Ao + delete v : At.A| 4 A 2)
by hypothesis.
T,x:Ap;AgFvo: dt(refrirwrAy) 4 A 3)
by inversion on (T:DELETE) with (2).

T5A0 Fvolv/x}: At(refrxrwrAp) 4 A 4)
by induction hypothesis with (3) and (1).

T; Ag + delete vo{v/x} : At. A 4 Ay 5)
by (T:DELETE) with (4).

T';Ag F (delete vo){v/x} - r.A; 4 A (6)
by (vs:9) on (5).

Thus, we conclude.

Case (T:ASSIGN) - We have:

TorvilAgH- (€))
T,x:Aos Ao Fvoi=vi 1 A1 4 A, tw p Ay (2)
by hypothesis.

T,x:Ap Aok vyt Ay 4 A 3)
T,x:Ap;Ap ko ref p4 Ay, rwpA 4
by inversion on (T:AssiGN) with (2).

1"; A() F V]{V/x] ZAZ 4 A] (5)

by induction hypothesis on (3) with (1).
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A Fvofv/x) i ref p 4 Ay, rw p Ay (6) by (T:Function) with (6).

by induction hypothesis on (4) with (1). ;A + (fun(xg @ Ag).e){v/xo) : Ag o Ay - (@]
;A0 Fvolv/x} i=vi{v/x} : A 4 Ay, xw p Ay (7) by (vs:4) on (6) and (4).
by (1:AssioN) with (5) and (6). Thus, we conclude.
5 A0 F (vo i= vi){v/x} A 4 Ag,rw p Ay )
by (vs:11) on (7). Case (1:ForaLr-Loc) - We have:
Thus, we conclude. [ Fv:ilA 4- (1)
Tox: A A (e VELAA - 2)
Case (T:DEREFERENCE-LINEAR) - We have: by hypothesis.
T Fvildg - (€)) Tt:loc,x: A5 Agre:AH- 3)
Tox:Ag;Ag Hlvg t A A AL TW p [] 2) by inversion on (1:ForaLL-Loc) with (2).
by hypothesis. I,t:loc;Ag Felv/x}:AA- 4)
T,x:Ap; Ao Fvo:refp-4A,rwpA 3) by induction hypothesis on (3) with (1).
by inversion on (T:DEREFERENCE-LINEAR) With (2). T;A0 F(tYelv/x} : VLA A - (5)
;A Fvofv/x) i ref p 4 Ay, rw p Ay 4) by (1:ForaLL-Loc) with (4).
by induction hypothesis on (3) with (1). ;A0 F )y e){v/x) i VEAA - (6)
T A0 Flvo{v/x}t: Ap 4 Apew p (] 5) by (vs:14) on (5).
by (T:DEREFERENCE-LINEAR) With (4). Thus, we conclude.
A0 F (vo)lv/x} - A 4 AL rw p (] (6)
by (vs:10) on (5). Case (1:Loc-Arp) - We have:
Thus, we conclude. T Fv:ilA 4- (1)
T,x: A Ao Fvolpl s Alp/t) 4 Ay (2)
Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR). by hypothesis.
Case (T:RECORD) - We have: pilocel, x: A 3)
Torv:lA 4- o) Tox: A Ao F vy i VEAH A 4)
Lx:AAF{E=V):[E:A]4- 2) by inversion on (1:Loc-App) with (2).
by hypothesis. T5 A0 Fvofv/x}: VEA 4 A , i o (5)
m 3) by induction hypothesis with (1) and (4).
by inversion on (T:RECORD) with (2). T Ao Fvolv/xip] - Alp/t} 4 Ay . ©
e by (1:Loc-App) with (5) and (3).
DARVv/) A4 X T A + (ol piv/x) - Alp/i) 4 Ay %)
- by induction hypothesis on (3) with (1). ’ by (vs:13) on (6).
LARE=vi{v/xl}h: [£: A]H- ®) Thus, we conclude.
by (T:RECORD) on (4).
GAr{f=vhiv/x):[£:A]4- (©) Case (1:Loc-OpeN) - We have:
by (vs:5) on (5). Tibv:lA 4. M
Thus, we conclude. T,x: A’ Ag - open{t,xi) = vo inej end : Ay 4 A 2
by hypothesis.
Case (T:SELECTION) - We have: T,x: A Ag kv : AtAg 4 A, 3)
T rvilA 4 () T,t:loc,x:A;ALx Ao kel A4 A, )
Tox: A Ao Fvof:A4A ) by inversion on (T:Loc-OpEN) with (2).
by hypothesis. X0 # X1 5)
Lox: A Ao Fvo i [£:A]4 4 (3) by def. of substitution up to rename of bounded variables.
by inversion on (T:SELECTION) with (2). ;Ao Fvolv/x) s AtAg 4 A 6)
iAo Fvofv/x}: [£: Al 4 Ay ) by induction hypothesis on (3) and (1).
by induction hypothesis with (1) and (3). T,t:loc; Ay, x1 : Ag Fer{v/x) i Ap 4 Ay @)
T Ag Fvolv/x)f: A4 A 5) by induction hypothesis on (4) and (1).
by (t:SeLECTION) With (4). T';Ap Fopen(t,x;) = vofv/x}ine{v/xtend : A 4 A )
T5A0 F (vo.E){v/x} : A4 Ay (6) by (1:Loc-Open) with (6) and (7).
by (vs:6) on (5). T; Ao F (open(t, x;) = vo ine; end){v/x} : Ay 4 A 9)
Thus, we conclude. by (vs:15) on (8) and (5).
Thus, we conclude.
Case (T:APPLICATION) - We have:
TiorvilA 4 1) Case (1:Loc-Pack) - We have:
[x: A Ao Fvo vyt A4 Ay 2) FoFvilA 4. 1)
by hypothesis. [ox: A5 A+ (p,vo) : ILA 44 2)
T,x: A Ao kvt Ag 44 3) by hypothesis.
Tox:A5A Ryt Ag 2 Ap A, 4) T,x: A Ag Fvo : Alp/th4 A 3)
by inversion on (T: APPLICATION) with (2). by inversion on (T:Loc-Pack) with (2).
LA Fvifv/x} i Ag 4 Ay (5) ;Ao Fvolv/x) s Alp/t) 4 A 4)
by induction hypothesis with (1) on (3). by induction hypothesis with (1) and (3).
;A Fvo{v/x) i Ag o A 4 Ay (6) T; A0 F (p,volv/x}) : LA 4 A 5)
by induction hypothesis with (1) on (4). by (T:Loc-Pack) with (4).
5 A0 Fvolv/axtvi{v/x} : Ap 4 Ay (7 ;A0 F ((p,vol)iv/x) - ALA 4 A (6)
by (t:AppLicatioN) with (5) and (6). by (vs:12) on (5).
;A0 F (vo vi){v/x}: Ay 4 Ay (8) Thus, we conclude.
by (vs:7) on (7).
Thus, we conclude. Case (T:ForaLL-TYPE) - Analogous to (T:ForaLL-Loc) with (vs:18).
Case (1:Type-Arp) - Analogous to (T:Loc-App) with (vs:17).
Caser(T:FUNC;l;;(fN) - We have: m Case (T:Type-Pack) - Analogous to (T:Loc-Pack) with (vs:16).
cRVIIAT A N _ _ . . : .
e A8 e+ @) o O g (Loc O it (019
by hypothesis. : i ’
Foxo:A;A x; :Agre: A A- 3) 1";~b—v’:!A 4 (1
by inversion on (T:Function) with (2). oA Ao, x0 : Ag i As ket Ap 4 4 (,2)
X0 X1 ) ) by hypothesis.
by def. of substitution up to rename of bounded variables. Fox i Al Ao,x0 0 Ag, Az et A A . . . S
T:Ax1 : Ag F efv/xo) s A A- 5) by inversion on (1:Cap-ELim) with (2).
by induction hypothesis with (3) and (1). 5 80, %0+ Ao, Az +e{v/x} 1 A1 A4 Ay i i L “
TS A - fun(x; : Ao)elv/xo) : Ag —o A A - (6) by induction hypothesis with (1) and (3).
F;Ao,xoiAoi:Azl—e{v/x}iAl -lA] (5)
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Thus, we conclude.

Case (T:Cap-STACK) - We have:

Ti-rv:ilA 4
Ix:AAgke:Ag: AL HA

T,x:AAgFe:Ag4ALA
;A0 Fefv/x}: Ap 4 AL A
A0 Fe{v/x) i Ag it Ap 4 A

Thus, we conclude.

Case (1:Capr-UNSTACK) - We have:

IoFrv:iIA 4
T,x:AAgFe:Ag4ALA

T,x:A;Agre:Ag i AL 4 A,
[5A0 Fe{v/xh:Ag it Ay 4 A
r;A() F e[V/X}IA() Bl Al,Al

Thus, we conclude.

Case (T:FramE) - We have:

TiorvilA 4
Tox: A A, My re: A4 AN,

T,x:AAgre:A4A
T;AgFefv/x}: A4 A
T;A0,A7 Fefv/x} i A4 AL Ay

Thus, we conclude.

Case (1:SusumpTION) - We have:

IorvilA 4
r,x:A/;AQFEZAl-iAl

A() <i A(']

Lox A A R et Ag 4 A
Ap <t Ay

A <t A

[ AG +efv/x) i Ag 4 A
A0 Fe{v/xh i Ap 4 A

Thus, we conclude.

Case (1:Tac) - We have:

TiokvilA 4
F,XZA/;A[)F].#V()Z].#Al -1A1

Tox: A AgF vyt A 4 A

T3 Ao Fvofv/x} Ay 4 Ay

T; Ao F Mvo{v/x}) - 1#A| 4 Ay
T5 A0 - (Mtvo){v/x} : 1#A| 4 A

Thus, we conclude.

Case (1:Casg) - We have:

Tobv:ilA 4

T,x:A’;Ag + case vy of 1 j#x;

Tox: A A Ry 0 3 L#AT A A

by (1:Cap-ELv) with (4).

(€Y}

(@)

by hypothesis.

3

by inversion on (1:CAP-STack) with (2).
)

by induction hypothesis with (1) and (3).
(&)

by (1:CapP-Stack) with (4).

Q)

2)

by hypothesis.

3

by inversion on (T:CapP-UNstack) with (2).
4)

by induction hypothesis with (1) and (3).
(5

by (1:Cap-Unstack) with (4).

()]

(@)

by hypothesis.

(3

by inversion on (1:FraMmE) with (2).

(C))

by induction hypothesis with (1) and (3).
(5)

by (1:FraME) with A;.

(€Y}

(@)

by hypothesis.

(3)

@

5

(6)

by inversion on (T:SuBsumpTION) With (2).
)

by induction hypothesis with (1) and (4).
(®)

by (T:SussumptioN) with (7), (3), (5) and (6).

(€Y}
(2)
by hypothesis.
(3

by inversion (1:TaG) with (2).

4)

by induction hypothesis with (1) and (3).
(5

by (1:Tac) with (4).

(6)

by (vs:20) on (5).

()]
(@)
by hypothesis.
3

—ejend:A+4A

Cox: AN xit Al ket A4

i<j

X # X

()
(5
by inversion (T:Casg) with (2).
(6)

by def. of substitution up to rename of bounded variables.

T A1 Fvofv/x}: X Li#A] A A

(N
by induction hypothesis on (3) and (1).

DA, Xt Al kedv/x} A4 Ay (8)
by induction hypothesis on (4) and (1).
T A; +case vo{v/x} of 1j#x; — ej{v/x}end: A 4 Ay 9)

by (1:Cask) on (5), (7) and (8).
T;Ap + (case vp of 1j#x; — ejend){v/x} : A4 Ay (10)
by (vs:21) on (9) and (6).

Thus, we conclude.

Case (T: ALTERNATIVE-LEFT) - Immediate by applying the induction hypothesis on
the inversion and then re-applying the rule.
Case (T:LET) - Analogous to other cases such as (T:Loc-OPEN).

O

3. (Location Variable)
Proof. ‘We proceed by induction on the typing derivation of

Tt:loc;AgFe:A4A.
Case (1:REF) - We have:

T,po :loc,z:loc;- +pg : ref py - - (1)

p:loceTl 2

by hypothesis.

T, po :loc, 7 : loc wf 3)

by typing.

(T, po = loc)p/t} wk “

by (Well-Formed Type Substitution - Gamma) on (3), (2).

T{p/t}, polp/t} : loc wE )
by (rs:3.3) on (4)

T{p/t}, polp/t} < loc; - + polp/t} : ref polp/t} 4 - 6)
by (T:REF) with (5).

(T, po = loc){p/t}; - + polp/t} : (ref po)p/t} 4 - 1))

by (Ls:3.3), (1s:2.10) on (6)
Thus, we conclude.

Case (1:Pure) - We have:
I,t:loc;-Fv:lA4-
p:locel

()]
(@)
by hypothesis.

It:loc;-+rv:AH4- 3)
by inversion on (1:Pure) with (1).

L Alp/t) 4 -p/1) )
by induction hypothesis with (2) and (3).

Clp/ty; p/t} + vip/t}

Hp/ty;{p/t} + vip/t) - 1A{p/t} 4 {p/1} (5)
by (1:PURE) on (4).
Hlp/tys {p/t} v vip/t} - (A p/t} + {p/1} (6)

by (Ls:2.4) on (5)
Thus, we conclude.

Case (T:UnIT) - We have:

Tt:loc;-Fv:[]4- (1)
pilocel )
by hypothesis.

I',t:loc wf 3)
by typing.

Cp/1} wE “)
by (Well-Formed Type Substitution - Gamma) on (3), (2).
Tip/t);-Fv:i[l4- S)
by (1:Unit) with (4).

Dip/1y; Ap/ty F vip/th - [Kp/t} 4 p/1} (6)

by (Ls2.7), (Ls4.1) on (5) and noting that regardless if
t occurs or not in v its type remains unchanged.
Thus, we conclude.

Case (1:Pure-ReaD) - We have:

T,x:At:loc;-Fx:!A+- Q)]
p:locel 2)
by hypothesis.

T,x:A,t:loc wf (3)
by typing.

T, x: A){p/t} wf (€0}
by (Well-Formed Type Substitution) on (3), (2).

Tip/t}, x : Alp/t} wf (5)
by (1s:3.2) on (4)

T{p/t},x : Alp/t};- + x : 1Alp/t} 4 - 6)
by (1:Pure-READ) with (5).

Cip/t), x - Alp/t}; {p/t) v xlp/1} : (\A)p/t} A {p/1} @)

by (Ls:3.1), (1s:2.4), (Ls:1.2) on (6)
Thus, we conclude.

Case (T:LINEAR-READ) - We have:
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It:loc;,x:Arx:AH4- (1)
p:locel’ 2)
by hypothesis.

(I, ¢ : loc) wf 3
by typing.

Tp/t} wi @
by (Well-Formed Type Substitution) with (3) and (2).

I',t:locrA type (5)
by (Well-Formed Delta) on (1)

Tlp/1} - Alp/1) type 6)
by (Well-Formed Type Substitution) with (6) and (2).

Hp/tyx: Afp/th v x - Alp/t} + - (7
by (1:LiNear-READ) with (5).

Tip/1): (x : Allp/t) F xlp/t) : Alp/1) 4 -lp/1) ®)

by (Ls:4.2), (Ls:4.1), (Ls:1.2) on (7).
Thus, we conclude.

Case (T:Pure-ELim) - We have:

T t:loc;Ag,x:1Ag e AL 4 A (€))
p:loceT 2
by hypothesis.

T,t:loc,x:Ag;AgFe: Al 4A 3)
by inversion on (T:Pure-Erim) with (1).

(@I, x : Ao)lp/ths Dolp/t) + efp/t) - Alp/t} 4 Ar{p/1} 4)
by induction hypothesis on (3) and (2).

Tip/t}, x - Aolp/t}; Dofp/t} + elp/t} - Arlp/t} 4 Ar{p/t} (5
by (Ls:3.2) on (4)

o/} Molp/t}, x : 1Aolp/th v elp/t} - Ailp/th 4 Ailp/1} (©6)
by (1:Pure-ELim) on (5).

Hp/1}; (Ao, x : 1A0)p/t) + elp/t} - Ailp/t} 4 Ailp/t) @)

by (Ls:4.2) on (6)
Thus, we conclude.

Case (T:NEw) - We have:

I,t:1loc;Ag Fnew v : Frg.(ref 1o i rw g A) 4 Ay (1)
p:locel 2)

by hypothesis.
It:loc;AgFv:A4A 3)

by inversion on (T:New) with (1).
Tip/t}; Aolp/t} + vip/t) - Alp/t} 4 Ai{p/t} ()
by induction hypothesis on (2) and (3).
Tlp/t}; Aolp/t} + new vip/t} : Fto.(ref to :: tw to Alp/t}) 4 Ar{p/t} (5)
by (1:New) with (4).
o #1 (6)
by def. of substitution up to rename of bounded location variables.
Tip/t}; Aolp/th F (new v){p/t} : Tto.(ref 1o :: w19 Afp/t}) 4 Ailp/1} (N
by (Ls:1.7) on (5).
Tlo/t}; Aofp/th F (new v){p/t} : Ftg.(ref 1 = (xw o A){p/1}) 4 Ailp/t}  (8)
by (Ls:2.12) on (7).
Cip/t}; Aolp/th F (new v){p/t) : Fto.((ref 1 = xw 19 A)lp/t}) 4 Alp/t} (9)
by (Ls:2.6) on (8) and (6).
Tlp/t}; Aolp/t} + (new v){p/t} : (Fto.(ref 1o :: tw tg A)ip/t} 4 Ai{p/t}  (10)
by (1s:2.9) on (9) and (6).

Thus, we conclude.

Case (T:DELETE) - We have:

I',t:loc; Ag +delete v : dry.A 4 Ay (1)
p:locel 2)
by hypothesis.

I,t:loc;Ag Fv: Jtg.(ref 1g :: rw 1y A) 4 Ay 3)
by inversion on (1:DELETE) with (1).

Tlp/t}; Aolp/1) F vip/t) : (io.(xef 10 tw 1o AD{p/1) 4 At {p/1) “
by induction hypothesis on (2) and (3).

to #1 5)
by def. of substitution up to rename of bounded location variables.

Cp/t}; Aolp/t} F vip/t} 2 Tto.((ref 1o 2 xw 19 A)lp/1}) 4 Ai{p/1} (6)

by (1s:2.9) on (4) and (5).
Tip/t}; Aolp/th F vip/t) : Fto.((ref 10){p/1} = (xw 19 A){p/t}) 4 Alp/t}  (T)
by (1s:2.12) on (6).

Tlp/t}; Aolp/t} + vip/t) : Fto.(ref 1o :: W 1o Afp/t}) 4 Aifp/t} (8)
by (Ls:2.10), (Ls:2.3), (Ls:2.12) on (7).

Lip/t}; Aolp/1} F vip/t)  Fto.(Alp/1}) 4 Ar{p/1} ©
by (T:DELETE) on (8).

T/} Aofp/t} + vip/t} = Fio.A)p/t} 4 Arlp/1} (10)
by (1s:2.9) on (5) and (9).

Thus, we conclude.

Case (T:AssiGN) - We have:

T,t:loe;Ag -vp :=vi 1 Ap 4 Ax,tW p Ap (1)
p:locel 2)
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by hypothesis.

T,t:loc;Ag Fvy i Ag 4 Ay 3)
T,t:loc;Ap v iref p4 Ay, rwp Ay 4)
by inversion on (1:AssiGN) with (1).

Tip/1): Boto/t} + vilp/t) : Aolo/t) 4 Aitp/1) ®)
by induction hypothesis on (3) with (2).

Tlp/t}; Ailp/t} F volp/t} : (ref pllo/t} + (A2, xw p A{p/t} (6)
by induction hypothesis on (4) with (2).

Tip/t}; Ailp/t} + volp/t) - ref plo/t} 4 Aafp/t), xw plp/t} Ailp/1} @)

by (1s:2.10), (s:4.3), (Ls:2.12) on (6).
i/t Ailp/t} - volp/t) := vifp/t) - Avlp/t}

4 Mo{p/th, xw pip/t} Aofp/t} ®)
by (1:AssIGN) on (6) and (7).
Clp/t}; Ailp/t} + (vo := vi)ip/t} - Aldp/t} 4 (A2, xw p Ag){p/1} )

by (Ls:1.10), (1s:2.12), (Ls:4.3) on (8).
Thus, we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:

Tt:loc;AgFlv: A4 AL TWp (] (1)
p:loceT 2
by hypothesis.

Tt:loc;Ag v refp4A,rwpA 3)
by inversion on (T:DEREFERENCE-LINEAR) with (1).

Tlp/ty; Aofp/th + vip/t) : (xef p)lp/t} 4 (A1, xw p A)lp/t} 4)
by induction hypothesis with (2) and (3).

Tip/t}; Aolp/t} F vip/t} : ref plp/t} 4 Ai{p/t}, xw plp/t} Alp/t} 5)
by (Ls:4.3), (Ls:2.12), (Ls:2.10) on (4).

Tip/t}; Aotp/t} F vlp/t) - Alp/t} 4 Arlp/t},xw plp/t} [] (6)
by (T:DEREFERENCE-LINEAR) on (5).

Clp/ty; Aofp/t} + (W)p/1} - Alp/t} 4 (Ar,xw p [1) (N

by (Ls:1.9), (Ls:4.3), (Ls:2.12), (Ls:2.3) on (6).
Thus, we conclude.

Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR).
Case (T:RECORD) - We have:

It:loc;Ar{f=v):[£:A]4- 1)
p:loceT (2)
by hypothesis.

T,t:loc;Arv; i A H- 3)
by inversion on (T:REcorp) with (1).

Hp/ty; Mp/t} kedp/t} - Aidp/t} 4 {p/1} ()
by induction hypothesis with (2) and (3).

Clp/ty; Mp/ty v (£ = vip/t}} - [£: Alp/}] 4 {p/1} (5
- by (T:REcorp) with (4).

Dip/1y; Mp/t} - (£ = vDip/1} : (£ : AD{p/t} 4 {p/1} (6)

by (Ls:1.4), (Ls:2.7) on (5).
Thus, we conclude.

Case (T:SELECTION) - We have:

Tot:loc;Ag Fvfit A 4 A (1)
pilocel 2)
by hypothesis.

T,r:loc;Ag kv [£:A]HA 3
- by inversion on (1:SELEcTION) with (1).

ip/t}; Aotp/t} F vip/t) : £ - Alfp/t} 4 Aip/1) ()
by induction hypothesis on (1) and (3).

Tip/t}; Aotp/t} F vip/t) - [£ - Alp/t}] 4 Avip/1) (5
by (1s:2.7) on (4).

Tip/t}; Molp/t} F vip/t).£i - Adlp/t} 4 Ailp/t} (6)
by (1:SELECTION) on (5).

Clp/th Aofp/th + (v-£){p/1} = Ailp/t} 4 Ar{p/1} )

by (rs:1.5) on (6).
Thus, we conclude.

Case (T: APPLICATION) - We have:

Tot:loc;AgFvovy AL A A, (1)
p:locel’ ?2)
by hypothesis.

Tt:loc;Ag -yt Ag 44 3)
r,t:]OC;Alk\/OZAo‘OA]ﬁAz (4)
by inversion on (T:AppLicATION) with (1).

Tp/ty; Aofp/th Fvilp/t) - Aofp/t} 4 Alp/1) (3)
by induction hypothesis on (2) and (3).

Tlo/t}; Atlp/1) - volp/1) : (Ao —o ADIp/1) A Malp/i) )
by induction hypothesis on (2) and (4).

Tlo/t}: Arlp/1) F volp/1) : Aolp/) — Alp/1) 4 Aslp/1) ®)
by (Ls:2.5) on (4).

Tlp/t); Aolp/1) - (o vidlp/1) : Aokp/1) A Aalp/1) ©)

by (1:AppLicATION) on (5) and (3), and (Ls:1.6).
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Thus, we conclude.

Case (T:FunctioN) - We have:

I,t:loc; A fun(x: Ag)e: Ag o Aj - (1)
p:locel’ 2)
by hypothesis.

I,t:loc;A,x:Agre: A A- 3)
by inversion on (t:Function) with (1).

Tip/t}: (A, x - Aollp/t) v elp/t} = Ailp/t} A {p/1} )
by induction hypothesis on (2) and (3).

Clp/ty; Mp/t}, x = Aolp/th + elp/1y - Aldp/t} A {p/t} (5)

by (Ls:4.2) on (4).
Tip/t}; Ap/t} + fun(x : Aofp/t)).elp/t} : Aolp/t} — Aifp/t} 4 {p/1} (6)
by (t:FuncTion) on (5).
T{p/t); Alp/t) + (fun(x : Ag).e)lp/t} : (Ag — AD{p/t} 4 {p/t) )
by (Ls:1.3), (Ls:2.5) on (6).

Thus, we conclude.

Case (T:ForaLL-Loc) - We have:

T,t:loc;Ag F (t)e: Vtg.AH - (1)
p:locel 2)

by hypothesis.
I,t:loc,ty:loc;Agre:AH- 3)

by inversion on (1:ForaLL-Loc) with (1).

th #1t 4)
by def. of substitution up to rename of bounded location variables.

([T, 10 = loo)p/t}; Aolp/t) + elp/t} - Alp/t} 4 {p/1} (5
by induction hypothesis with (2) and (3).

Tip/1}. 10 < loc; Aofp/1} F elp/t) - Afp/t) 4 -{p/1) ©6)
by (1s:3.3), (1s:2.3) with (4) on (5).

Hp/t}: Aolp/ 1} v to) elp/1} - V1o .Alp/t} 4 -{p/1} (N
by (1:ForaLr-Loc) on (6).

T/} Aofp/t} + (to) e)ip/t} = (Yio.A)p/t} 4 H{p/1} (3)

by (Ls:1.13), (Ls:2.8) with (4) on (7).
Thus, we conclude.

Case (T:Loc-Arp) - We have:

I, t:loc; Ao +vlpl : Alp/to} 4 Ay (1)
p:locel 2)
by hypothesis.

p:locel 3)
I,t:loc;Ag Fv:Vig.AH A 4)
by inversion on (1:Loc-App) with (1).

i/t Aolp/t} + vip/t) - (Ytg.A)p/t} + Arlp/t} (5)
by induction hypothesis with (2) and (4).

plp/t} : loc € T{p/1} (6)
by induction hypothesis with (2) and (3), and by (Ls:3.3).

#t %)
by def. of substitution up to rename of bounded location variables.

Tp/ty; Aofp/th v vip/t} = Vio. Afp/t} 4 Alp/t} (3)
by (1s:2.8), (7) on (5).

Tip/t}; Aotp/t} F vip/tlplp/}] : Alp/tHp/to} 4 Ai{p/1} )
by (1:Loc-App) on (8) and (6).

Tip/t}: Aolp/th v WIpDip/t} = Alp/tHp/to} 4 Ailp/t} (10)

by (Ls:1.12) on (8).
Thus, we conclude.

Case (1:Loc-Pack) - We have:

T,t:loc;Ag - {(p,v): Jtg.A 4 A (D
p:locel 2)
by hypothesis.

I,t:loc;Ag Fv:Afp/to} 4 Ay 3)
by inversion on (t:Loc-Pack) with (1).

Tlp/1h: Aoto/t} + vip/1} : Alp/iole/t) 4 Alp/1) @
by induction hypothesis on (3) and (2).

t#t 5)
by def. of substitution up to rename of bounded location variables.

5 Aofp/t) F vip/th = Alp/t{p/to} + Alp/1} (6)
by (4) and (5).

Cip/1}y; Aotp/ty v {plp/th vip/t}) = Tt0.Alp/t} 4 Arip/t} ()]

by (1:Loc-Pack) on (6) and because p must be in I
(therefore, its substitution must also occurred by (Ls:3.3)).
Tip/1); Aolp/ 1} F (p v/} = Gio.ANp/1) 4 Arlp/t) ®)
by (Ls:1.11), (1s:2.9) on (7), (5).
Thus, we conclude.

Case (T:Loc-OpeN) - We have:

I',t:loc; Ag Fopenty,x) =vpine; end: Aj 4 Ay (1)
p:locel 2)
by hypothesis.
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I,t:1loc; Ag F vy @ dty.Ag 4 Ay 3)
I,t:loc,tg : loc; Ay, x: Agk ey : Ay 4 Ay 4)
by inversion on (1:Loc-OpeN) with (1).

Tip/t}; Aotp/t} F volp/t} : (3t0.Aolp/t} 4 Arip/t) 5
by induction hypothesis on (2) and (3).

([T, 2 loo)p/t}; (Ar, x = Aollp/1} F elp/t}  Alp/t} 4 Axlp/1} (6)
by induction hypothesis on (2) and (4).

to %1t (7)
by def. of substitution up to rename of bounded location variables.

Tip/t), 10 : 1oc; Alp/t}, x = Aolp/t} F eifp/t} : Ailp/t} 4 Aofp/1} ®
by (1s:3.3), (Ls:4.2) on (7), (6).

Tlp/ty; Aofp/t} v volp/t} : Fto.Aolp/1} 4 Ar{p/1} )

by (1s:2.10) on (5), (7).
Tlp/1): Bop/1} + open o, x) = volo/1)
ineifp/ty end : Ai{p/t} 4 Aafp/t) (10)
by (1:Loc-OpeN) on (8) and (9).
T{o/1}; Aolo/1) + (Open (fo, x) = vo in e1 end)ip/1} : Arlp/t} 4 Asto/r) (1)
by (rs:1.14) on (10).
Thus, we conclude.

Case (T:ForaLL-TYPE) - Analogous to (T:ForaLL-Loc).
Case (1:Type-ApP) - Analogous to (T:Loc-App).

Case (1:Type-Pack) - Analogous to (T:Loc-Pack).
Case (T:TypPe-OPEN) - Analogous to (1:Loc-OPEN).
Case (1:Car-ELIM) - We have:

I,t:loc;Ag,x: Ay Ay ket Ag 4 A (1)
p:locel (2)
by hypothesis.

T,t:loc;Ag, x: A, Ay Fe:Ag 4 A 3)
by inversion on (1:Cap-ELim) with (1).

Tp/ty; (Do, x 2 A1, Ao){p/t} F elp/t} = Aofp/t} 4 Aifp/t) ()
by induction hypothesis with (2) and (3).

Dip/1}y; Aotp/1}, x - Ailp/1}, Aolp/ 1} v elp/t} - Aolp/t} + Ailp/1} (5
by (1s:4.3), (Ls:4.2) on (4).

Cip/1y; Aotp/th, x - Ailp/t} : Aolp/th v elp/t) = Aolp/th 4 Ailp/1} (©6)
by (1:Cap-ELiv) with (5).

Tp/t}; (Ao, x = Ay 2 Ao){p/t} v elp/t} = Aolp/t} 4 Ailp/1} )
by (Ls:4.2), (Ls:2.6) on (6).

Thus, we conclude.
Case (T:CAP-STACK), (T:CAP-UNSTACK) - Analogous to (1:Cap-ELm).

Case (T:FrAME) - We have:

I,t:loc;Ag, Ay ke A4ALA (D
p:locel 2)
by hypothesis.

T,t:loc;AgFe:A4A 3)
by inversion on (1:Frame) with (1).

Tlp/t); Aolp/t) F elp/1) = Alp/t) 4 Ailp/1) @
by induction hypothesis with (2) and (3).

T,t:lock Ay, Ay 5)
by typing on (1).

Tp/t} F (Aofp/th, (Aalp/1h) (6)

by (Well-Formed Type Substitution - Delta) on (5) and (2)
and by (Ls:4.%).
i/t v Aofp/t) Q)
by (Well-Formed Delta) on (6).
Tp/ty; Aofp/1}, Aofp/t} F elp/t} = Alp/1} 4 A{p/t}, Aodp/1} (3)
by (1:FraME) on (7) and (4).
Cip/1}; (Do, M)ip/t} + elp/t} - Alp/1} 4 (A1, Ao)p/1} (©))
and by (Ls:4.%).

Thus, we conclude.

Case (T:SuBsumpTION) - We have:

T,t:loc;AgFe: Al 4A (1)
p:locel’ 2)
by hypothesis.

Ag < A 3)
Lt:loc; Ay ke Ag 4 A] 4)
Ap <: Ay 5)
Al <Ay 6)
by inversion on (1:SusumpTION) with (1).

Tlp/ty: At/ + elp/1) : Aokp/1) 4 &) {p/1) %)
by induction hypothesis on (4) with (2).

I,t:loct+ Ay (8)
by typing on (1).

Tip/1) F Aolo/t) ©)
by (Well-Formed Type Substitution - Gamma) on (8), (2).

Dolp/1) <: Nyto/1) (10)
by (3) and (9).
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Aolp/ty <: Aylp/t) ) B.9 Values Lemma

ANA{p/t} <: A t 12 .
it <: &ufelt analogous reasoning uimg) Lemma 9 (Values Lemma). If v is a closed value such that:
(Well-Formed Type Substitution - Delta) on (5) and (6). —— =
Tlp/t}: Mofp/t} v elp/th : Arlp/t) 4 &) {p/1} (13) AFv:A4A
by (T:SussumpTION) on (7), (10), (11) and (12).
Thus, we conclude. then:

E<:&,,Z’ ’l:;gvl—v:A-i-
Case (1:Tac) - We have:

T,t:loc; Ag + 1#v : 1#A 4 Ay (D X —— —
pilocel @) Proof. By induction on the typing derivation of T; A v: A 4 A’
by hypothesis.
Lrzloc;Ag Fv:AHA 3) Case (T:Rer) - We have:
by inversion on (1:Tag) with (1).
Clp/t}; Aolp/th F vip/t) : Alp/th 4 Ailp/t} 4) T o - loc: .
g g g g tfy induction hypothesis on (3) and (2). Lpiloc-kp:refp - by b othes(i]s)
Tlp/t): Bolp/) v Lvlp]1) : L#Alp/e) 4 Ao/ ) Thus, by making: Yy pone:
by (1:TaG) on (4). T = . "
Tp/ty; Aofp/th v A#v){p/t} = (1#A)p/1} 4 Af{p/t} (6) = @
by (s:1.19), (Ls:2.18) on (5). A= ©)
Thus, we conclude. ‘We immediately conclude.
Case (1:Casg) - We have: Case (T:Pure) - We have:
I,t:loc;Ag -casevofl#x; —e;end: A+ A (1) .
p:locel ) Forv:ilAd- QY]
by hypothesis. by hypothesis.
Tt:loc;Ap by 3, L#tAL 4 A 3) '[;hus, by making:
Tt:loc; A xi Al ket A Ay (4) Ay =- 2)
i<j ) A= 3)
by inversion (1:Case) with (1). ‘We immediately conclude.
Tlp/t} Arlp/th F vip/t} = (X L#AD /1) 4 Nip/1} (6)
by induction hypothesis on (3) and (2). Case (T:UNIT) - We have:
Clp/ty; Arlp/t) F vip/t) : X Li#(Al{p/1) 4 A{p/1} )
by (1s:2.18) on (6). f Pyl )
Do/t (N, xi - ADlp/1} v eilp/t} - Alp/t} A Mofp/t}) (¥ by hypothesis.
by induction hypothesis on (4) and (2). Thus, by making:
Tlp/th A, xi : Ajlp/t} F eilp/t} : Alp/t} A Aolp/t} ) A =- )
by (Ls:4.2) on (8). A= 3)
T{p/t}; Aofp/t} + case vip/t} of 1#x; — e;{p/t} end : A{p/t} 4 Ax{p/t} (10) We immediately conclude.

by (1:Casg) on (5), (7) and (9).
Ti{p/t}; Aofp/t} + (case v of 1 #x; — ej end){p/t} : Alp/t} 4 Aa{p/t} (11)

Case (T:Pure-READ), (T:LINEAR-READ) - value not closed.
by (Ls:1.20) on (10).

Case (T:Pure-ELIM) - Environment not closed.

Case (T:NEW),(T:DELETE), (T:ASSIGN), (T:DEREFERENCE-LINEAR), (T:DEREFERENCE-PURE) -
Not a value.

Case (T:RECORD) - We have:

Thus, we conclude.

Case (T: ALTERNATIVE-LEFT) - Immediate by applying the induction hypothesis on
the inversion and then re-applying the rule.
Case (1:LET) - Analogous to (1:Loc-OPEN).

Tido - (E=v): (£ A4 A (D

o by hypothesis.

. . . F; ZE FVviAA ZT 2)

4. (Type Variable), analogous to the (Location Variable) proof. by inversion on (1:Recorp) with (1),
0 Ag <: Ay, A ©)

T:A FviAd- @)

by induction hypothesis on (2).

LA F{f=v}:[£:A]H- 5)

by (1:RECORD) on (4).
Therefore, by (3) and (5) we conclude.

Case (T:SELECTION) - Not a value.
Case (T:AppPLICATION) - Not a value.
Case (T:FunctioN) - We have:

T A Ffun(x: Ag)e: Ag —o A 4 - o)
by hypothesis.

Thus, by making:

A= 2)

‘We immediately conclude.

Case (T:ForaLL-Loc) - We have:

T:AF (e :VtAA- )
by hypothesis.

Thus, by making:

A= @

‘We immediately conclude.

Case (t:Loc-Arp) - Not a value.
Case (1:Loc-Pack) - We have:

23 2013/11/3



T:AF(p,vy:ItAA- )
by hypothesis.

’I:;K%V:Alp/t]ﬂ- 2)
by inversion on (1:Loc-Pack) with (1).

A< A, 3)
TiA kv Alp/ti- @
by induction hypothesis on (2).

F; &, F(p,v)y:dtAH- 5)

by (1:Loc-Pack) on (4).
Therefore, by (3) and (5) we conclude.

Case (T:Loc-OpeN) - Not a value.
Case (T:ForaLL-TyPE) - We have:

T:AF(X)e:VXAH- 1
by hypothesis.

Thus, by making:

A= (@)

‘We immediately conclude.

Case (:Type-Arp) - Not a value.
Case (1:Type-Pack) - We have:

T:A F (A, vy AXAg - - 1
by hypothesis.

T;AFv: Aol /X) 4 @
by inversion on (1:TypPe-Pack) with (1).

A<A,,- 3)
TiA, kv AolAr/X} A - “
by induction hypothesis on (2).

T A, + (A1, v) s AX.Ag - 5)

by (T:Type-Pack) on (4).
Therefore, by (3) and (5) we conclude.

Case (1:Type-OpEN) - Not a value.
Case (1:Capr-ELiv) - Environment not closed.
Case (T:Cap-StacK) - We have:

iAo Fv:Ag A 44, (1)
by hypothesis.

T:Agkv:AgHALA )
by inversion on (1:CapP-Stack) with (1).

Ao <t A, ArL A ©)
F;K,'FL':A04~ 4)
by induction hypothesis on (2).

T:A, AL F v Ag A, 5)

by (1:FrAME) on (4) using A;.

Note that this application of (T:FrRAME) can be applied directly since K,
F;&,,AH—V:AU A A (6)
by (1:CapP-Stack) on (5).

Therefore, by (3) and (6) we conclude.
(note that A; is immediate since a defocus-guarantee is not a type)

Case (1:Capr-UNSTACK) - We have:

TiAg Fv:Ag 4A7,A )
by hypothesis.

T:Aokv:Ag AL 44 2
by inversion on (1:Cap-Unstack) with (1).

Ao <A, Ay ©)
’I:;Kvl—v:AU::Al-l- 4)
by induction hypothesis on (2).

F;KVFVZA() 4A; 5)
by (T:Cap-UNsTack) with (4).

A, < AL A ©)
T:A Fv:AgH- )
by induction hypothesis on (5).

Ao <t AL, ALA ®)

by transitivity of subtyping with (3) and (6).
Therefore, by (7) and (8) we conclude.

Case (T:FrRAME) - We have:

T380, 80 - v:iA4ALD, o
by hypothesis.

F; ZE FVv:iAA ZT 2)
by inversion on (T:FrRaME) with (1).

Ao <: A AL 3
ToA Fv:iAq- @)
by induction hypothesis on (2).

Do,y <: A ALA ®)

by (3) with A;.
Therefore, by (4) and (5) we immediately conclude.

Case (T:SusumpTION) - We have:

T:AgFv:A A, 1
by hypothesis.

Ao <i Ay )
Ay +v:Ag44] 3)
Ay <t Ay 4)
A <Ay 5)
by inversion on (1:SusumpTION) With (1).

Ay <t A A ©)
TA Fv:idgH- ©)
by induction hypothesis on (3).

Ay <A Ay ®)
by transitivity of subtyping with (5) and (6).

Ao <: A, A ©)
by transitivity of subtyping with (2) and (8).

A Fv:iA - (10)

by (1:SussumpTiON) with (sp:SYMMETRY) and (4) on (7).
Therefore, by (9) and (10) we conclude.

Case (1:Tac) - We have:

TiAg - 1#tv: 1#A 4 - M
by hypothesis.

T:Agrv:Ad- 2)
by inversion on (1:Tac) with (1).

Ao < A, Ay ©)
T:A FviAd- @)
by induction hypothesis on (2).

ToA, - L#v: 1#A 4 - 5)

by (1:TaG) on (4).
Therefore, by (5) and (3) we conclude.

Case (1:Casg) - Not a value.
Case (T:ALTERNATIVE-LEFT) - We have:

T:A0, Ao ® A Fv:As 44, )
by hypothesis.

T: Ao, Ao Fv:As 44, 2
TiAQ Al Fv:Ay 4 A, )
by inversion on (T: ALTERNATIVE-LEFT) with (1).

Ao, Ap <: Ay, A )
TA Fv:iAy4- Q)
by induction hypothesis on (2).

Ao, Ay <i AL A ©6)
TA FvidAy4- ©)
by induction hypothesis on (3).

Do, Ag ®A; <t A A[ (®)

by (sp:ALTERNATIVE-L) on (4) and (6).
Therefore, by (8) and (5) we conclude.

Case (1:LET) Not a value.
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B.10 Preservation

Theorem 1 (Preservation). If ey is a closed expression such that:
l"Ao; &) Fey:AHA A

To; Ao + Hy (Holleo) > (Hyller)
then:

FO,FI,AII—HI ﬂ,ﬁ;&l—eﬁA—!Z
for some A.,l"l

PrOOﬁ By induction on the typing derivation of ﬁ); AAO Fep:AA A

Case (1:REF), (1:PURE), (T:UNIT) - are values.

Case (1:PURe-READ), (T:LINEAR-READ), (T:PURE-ELIM) - not applicable, environments
not closed.

Case (1:NEw) - We have:

ro A()I»newv Jr.(refrrwtA) 4 A )
r(), A() +H (2)
(Hllnewv) —(H, p=vl (p.p)) 3
by hypothesis, with (p:New).

;Ao Fv:iA4A @)
by inversion on (T:New) with (1).

Ao < A A )
ﬁ);g,,l—v:A-r (6)
by (Values Lemma) with (4).

p fresh (7)
by inversion on (p:New) with (3).

To:AL A H (3)

by (Subtyping Store Typing) with (2) and (5).
Thus, if we make:

I =p:loc ©)
‘We have that:
To, T A FVIAA- (10)

by (Weakening) (6) with ﬁ
(note that weakening is only valid in the lexical environments, I')

To.TiALArH an
by (str:Loc) with I'; (that contains p) on (8).
Io,T1;ArwpArH,p—v (12)

by (sTr:BinpiNG) with (10) and (11) with p.
Thus, if we make:

A =ArwpA (13)
We have that:

To.T1;-FpirefpA- (14)
by (1:REF) with p.
Lo.[A Fpirefp 1A (15)
by (1:FraME) on (14) with Al (since - is empty, frame is immediate).
To.T1:A Fp:refpTwpA-4A (16)
by (1:Cap-Stack) on (15) noting that (13).

If ¢ fresh then:
To.T1:AL Fp: (refp i xwp A)p/t} 4 A (17)

by type substitution on (16).

Note that, by (4), p cannot occur in A since it is a fresh location constant not
present in I'y.

Fo.T1: A F(o.p): AtreftrwiA) 4 A 18)
by (T:Loc-Pack) on (17).
Thus:
Fo.T1: A F(o.p): At(reftrwi A) 4 A (19)
for some E, ﬁ
by (18).
Therefore, by (12) and (19) we conclude.
Case (T:DELETE) - We have:
To; Ao + delete (p,p) : LA+ A (1
To;AorH, p>v 2
(H, p= vl delete (o.p) )= (HIl (p,v) ) 3)
by hypothesis, with (p:DELETE).
ﬂ;&k(p,p):ﬂt.(reft::rth)AK 4)
by inversion on (T:DELETE) with (1).
Ao <: AL A 5)
To; A, F{p,p) : Fe(ref t::rw i A) 4 - ©)

by (Values Lemma) with (4).
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(note that we will omit the G syntax until relevant, for clarity)

ﬂ;z;rp:(reft:: rwt A){p/t} - (7
by (Values Inversion Lemma) with (6).
ﬁ);ﬁ;kp:refp::rpr{p/t}ﬁ- )
by (Ls:2.6), (Ls:2.10), (s:2.1), (s:2.12) with (7).
l:;);AA,,kp:refp-irpr{p/t} 9)
by (Values Inversion Lemma) with (8).
A, <: A, vw p Alp/t) (10
ﬁ);K;kp:refp-i- (11)
by (Values Lemma) with (9).
K; =. (12)
by inversion on (T:ReF) with (11).
Therefore:
ﬁ,;zz,rpr{p/t},Kl— H,p—v ie.
To;xwp Alp/thAr H, p—>v (13)
by (Subtyping Store Typing) using (2), (10) and (12).
1“0 AV,A rH (14)
Toi A Fv: Afp/ty - (15)
by (Store Typing Inversion Lemma) with (13).
TosAy (o, v): AAA- (16)
by (1:Loc-Pack) with (15) using p.
To; A A+ (o, vy: IA4A a7
by (1:FramE) with (16) using A
Using:
L= as)
A =ALA (19
We have:
To.T1:AL Fo,vy: A A (20)
by (17) with (18) and (19).
Co. T A H @n

by (14) with (18) and (19).
Therefore, by (20) and (21) we conclude.

Case (T:AssiGN) - We have:

1:0;’A\0I—p2=v1:A1-|’A\,rpro (1)
ﬁ,;ZEI—H,pf—M)O 2)
(H,p=wllp=vi)>(H,p=vilv) (3)
by hypothesis.
ToiAo Fvi i Ag A @)
ﬁ);AA’ Fp:refpiK,rprl 5)
by inversion on (T:AssiGN) with (1).
N AN ®)
FosAy b vyt Ag - )
by (Values Lemma) on (4).
N <A, Arwp A (®)
I‘O,A Fp:refp4- 9)
by (Values Lemma) on (5).
A = (10)
by inversion on (1:ReF) with (9).
FO,A”,A rwpA FH, p— (1)
by (Subtyping Store Typing) with (2), (6) and (8).
oA Mg Ar H (12)
FotAy b vt Ap - (13)
by (Store Typing Inversion Lemma) on (11).
1“0 AVU,A l‘WpA(] FH,p%Vl (14)
by (sTrR:BINDING) With p on (7) and (12).

by making:
h=- (s
Fo.T1580. A TWp Ao H, p = vy (16)
by (Weakening) with (14).
Fo.T1580 Fvo Ay A - (17)
by (Weakening) on (13).
F0. T30, Axwp Ag F vy : A A A, 1w p Ag 18)

by (1:FrRAME) using K, rw p Ap with (17).
Therefore, by (16) and (18) we conclude.

Case (T:DEREFERENCE-LINEAR) - We have:

To;Aorlp:A4Arwp [l )
To;MoFH, p>v @
(H,p=vllp)m (H, pvilv) 3

by hypothesis, (D:DEREFERENCE).
ﬁ);ZEFp:refpﬂX,rwp[] @)

by inversion on (T:DEREFERENCE-LINEAR) with (1).
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Ao <: Z;,Z,rpr 5)
l:f,;ﬁ;rp:refpw- (6)
by (Values Lemma) on (4).

Aﬂ =" (7)
by (Values Inversion Lemma) on (6).

Ao <:ArwpA (8)
by rewriting (5) with (7).

ﬁ);’A\,l‘WpAI—H,p‘—)V 9)
by (Subtyping Store Typing) with (8) and (2).

ﬁ);gvl—v:A-l- (10)
To:AA, - H an
by (Store Typing Inversion Lemma) on (9).

Tos-rvill4- (12)
by (1:Unit) with value v.

T A A, twpllFH, pv 3)

by (sTR:BINDING) using p, (11) and (12).

by making:

0= a4

To.TA A rwpllFH, p— v (15)
by (Weakening) using ﬁ on (13).

ﬂ,ﬁ;&,l—v:A%- (16)
by (Weakening) using I“Al on (10).

o TLAArwp[lFv:A4Arwp (]l a7

by (1:FramE) using A, rw p [] on (16).
Therefore, by (15) and (17) we conclude.

Case (T:DEREFERENCE-PURE) - We have:

FoiAorlp:!A4Arwp 1A )
ToAg-H, p—v @)
(H,p=vilp)-(H,p=>viv) 3
by hypothesis, with (D:DEREFERENCE).
ﬂ;z;kp:refpﬂx,rwp 1A 4)
by inversion on (T:DEREFERENCE-PURE) with (1).
Do <: A, A rwp 1A 5)
ﬁ);AAprp:refp—w 6)
by (Values Lemma) on (4).
Ap = )
by (Values Inversion Lemma) on (6).
Ao <:Arwp 1A ®)
by rewriting (5) with (7).
ﬁ);Z,rwp IArH,p—v 9)
by (Subtyping Store Typing) with (8) and (2).
ﬁ);AA,.Fv:!Aﬁ- (10)
T A A H an
by (Store Typing Inversion Lemma) with (9).
A= (12
Tos-FvilAd (13)
by (Values Inversion Lemma) on (10).
T;AvH (14)
by rewriting (11) with (12).

by making:
0= as)
Fo.T:ATwWp ArH, p>v (16)
by (Weakening) using ﬁ on (9).
ﬂ,ﬁ;-l—v:!A-l- 17)
by (Weakening) using ﬁ on (13).
Fo.T:Arwp 1Arv:iIA4Arwp A 18)

by (1:FrRAME) using E rwp !Aon (17).
Therefore, by (16) and (18) we conclude.

Case (T:RECORD) - is a value.
Case (T:SELECTION) - We have:

ToiBAo F {E=v).fi 1 A4 A o)
To:Ao+ H @)
(HINE= V£ ) > CHIlvi) ©)]
by hypothesis, with (D:SELECTION).

To;Aok{f=v}:[f:A]4A )
by inversion on (T:SELECTION) with (1).

Ao <: N, A %)
;N H{E=v): [f: A]4- ©6)
by (Values Lemma) on (4).

T iz A4 0]

by (Values Inversion Lemma) with (6) .
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ﬁ);&,Zkv;:A;AZ

®)

by (1:FramE) with A with (7) (A’ by (Values Lemma)).

To; A ArH

Therefore, by making:

I =-
A =N,A
To, T A H

()
by (Subtyping Store Typing) with (2) and (5).

(10)
an
(12)

by (Weakening) with (10) on (9) and rewriting (9) using (11).

Fo. T A Fvi A4 A

(13)

by (Weakening) with (10) on (8) and rewriting (8) using (11).
Therefore, by (12) and (13) we conclude.

Case (T:APPLICATION) - We have:

To: Ao F (fun(x : Ag)e) v: Al 4 A
Toi Ao + Ho

(Ho Il (fun(x : Ag).e) v ) = ( Ho ll e{v/x} )

ﬂ;&kv:Aoﬂg’

ﬁ);g’ Ffun(x : Ag).e : Ag — A} 1A

Ao <: &A,
r();Av}—VZAQ-l'

N < AN,

To; AL+ fun(x : Ag).e : Ag —o Aj A -

ﬁ);&,,x:Aol—e:A] q-

v =fun(x: Ap).e

Ag <: Ap
ToiAL AL Ak v:iAg4 A A
ﬁ);AA{,,x:AO,ZFe:Al 1A

Fo; A AL A F e{v/x): Ay A A

(D

2

(©)

by hypothesis.
)

(5)

by inversion on (T: AppLicaTiON) with (1).
(6)

)

by (Values Lemma) on (4).

(®)

)

by (Values Lemma) on (5).

(10)

(11)

(12)

by (Values Inversion Lemma) with (9).
(13)

by (1:FraME) on (7) with E{Z

(14)

by (1:FramE) on (10) with A.

(15)

by (Substitution Lemma - Linear) with (13) and (14).

By making:

I=-

A=A, A, A

‘We immediately have:
ﬁ),ﬁ;E Fe{v/x}:ApA A

Fo, T A, A, + Hy

o, T A AL A, F Ho

(16)

with (15).

an

by (Subtyping Store Typing) with (2) and (6).
(18)

by (Subtyping Store Typing) with (17) and (8).

Fo, T A + Ho

(19)
by renaming the environment.

Therefore, by (16) and (19) we conclude.

Case (T:FuncrioN) - is a value.
Case (T:ForaLL-Loc) - is a value.
Case (T:Loc-App) - We have:

;80 F (D e)lp] : Alp/t) 4 A
To; Ao + Hy

(Ho 1) e)lp] ) = ( Ho ll elp/1} )

To; Aok (fye: VLA 4 A
p:locely

Ao <t AA,
To; Ay F(t)e:YtL.AH -

ﬁ),t:loc;&r—e:A-i-

ﬁ;,t:loc;&,Kke:AaZ

Tolp/t) Alp/1), Alp/1) v elp/t) : A

()]

(@)

3

by hypothesis, with (p:LocArp).

(C))

(5

by inversion on (1:Loc-App) with (1).
(6)

(N

by (Values Lemma) on (4).

(3)

by (Values Inversion Lemma) with (7).
G

by (1:FraMmE) with A on (8).

{p/t) 4 Alp/1) (10)

by (Substitution Lemma - Location Variable) on (5) and (9).

Toi A A+ elp/t) : Alp/t 4 A

atn

since t cannot occur in ﬁ), &,K (is fresh in conclusion) and (10).

By making:
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Fi-

A =A,A

We trivially have:

To,T1; A1 Fefp/t) : Afp/t} 4 A 12)
with (11).

To,Ti;A1 + Hy (13)

by (Subtyping Store Typing) using with (2) and (6).
Therefore, by (12) and (13) we conclude.

Case (1:Loc-Pack) - Is a value.
Case (1:Loc-OpPEN) - We have:

To: A Fopen (1, x) = (p,v) ineend: A; 4 A 1)
To: Ao + Hy @)
(Hy |l open (t,x) = {p,v) ineend) — ( Ho |l elp/t}{v/x}) (3)
by hypothesis, (p:LocOPEN).
To:Ao F {p,v) : At.Ag 4 N )
ﬁ),t:loc;AA’,x:Agke:AlﬂX 5)
by inversion on (1:Loc-Open) with (1).
Ao <: AN ©)
To: Ay + (o, v) : t.Ag A - )
by (Values Lemma) with (4).
ToiA, kv Aglp/th - ®)
by (Values Inversion Lemma) with (7).
p:loceTy )
by well-formed types of (8).
Tofp/t}; A{p/1}, x - Aolp/t} + elp/1} - Alp/t} 4 Alp/t} (10)
by (Substitution Lemma - Location Variable) with (5) and (9).
ﬁ);&,&l—v: Ao{p/t}-lg’ (11
by (1:FraME) with A on (8).
To;Bo Fv: Aolp/th 4 (12)
by (1:SusumpTIiON) with (6) and (11).
Tolp/t}; Aolp/1} F vip/t} : Aolp/t} + A{p/1} (13)
by (Substitution Lemma - Location Variable) with (9) and (12).
Tolp/ty; Aolp/t) v elp/ti{v/x} = Afp/t} 4 Afp/t} (14)
by (Substitution Lemma - Linear) with (13) and (10).
By making:
I =-
A =4
We immediately have:
Colp/1, Tis Atlp/t) v elp/hv/x) : Arlp/t) 4 Alp/t) (s
with (14).
Co, T1s ALk elp/tiv/x) s A4 A (16)
since ﬁ), E and A are closed, 7 is fresh in the conclusion and (14).
To.T1: A1 + Ho an

by (Weakening) with ﬁ on (2).
Therefore, by (16) and (17) we conclude.

Case (T:ForaLL-TYPE) - is a value.

Case (T:Type-Arp) - Analogous to (T:Loc-App).

Case (1:Type-Pack) - is a value.

Case (1:Type-OPEN) - Analogous to (1:Loc-OPEN).

Case (1:Cap-ELiv) - Not applicable, environment not closed.
Case (T:Cap-StacK) - We have:

ToiBAokeg:Ag Al 4A N
T80 + Hy @
(Holleo ) (Hiller) 3)
by hypothesis.

Toi Ao Feo: Ag 1A, A, )
by inversion on (1:CaP-STack) on (1).

To.T1: A v ), ®)
Fo, T1ALF e1: Ag 44,4 ©)

for some Ay, T;.
by induction hypothesis on (2), (3) and (4).
To,T1;A eyt Ag it AT HA (7)
by (1:CapP-Stack) on (6).
Therefore, by (5) and (7) we conclude.

Case (T:Cap-UNsTACK) - We have:

ToiBo Feo: Ao A A )
Lo + Ho @)
(Holleo) — (Hiller) 3

by hypothesis.
ﬁ);ZEFEUIAQZIA]ﬁK 4)
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by inversion on (1:Cap-UNstack) on (1).
o, T3 A v )y ®)
To.F1;Ar Fer i Ag i AL 4A ©6)
for some ZT, ﬁ .
by induction hypothesis on (2), (3) and (4).
Fo,Tis ALk eyt Ag 44,4 )
for some E, ﬁ .
by (T:CaP-UNsTACK) on (6).
Therefore, by (5) and (7) we conclude.

Case (T:SuBsumpTION) - We have:

ToiAoteo: A HA )
To;Aq + Ho @)
(Holleo)— (Hiller) (3)
by hypothesis.

Ao <: B @
To;A) Feg:Ag 4N 5)
Ag <t A (6)
N <A @)
by inversion on (T:SuBsumpTION) With (1).

To; A + Hy ®)
by (Subtyping Store Typing) with (2) and (4).

To. T1is A+ Hy ©)
[0, TA e i Ag4 Y 10

for some Ay, T7.
by induction hypothesis on (3), (5) and (8).
To.TiA Fer i A 4A (11)
by (1:SussumpTioN) with (6), (7) and (10) noting that AAI <: AAI
Therefore, by (9) and (11) we conclude.

Case (1:Tac) - is a value.
Case (1:Casg) - We have:

fB;AAn case Li#v; of Li#x; —» ejend: A A (1)
To: Ao + Ho 2
< Hy || case 1;#v; of 1 #x; — e; end > = ( Hy || eifvi/x;} ) 3)
by hypothesis, (D:CasE).
Toi Ao F 1w : 3 1A A N )
ﬁ);E,xi:Ail—ei:AAK 5)
i<j (6)
by inversion on (p:Casg) with (1).
Ao <: Ay, N @)
Toi Ay Lty s 3, LA, 4 - ®)
by (Values Lemma) with (4).
FosA kvt Aid- ©)
for some i.
by (Values Inversion Lemma) with (8).
ﬁ);AA‘,,&Fvi:AHX (10)
by (1:FraME) on (9) with A
To;80 - eifvi/xi} s A4 A an
by (Substitution Lemma - Linear) with (10) and (5), for some i.
By making:
I =-
A=A
We trivially have:
To, Tis ALk eifvi/xi} : A4 A (12
by (11).
Fo.T1: A1 F Ho (13)
by (2).
Thus, by (12) and (13) we conclude.
Case (T: ALTERNATIVE-LEFT) - We have:
F0: B0, Ao ®A; Feg: Ay A 0
T3 A, Ag ® Ay + Ho @)
(Holleo) = (Hillei) (3)
by hypothesis.
To:Ao,Ag Feg: Ay A 4)
ﬁ);ZE,AIFeO:AZ 1A 5)

by inversion on (T: ALTERNATIVE-LEFT) with (1).
By (Store Typing Inversion Lemma) on (2), we have that either:

o T0:Ag, Ag F Hy (1.1

by sub-case hypothesis.
Lo, [i; A1 F H) (1.2)
To.C1;A ket : Ay 4A (1.3)
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for some Ay, T.
by induction hypothesis with (1.1), (3) and (4).
Therefore, we conclude.
o To; A0, A1 F Hy @1
analogous to previous sub-case but using (5).
Thus, we conclude.

Case (T:FrRAME) - We have:

o3 80,8 Feg: A4 AR M
To; Ao, A; + Ho @
(Holleo)— (Hiller) 3)
by hypothesis.

ﬁ);ZEFeO:AAK 4)
by inversion on (1:FraME) with (1).

Ho = H), H{ 5)
Tos Ao + Hj ©®)
Tos A - Hy o
by store typing definition since capabilities are disjoint on (2)

(Hy H Neo ) o ( HLHY ey ) ®)
by the support of the expression and (3).

(Hylleo ) (Hller) ©)
by (8) since H|' part of the heap is not used.

To. T A+ H (10)
Co.T1;A ke A4 an

for some Ay, T
by induction hypothesis on (4), (6) and (9).

Fo.TALA Fer i A4 Dy (12
by (T:FrRAME) on (11) using E

To, T3 AL A F Hy, HY (13)
by (Weakening) and store typing definition with (7) and (10).

To.TiAL A F H) a4
by rewriting (13).

Therefore, by (12) and (14) we conclude.

Case (T:LET) - We have two reductions:
1. Sub-Case (p:LETCoNG):

To;AgHletx=¢epiney end: Ay 1A (€))
To; Ao + Ho @)
(Hollletx=epine;end) > (Hy || letx=e; ine, end) 3)
by hypothesis.

(Holleo) = (Hiller) 4)
by inversion on (p:LETCong) with (3).

oA kg : Ag 4 & ®)
ﬁ);E,x:AOFeQ:AIAK (6)
by inversion on (1:LET) with (1).

To. T Ar+ H) ©®
To.TiiAoker 1 Ag 4 A )

for some A, T
by induction hypothesis on (2), (4) and (5).

ﬁ),ﬁ;&,x:Ao »—eZ:AHK 8)
by (Weakening) on (6).
To,T1;A Fletx=ejine;end: A; 4 A 9)

by (1:Let) with (7) and (8).
Therefore, by (9) and (6) we conclude.

2. S\ub/-\Case (p:LET):

FO;Aor—Ietx:vineend:AHX (1)
To:Ag v H @
(Hl|lletx=vineend) ( H| efv/x}) 3)
by hypothesis

ﬁ);ZEFV:AOAK’ 5)
To:A,x:Agre: A 4A ©6)
by inversion on (t:LET) with (1).

Ao <: Ay, N @)
To:Au kiAo ®)
by (Values Lemma) with (4).

ﬂ;&,&kv:Aoﬂg’ 9)
by (T:FraME) with (8).

Toi A, A Fefv/xt: Ay 4 A (10)
by (Substitution Lemma - Linear) with (6) and (9).

Fo: A& H an

by (Subtyping Store Typing) with (2) and (7).
Therefore, by (Weakening) with I'; = - and by (10) and (11) we conclude.
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B.11 Progress
Theorem 2 (Progress). If ey is a closed expression such that
i:; &) Fey:AH KI

then either:

(value) ¢ is a value (v), or;

(steps) if exists Hy such that I'; Ay + Hy then
(Holleg ) (Hyller).

Proof. By induction on the typing derivation of T; ZE Fep:AA A.

Case (1:REF), (1:PURE), (T:UNIT), (T:PURE-READ), (T:LINEAR-READ), (T:PURE-ELIM) -
are all values or the environments are not closed.
Case (T:NEw) - We have:

F;KE Fnewv: dr.(refr::rwrA)A E

by hypothesis.
‘Which is not a value but transitions by (D:NEw).
Thus, we conclude.
Case (T:DELETE) - We have:
F;&Fdeletev:ﬂt.A 4E (1)
by hypothesis.
iAo Fv:dt(refrirwirA) 4 A 2)
by inversion on (T:DeLETE) with (1).
v={p.p) )

by (Values Lemma) and (Values Inversion Lemma) on (2).
Thus, by (p:DELETE) the expression transitions.

Case (T:AssiGN) - We have:

F;Z;Fvo =y LA 4E,rpr0 (D)
by hypothesis.

TiAg b vi: Ag 44, 2
F;AAlr—vozrefpﬁAAz,rprl 3)
by inversion on (T:AssiGN) with (1).

vo=p )

by (Values Lemma) and (Values Inversion Lemma) with (3).
Thus, by (p:AssiGN) the expression transitions.

Case (T:DEREFERENCE-LINEAR) - We have:

F;ZEHV:AAZ\],rwp[] (1)
by hypothesis.

T:AoFv:refp4A,rwpA 2)
by inversion on (T:DEREFERENCE-LINEAR) with (1).

vep 3)

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:DEREFERENCE) the expression transitions.

Case (T:DEREFERENCE-PURE) - Analogous to (T:DEREFERENCE-LINEAR).
Case (T:RECORD) - is a value.
Case (T:SELECTION) - We have:

T:Ag F v.fi i Aj 4 Ay )
by hypothesis.

TiAokv:[E:Al4A, 2
by inversion on (1:SELEcTION) with (1).

v={f=v} 3)

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:SELECTION) the expression transitions.

Case (T:APPLICATION) - We have:

TihoFvovi i A 44, )
by hypothesis.

TiAgkvi:Ag4AL @)
T:A Fvo:Ag oA A A3)
by inversion on (T: AppLicATION) with (1).

vo = fun(x : A”).e A <t A 4)
by (Values Lemma) and (Values Inversion Lemma) with (3).

Thus, by (p: AppLicaTION) the expression transitions.

Case (T:FuncrioN) - is a value.
Case (T:ForaLL-Loc) - is a value.
Case (T:Loc-App) - We have:

29

Ti20 +vlp] : Alp/t} 4 A )
by hypothesis.

T:Ag kv:VEA A 2)
by inversion on (:Loc-App) with (1).
v={(te 3)

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:LocArpp) the expression transitions.

Case (1:Loc-OpPEN) - We have:

’l:;AAor—open(t,x):vineend:Al-|AA2 (1)
by hypothesis.

T:Ao kv:AtAg 4 A, 2
f,t:loc;E,x:Aoke:AIAZ; 3)
by inversion on (1:Loc-OpeN) with (1).

v={(o,V) )

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:LocOPEN) the expression transitions.

Case (1:Loc-Pack) - is a value.

Case (T:ForaLL-TYPE) - is a value.

Case (1:Type-Aprp) - Analogous to (1:Loc-App) but using (p:TyYpPEAPP).
Case (T:Type-OPEN) - Analogous to (T:Loc-OpeN) but using (p:TyPEOPEN).
Case (1:Type-Pack) - is a value.

Case (1:Car-ELM) - Environment not closed.

Case (1:CapP-STACK), (T:CAP-UNsTACK) - By direct application of induction hypothesis

on the inversion of each of the typing rules.

Case (T:FrRAME) - We have:

T:Ag As b e: Ag A1, A, (1)
by hypothesis.
F;AQFEZA(]-lAl (2)

by inversion on (1:Frame) with (1).
Then, by induction hypothesis on (2), we have that either:

e ¢isavalue (v), or; 3)
o if exists Hy such that F; ZE + Hythen ( Hy |l e ) — < Hj |l e > 4)
Then, since we know that AAO, E then exists H, such that:

T; A0 Ay b Ho, Hy ®)

Therefore, by (5), (3) and (4) we conclude.

Case (1:SusumpTION) - We have:

Tihore: A 4A; 1

by hypothesis.
Ao <: Ay @
F;EFE:AOAZ; 3)
Ap <1 Ay 4)
A< B 5)

by inversion on (T:SusumpTiON) with (1).

If exists Hy such that:
T30 + Hy ©®)
TS A1+ Ho Q)

by (Subtyping Store Typing) with (6) and (2).
By induction hypothesis on (3), we have that either:
e ¢isavalue (v), or; )
e or(Holle) > (Hille) ()
Therefore, we conclude.

Case (1:Tac) - is a value.
Case (1:Casg) - We have:

F;Ekcasevoflj#xjHejend:AAE (1)
by hypothesis.

TiA0 kv 3, LA 4 Af ©)
TALXi tAibet A4 3)
i<j (C))
by inversion on (1:Casg) with (1).

v = 1;#v; )

by (Values Lemma) and (Values Inversion Lemma) with (2).
Thus, by (p:Cask) the expression transitions.

Case (T: ALTERNATIVE-LEFT) - We have:

T:A0, Ao ® A Fe: Ay 4A] )

by hypothesis.
T:Ao, Ao Fe: Ay HA; @
F;ZE,A,I—e:Ag -lE 3)

by inversion on (T: ALTERNATIVE-LEFT) with (1).
‘We have that either:
e ¢isavalue (v); 4
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Therefore the expression is a value.
o If exists Hy such that I'; Ag, Ag ® A| + Hyp

By (Store Typing Inversion Lemma) on (5), we have that either:

o T3 Ao, Ag + Hy
Then by induction hypothesis on (2), we conclude that:
(Holle)yr (Hylle')
Thus, the expression steps, since e cannot be a value.
oI3Ag, A F Hy
Then by induction hypothesis on (3), we conclude that:
(Hylle)y (Hylle')
Thus, the expression steps, since e cannot be a value.
Therefore, we conclude.

Case (T:LET) - We have:

AAor—Ietx=egine1end:A-|AA1

il

)

—

)

Ao Feo:Ag AL
A, x:Aokep A AN,

—

5

®)
(©)
()]
®)

®)

()
by hypothesis.
(2)
(3)

by inversion on (1:LET) with (1).

By induction hypothesis on (2), we have that either:
e ¢ is a value (v);

Thus, by (p:LET) the expression transitions.

o if exists Hy such that T; A + Hy
(Holleo)r { Hilley)

Thus, by (p:LETConG) the expression (1) transitions.
Therefore, we conclude.

“

®)
©6)
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