Aliasing control with view-based typestate

Jonathan Aldrich'

———_
_-————-

Introduction

Traditional type systems model state implicitly.

For instance, in a File class, although it & %
only makes sense for close to be ° ©
available after a call to open they are

commonly merged together in the same
class instead of distinguishing the states.

Typestate systems (such as Plural [1]) model state explicitly.
lo

~—a [Open\ =%, (Closed
File File

However, this creates the issue of tracking state changes across
possibly aliased object references.

arguments may be aliases of

.......................
......
.......
............
1N .
.
.
.
.
.

. A . .
void method (File a, File b, File c¢) {
‘ \' """"""""" a.open () ; State changes interfere with each
M - b.open () ; other when the arguments point to
-------------- c.open () ; the same object, but not if they
/] ... point to different ones.

How can we statically enforce the correct use of state
in the presence of alias?

Current solutions restrain access to the aliased reference by using
a fixed set of permissions, such as unique denoting that there is

only one pointer to the object.

Goal

We hope to make aliasing more explicit, flexible and generic by
allowing the programmer to create any number of views on an
object that more closely model the designer's intent on how a
reference should be safely shared/aliased.

View Typestate (based on the PLAID Language)
Views are not fixed: they can be created as needed.

For instance, a Color class can Color
define three non overlapping views

that allow for independent use of [T P

its fields so that no interferences @
can OCcur.

Related Work

[1] K. Bierhoff, J. Aldrich. Modular Typestate Checking of Aliased Objects. OOPSLA 2007.
[2] J. Boyland. Checking Interference with Fractional Permissions. SAS 2003.
[3] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. LICS, 2002.

[4] F. Damiani, et al. A fype safe state abstraction for coordination in Java-like languages. Acta Inf, 2008.

. FACULDADE DE °
CarnegieMellon =57 dhcdtiooom PLA]

Filipe Militaol?

Pair Example (non overlapping and non interfering)

class Pair{

The type system can independently track the initialization

L 1; R r; state of the left and right fields through separate views. Empty

Pair

[receiver pre state/view]

[the empty (void) permission]

[receiver post state/view]

-~

[

'none:init (R>>none x, L>>none y)ﬁEmptyPair>zPaiﬂ]{

this.setlLeft (vy) ; .

---- t---'
-

-
-

this.setRight (x ,[
}

none setleft (i>>none§x)[EmptyLeft >>Left]{ this.l = x }
}

The permission to L will be taken. Thus afterwards
only the empty permission (none) remains. Empty

Left

none setRight (R>>none x) [EmptyRight>>Right] { this.r =

// 1nitialized Pair {

state
The permission to R will be borrowed setleft transitio
and fully returned at the end of the method.

o= 4

return x.getValue () + this.l.getValue() ;

--

--

i i Left
. [this.r is unreachable inside sumSomeR]

(it is in a different view, not in Left)

none outsideRight (Right>>Right x) [Left>>Left] {

/] ...
}

none pair-method () [Pair>>Pair] {
this.sumSomeR (this.Db) ;

4
’

Pair

}

this is automatically split in the two different views:

Left and Right so both this and the previous call are legal

Iterator Example (overlapping, but non interfering, unbounded sharing)

Luis Caires?

1Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
’Faculdade de Ciéncias e Tecnologia - Universidade Nova de Lisboa, Lisboa, Portugal

join
split

Empty

Right

tRight
o
D Right

split
join

_

" Iterator Problem: changing a collection during iteration causes undesirable interferences,
we want to detect this statically (in Java, a ConcurrentModificationException is used to
detect the problem but only at run-time, not at compile-time)

~N

J

class Iterator/

// pretend there 1s always a next... 4 e . .
F Y Modifiying a Collection is only possible

Object next () [Iterator>>Iterator]{ ... }

class Collection {

--

when all Iterable slices have been
collected, otherwise the Collection is
INn an immutable UnderIteration view.

~

Collection>>Collection]{ ... }

} [size does not modify the collection
Collection = UnderIteration * Iterable Collecti

'> Iterable = ? !Iterable * ? !Iterable} ollection
|~-/ x \

We employ a simplification of the idea of fractions

existing Iterable slices.

(from Fractional Permissions [2]) to count the number of

(work in progress...)

joining requires

| represents a fixed fraction of 1/2 value. So in the all pieces
begining we have: Iterable = !Iterable * !Iterable
? is used to represent some fixed number of !'s (O or more),
therefore for ? = !l this second view equation allows for: Under lterabl
— - eranie
« ' 'Iterable I''T'Iterable * !|!!Iterable J/Iteratun1

(immutable Collection) (unbounded splitting)

. view EmptyPair { none 1; none r; } of Pair

Eview EmptyLeft { none 1; } of EmptyPair
. view EmptyRight { none r; } of EmptyPair

 view Left { L 1; } of Pair

. view Right { R r; } of Pair

1a

views define a slice of a type, that is, a subset of a "larger" type
(therefore, all other fields are unreacheable in that view). In
future work we will explore more fine grained and flexible

~

J

" a view equation specifies how an alias is allowed by
splitting into separate views (similar to the separation
operator in Separation Logic [3]) or how the permission

L view declarations, with the possibility of some inference.
/;B*EmptyPair = EmptyLeft * EmptyRight

can be recovered by joining the slices of that type.

= new Pair() in
r = new R() 1in

let 1 = new L() in E

Future Work
sharing with

z.init(l, r);
z .pair-method ()

initial expression

: overlapping and interfering
coordination

Pipe consumer-producer coordination

this alias of Pipe this alias of Pipe

is the consumer

and should only
be allowed to
read when the

buffer is not empty

Is the producer
and should only
be allowed to
write when the
buffer is not full

Buffer

@
)

Reader - AL Writer
‘ read
closeReader puffer coordination closeWriter
iIs modeled in a state
machine like in [4]
ClosedReader ClosedWriter

How to coo

ClosedPipe
Research Questions

rdinate and typecheck sharing of overlapping data?

(including other types of coordination, such as multiple

readers with a single writer, etc.)

Does knowing how each view uses its slice of a class help in
checking race conditions, incorrect coordination (deadlocks),

and lock/atomic blocks? (for instance, merging views that were
used by different threads can expose non-isolation, etc.)

