
Aliasing control with view-based typestate

Filipe Militão1,2

filipe.militao@cs.cmu.edu
Jonathan Aldrich1

jonathan.aldrich@cs.cmu.edu
Luís Caires2

luis.caires@di.fct.unl.pt

1 Carnegie Mellon University 2 CITI / Dep. de Informática
Univ. Nova de Lisboa, Portugal

ABSTRACT
Tracking the state of an object (in the sense of how a File
can be in an Open or Closed state) is difficult not just be-
cause of the problem of managing state transitions but also
due to the complexity introduced by aliasing. Unchecked
duplication of object references makes local reasoning im-
possible by allowing situations where transitions can be trig-
gered unexpectedly (for instance, passing aliased parameters
to a method that expects unaliased parameters, or calling a
method that has a side effect through an alias deeply nested
in a data structure).

We propose a generalization of access permissions that
goes beyond a fixed set of permissions to an object. In this
paper we present a new aliasing control mechanism that uses
a small set of permissions as building block for the creation
of views that capture a projection of an object with specific
access constraints to its fields and/or methods. This makes
permission tracking more fine grained while also making the
designer’s intent more explicit.

We present a few meaningful examples of how these views
handle situations such as: separating different sections of
an object for safe initialization; and access with either an
unbounded number of readers or a single writer (multiple
readers or unique writer). Finally, we show a type system
for checking correctness of state use in the presence of this
kind of controlled aliasing.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Validation—View
Typestate; D.3.3 [Programming Languages]: Language
Constructs and Features—View Typestate

General Terms
Languages, Theory, Verification

Keywords
Aliasing control, view typestate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’10, June 22, 2010, Maribor, Slovenia
Copyright 2010 ACM 978-1-4503-0015-5/10/06 ...$10.00.

1. INTRODUCTION
Typestate [14] and other techniques [6, 8] are often used

to typecheck object-oriented programs that define protocols:
ordering constraints on the calls to an object that must be
obeyed by all clients. Thus, conceptually, the type of an
object can potentially transition from one type to another
on each call in order to model the restrictions imposed at
each individual state. The usual example is a File class: a
call to the close method only makes sense after the File
has been opened and not before.

How exactly such restrictions are modeled in the type sys-
tem varies and depends on whether the focus is centered on
the externally observable sequence of calls (behavior) or the
internal states of the object (typestate). The latter approach
has lead to a typestate oriented programming language [1]
that is the basis for the grammar that we will use in this
paper. In it the states are made explicit. Therefore, in the
previous example, the File transitions to an OpenFile and
then to a ClosedFile state.

However, doing this kind of tracking quickly becomes a
hard task not due to the transitions themselves but because
of aliasing. When multiple references point to the same ob-
ject, the type system needs to check the correctness of state
use in situations where it can be non-obvious how such inter-
ferences may occur. For instance, a call may use arguments
assuming that they are not aliased, but such a specification
needs to be reflected in the signature so that a type sys-
tem can reason locally about its correctness. Nonetheless,
defining a format for aliasing specification is itself a tricky
problem since restricting it too much (for instance, making
all types linear [15] - where only a single reference to an
object can exist at any time) simplifies reasoning but com-
promises flexibility; while more complex solutions may make
the system harder to use.

Our work expands on access permissions [2], that com-
bines typestate with a set of 5 kinds of permission anno-
tations each one of them modeling certain types of object
aliasing. Thus, permissions express alias information on
what alias situations may exist and how they are allowed
to interact ranging all the way from a linear unique per-
mission to a more complex shared permission that allows
the shared object to be mutated within some state space
(the state guarantee).

We aim to make this mechanism more generic by, instead
of offering a fixed set permissions, allowing the creation of
an arbitrary number of views: projections of an object, each
modeling specific permissions to its content (both on fields
and methods). Thus, with this model, aliasing control is

centered on managing how these views interact. Our contri-
butions include:

• A new abstraction to handle aliasing: views, a projec-
tion of a (complete) object defined based on a small set
of permissions and equations that restrict what can be
accessed (methods and fields) and when. These views
allow for improved clarity by more tightly modeling the
designer’s intent. They also support more fine grained
control by not limiting the developer to a fixed set of
permissions.

• A type system that combines views and typestate (to-
gether with fractions [3]) to check the use of state in
the presence of several user defined aliasing patterns,
including single writer/multiple reader.

2. OVERVIEW
In this section we illustrate our approach with a couple

of simple examples: initialization of a pair data structure
(where each element of the pair is handled separately); and
a single-writer or multiple-readers scenario (where an im-
mutable view of an object can co-exist with an unbounded
number of copies of that view, but where write access re-
quires all of them to be collected back to ensure no interfer-
ences can occur).

2.1 Simple Linear Views
We now show how to define a pair datatype where we track

the non-initialized state (EmptyPair) and the completely ini-
tialized state (Pair), while allowing the left and right fields
to be separately initialized. This will require aliasing of the
pair object but, by pushing each field into a distinct view,
the type system can ensure that they will not interfere.

1 class EmptyPair {
2 /∗ view de c l a r a t i o n s ∗/
3 view EmptyLeft { none l; }
4 view EmptyRight { none r; }
5 view Pair { L l; R r; }
6 view Right { R r; }
7 view Left { L l; }

In this chunk of code of the EmptyPair class we declare all
the views, each defining a set of usable fields. All views
starting with Empty have fields with the none type (void
content). Consequently, a constructor does need to not take
arguments since all fields are initialized by default to null.
Therefore, the class itself is a view where all fields are typed
with none. This makes field declarations outside a view re-
dundant and consequently we do not allow them. The full
set of fields in a class is formed by the union of all fields
of all views. In this example, all fields have read and write
permissions to the field variable, in the next example we will
show how we can go further and define views with only a
read permission.

Each view is conceptually an isolated chunk of an object
that has no immediate relation with other views. Therefore,
we use view equations to specify how several views can be
safely split and merged. Splitting implies breaking one single
view into others while merging is just the reverse operation.

8 // (more of EmptyPair c l a s s)
9 EmptyPair = EmptyLeft * EmptyRight

10 Pair = Left * Right

The * operator in the first equation (cf. separation logic [12])
specifies that EmptyPair can be decomposed into views
EmptyLeft and EmptyRight which can be used indepen-
dently. The converse (merging both views into EmptyPair)
is also true since equations are symmetric.

Unlike view declarations which contain private informa-
tion (fields), these view equations are public (i.e. visible to
the outside of a class). Consequently, there also needs to
be a verification of well-formeeness between what the equa-
tion declares and the internal contents of the views to ensure
that there are no conflicts. In this example, the verification
would immediately succeed as the views use a disjoint set of
fields and therefore there is no risk of interferences.

Lastly, we introduce the method declarations, which must
account for the use of views, and are of the form:

T m(T � T x) [T � T] { e }

Our syntax is inspired by the Plaid language [1]. The (pos-
sibly empty) list of arguments is formed by annotations
Tin � Tout that indicates the type (i.e. view) of each argu-
ment at the beginning and at end of the call, respectively
(thus, Tin is the in-type and Tout the out-type). The anno-
tation inside the trailing square brackets also express view
change, but for the receiver (this). It is also important to
note that these define traditional pre/post conditions that
are only valid at the boundaries of the method and do not
(by themselves) impose constraints between the two events.
We show the annotated code for three methods:

11 none setLeft(L>>none x)[EmptyLeft>>Left]{
12 this.l = x;
13 }
14 none init()[EmptyPair>>Pair]{
15 // (t h i s : EmptyPair)
16 // (t h i s : EmptyLeft∗EmptyRight) [by equat ion]
17 this.auto_init(this,this);
18 // (t h i s : Le f t ∗Right)
19 // (t h i s : Pa i r) [by equat ion]
20 }
21 none auto_init(EmptyLeft>>Left l,
22 EmptyRight>>Right r)[none>>none]{
23 // (l : EmptyLeft , r : EmptyRight)
24 l.setLeft(new L());
25 // (l : Left , r : EmptyRight)
26 r.setRight(new R());
27 // (l : Left , r : Right)
28 }
29 }

Comments in the code show the typing environment at each
step, and its splitting modulo * using the view equations.
Such manipulations are captured by the subtyping relation
described in Section 4. Notice that this is safely aliased no
less than three times in this.auto_init(this,this);

We use a linear ownership model for tracking individual
references. Thus, a method signature such as (T � none)
indicates that the method’s body may store the argument
and consequently the caller will lose ownership of it. This
is in opposition to borrowing (T � U), where ownership is
returned at the end (even if at a different view type U).

The setLeft method signature illustrates view state tran-
sitions where starting from view EmptyLeft, by assigning
the correct type to the field it satisfies the conditions to be
packed back into a Left view. Packing and unpacking will
be explained in more detail in Section 4.

2.2 Unbounded Sharing of Views
So far we have illustrated fully disjoint (non-overlapping /

linear) views. In this section we will show how unbounded
sharing is accommodated in our framework, allowing views
to be aliased an unlimited number of times. The key issue
is how to check that such a view is indeed safely replicable
and tracking whether the entire initial view is back together
or not (i.e. if it is still a fraction or the full view).

To exemplify, consider the iterator problem: in Java, an
Iterator over a Collection is only correct as long as the
underlying Collection remains unchanged. Once a mod-
ification is made the iterator should become invalid, a sit-
uation that is usually flagged with an exception. We can
model such constraint using the view equation:

Collection = Iterable! * UnderIteration

A view that may be unboundedly split is marked with a !
as in Iterable! (which is equivalent to an infinite equation
of the form Iterable = Iterable * Iterable * ...).
Thus, to obtain an Iterable view we decompose Collection
into both Iterable! and UnderIteration. This last view
models an immutable Collection that cannot interfere with
the several Iterable view used by iterators (such check be-
tween the view declaration and the view equations to ensure
consistency between what both specify is done statically).
To regain modification access, all pieces of Iterable must
be joined back. Our type system keeps track of such pieces
using fractions (cf. [3]), which are kept hidden from the pro-
grammer. Fractions track the number of copies of a single
view. Thus, a unique view will have a full fraction (1) while a
partial fraction will have some fraction of 1 of that view (1

k
).

Since our splitting operation is binary, we decided to use a
multiplication of a fixed fraction (1

2
) using the / symbol as

will be explain further below.
This modeling assumes that all iterators must be read-

only. An alternative, also present in the Java API, would
use the single writer multiple readers scheme for iterators,
that is:

RW_Iterator = RO_Iterator!
Collection = RW_Iterator * UnderIteration

And therefore in this situation we could have one itera-
tor causing changes in the Collection only when all other
RO Iterators have been collected (by the type system, stat-
ically).

We illustrate unbounded aliasing using a more detailed
example, involving a Cell object, which contains a Lamp ob-
ject. The Lamp object goes through linear and unbounded
shared views. In particular, it may be unlimitedly split
into many views, providing only read operations. Once all
view splits get merged back into the full type, a unique
view enabling the write operation is recovered. The ex-
ample also illustrates nested replication since sharing of the
outer Cell implicitly also shares its Lamp field. All pure im-
mutable values (such as Integer) will never need any sort of
aliasing control since they can always be safely copied, e.g,
Integer=Integer!.

1 class Lamp {
2 view LampOn { Integer bulb; }
3 view LampOff { none bulb; }
4 view StaticLamp { const Integer bulb; }

The view declarations are similar to our previous example
except for the const modifier in the StaticLamp view. This
indicates that field bulb in view StaticLamp is read only.
It also restrains the type for that field to be immutable as
well, but since Integer is pure already, such condition is
automatically met.

5 Lamp = LampOff
6 LampOn = StaticLamp!

The second equation allows the type system to switch be-
tween LampOn or a full replicable view StaticLamp!. Getting
back to LampOn requires all the previously split StaticLamp
fractions of the full replicable view to be collected. To sim-
plify the use of fractions, we do not allow specific fractions
to be declared in the source code. Instead, we only have two
notations: the full replicable view (T!) or a type annotation
that abstracts over the actual fraction number the view is
in at the moment of the call (T?). This is illustrated in the
following method declarations:

7 none turnOn() [LampOff >> LampOn] { ... }
8 none turnOff()[LampOn >> LampOff] { ... }
9 Integer getLightIntensity()

10 [StaticLamp? >> StaticLamp?] { bulb }
11 }

The getLightIntensity method uses the latter annotation
to mean that the receiver is parametric on the view’s frac-
tion. On type checking, ? gets instantiated by a concrete
fraction so that borrowing is properly chained for that call
(and the final type carries the correct fraction count). Frac-
tion annotations (! or ?) are only allowed (and required) for
replicable views to differentiate between the two possibili-
ties (full or partial), non-replicable views do not suffer from
this ambiguity and therefore are not allowed to have those
annotations.

We now proceed to show the code for the class that wraps
Lamp: the EmptyCell class.

1 class EmptyCell {
2 view ReadOnly { const StaticLamp! lamp; }
3 view FilledCellOff { LampOff lamp; }
4 view FilledCellOn { LampOn lamp; }
5 FilledCellOn = ReadOnly!

Notice that for a view to be safely replicable all its content
field types must also be replicable. Thus, ReadOnly con-
tains not only a const modifier but also a StaticLamp! as
the field type. The remaining methods are mostly straight-
forward and therefore, we will only show their signatures:

6 none setLamp(Lamp>>none lamp)
7 [EmptyCell >> FilledCellOff]
8 Integer readIntensity()[ReadOnly? >> ReadOnly?]
9 none writeLampOn()[FilledCellOff >> FilledCellOn]

10 none writeLampOff()[FilledCellOn >> FilledCellOff]
11 Lamp getLamp()[FilledCellOn >> EmptyCell]
12 }

We show how our type system uses fractional views, in typ-
ing the following client code:

none m0(FilledCellOff>>FilledCellOn cell)
[none >> none] {

// (c e l l : F i l l e dC e l lO f f)
cell.writeLampOn();
// (c e l l : F i l l e dCe l lOn)
// (c e l l : ReadOnly !) [by equat ion]
cell.readIntensity();
// (c e l l : ReadOnly !)

// (c e l l : F i l l e dCe l lOn) [by equat ion]
}

Notice how the instantiation of ? in the method signature
to the correct fraction (in this case the full fraction of the
replicable view) is carried on for the borrowing. Thus, the
method type checks. Now consider the signature:

none n(ReadOnly? >> ReadOnly? a,
ReadOnly? >> ReadOnly? b,
ReadOnly? >> ReadOnly? c)[none >> none]

and typed code, showing the intermediate type environ-
ments

none m1(ReadOnly! >> ReadOnly! x)[none >> none]{
// (x : ReadOnly !)
// (x : ReadOnly/ ∗ ReadOnly/)
// (x : ReadOnly/ ∗ ReadOnly// ∗ ReadOnly//)
n(x,x,x);
// ReadOnly/ >> ReadOnly/ a
// ReadOnly// >> ReadOnly// b
// ReadOnly// >> ReadOnly// c
// (x : ReadOnly !)

}

The three lines below n(x,x,x) show the correct instantia-
tion of the parameter annotations of method n. Note that
the ? instantiation is local to each parameter. Our system
uses T/ to mean a concrete fraction (one half, cf. 1/2) of the
type T , such concrete fractions are introduced by primitive
subtyping equations (e.g., T ! = T/ ∗T/). The abstract frac-
tion notation avoids the use of concrete rational numbers in
the type system, and is expressive enough for our purposes.

3. PROGRAMMING LANGUAGE
The complete abstract syntax of our core programming

language is shown in Fig. 1; we follow a let-normal form [13]
syntax for simplicity. The semantics is the expected one for
a typical core object-oriented languages [9], as view anno-
tations play no role at runtime (we don’t consider method
overloading or inheritance for now). To simplify the presen-
tation we adopt a few conventions.

• Concrete fractions never appear in source code, and
are only used internally by the type system;

• As a consequence of the previous point, we treat cap-
tured method arguments conservatively: if a method
captures any non-empty fraction of an argument (e.g.
by storing it in a field) then the residual argument type
is forced to be none.

This design choice has the benefit of making clear from
the signature of a method which arguments may be
captured in whole or in part, without requiring the
developer to use explicit fractions. In situations where
a well-known, finite fraction of an object is captured,
however, it potentailly loses precision relative to a so-
lution based on explicit fractions. Note, however, that
recovering a complete fraction from well-known, finite
parts would also require a way to reason about the
equality of two pointers so their fraction values can be
merged; we leave this as a topic to future work.

• Parametric fractions T? can only be used in in/out-
types of a method signature and not elsewhere. In
fact, T? types were introduced to allow methods to
work uniformly over all concrete fractional views of
the argument type.

Notice that we extended our core language with the standard
abbreviation: e0; e1 , let x = e0 in e1 (x not free in e1)

4. SUBTYPING
Our system relies on a subtyping relation that plays a

crucial role in expressing view splitting and merging. The
full definition may be found in Fig. 2. Our rules include a
method subtyping rule, which is interesting in that all inputs
to the method are contravariant, but permission outputs–
including permissions returned to arguments–are covariant.
The other rules describe subtyping for classes, subtyping
axioms for conjunction (*), and the semantics of T ! and T/.
These rules allow a full fraction (!) to be split into sequences
of / and merged back together as described in the examples
above.

In Fig. 3, subtyping is extended beyond a single type
to include subtyping for typing environments. We use a
linear typing environment (∆) that contains an unordered
set of declarations of the form (x : T, z : J, . . .), where e.g.,
x is a variable and T its declared type. This linearity is
needed to track the progress of type mutations caused by
state transitions throughout the program that cannot be
correctly tracked by a normal (lexical) typing environment.

The definition of subtyping for typing environments is sim-
ply applying the subtype relation to each of the variables in
a subset of that environment. This implies that we can go
beyond separating a type into separating pieces of an envi-
ronment (as in ∆0 <:> ∆1 ∗∆2). For instance:

(∆, (x : U ∗ T)) <:> (∆, (x : U)) ∗ (x : T)

Note the difference between both sides: the comma sepa-
rated lists are for single environments (thus assumes no du-
plication - just a unique set of labels) while the star separates
two such environments.

Besides the expected split rules, there is the need for a
more subtle rule, to take into account the issue of pack-
ing/unpacking this: we cannot allow both access to the this
pointer and its fields. Otherwise, using a field as an argu-
ment in a (self) call could cause an alias if we also allow it
to be accessible in the method’s body. Therefore, we use
packing/unpacking [7] to exchange the external view of an
object for access to its fields by enforcing that:

• At any given point in a program, either there is access
to this or to the fields of this (this.x) but never to both
at the same time (for some view T);

• Packing to (this : T) requires all fields to be at the
correct state required for that view T .

• Crucially, unpacking a replicable view requires the view’s
current fraction to be assigned to the fields, because
these are implicitly replicated as a consequence of the
outer view replication. For instance, in the previous
example were we used the (replicable) ReadOnly view:
when a fractional view such as ReadOnly/// is un-
packed its field must be exposed as the type
StaticLamp/// and not as the plain type StaticLamp!
declared in the view.

This is only valid because we impose that fields con-
taining replicable views must be full (!). Therefore,
there is no risk of messing the fraction count (of what
part of the fraction belongs to this and what part is

x ∈ IdentifierNames
m ∈ MethodNames
c ∈ ClassNames

P ::=
〈
C, e

〉
(program)

C ::= class c { V E M } (class)

V ::= view c { F } (view)
F ::= [const]opt T x; (field)
E ::= c = T (equation)
M ::= T m(T � T x) [T � T] { e } (method)

e ::= v | new c() (expressions)
| this.x = v
| let x = e in e | v.m(v)

v, u ::= x | this | this.x[const]opt | null (values)

N ::= c | none (type names)
T, U, J,W,K ::= T ∗ T | N [f]opt (types)

f ::= k (fractions)
| ! (full fraction)

k ::= [?]opt {/}∗ (partial fraction)

Figure 1: Programming language syntax.

∀m.(m ∈ methods(U) : mtype(m,T) <: mtype(m,U))

T <: U
(class)

T <:> T ∗ none
(id)

(c = T) ∈ E

c <:> T
(equation)

W0 <: W1 T1 <: T0 U0 <: U1 K1 <: K0 J0 <: J1

m(T0 � U0 x) [K0 � J0]→W0 <: m(T1 � U1 x) [K1 � J1]→W1

(method)
T <: none

(top)

(T ∗ J) ∗ U <: T ∗ (J ∗ U)
(assoc)

T ∗ U <: U ∗ T
(comm)

T <: J J <: U

T <: U
(trans)

T <: J

U ∗ T <: U ∗ J
(*cong)

N ! <:> N/ ∗ N/
(replication)

N k <:> N k/ ∗ N k/
(replication - fractions)

Figure 2: Subtyping on types.

from the field) when we pack/unpack as would happen
if replicable fields could have a generic (?) fraction.

• Each field must be packed/unpacked with the appro-
priate const value of the view. When unpacked, this
is tracked by the index on the label such as this.xconst

or without the indexed const if it is writable since oth-
erwise this information is only present on some view
declaration.

These conditions imply that a view not containing fields
can always be packed/unpacked at any time; being stateless,
they may be freely aliased. We exemplify packing (exchang-
ing access to fields to access to this) and unpacking (the
opposite operation) by getting back to the Pair example:

none doSomethingR(R>>R x)[Left>>Left]
none outsideRight(Right>>Right x)[Left>>Left]
none pair-method()[Pair>>Pair]{

// (t h i s : Pa i r)
// (t h i s : Le f t ∗ Right)
// (t h i s : Le f t) , (t h i s : Right)
// (t h i s : Le f t) , (t h i s . b : R) [by unpack]
this.doSomethingR(this.b);
// (t h i s : Le f t) , (t h i s . b : R)
// (t h i s : Le f t ∗ Right) [by pack]
this.outsideRight(this); // (t h i s : Pa i r)

}

5. TYPE SYSTEM
We now present our type system, that combines views

and typestate with fractions, to check the use of state in
the presence of aliasing patterns controlled by user defined
equations. Typing judgements have the form:

∆0 ` e : T a ∆1

Such a judgment states that in typing environment ∆0, the
expression (e) has type T , with effects resulting in the envi-
ronment ∆1. The typing rules are shown in Fig. 4.

In the (read) rule, we separate a view of v from ∆ and
return it. This includes the case where v is this or this.x
and thus may require previous pack/unpack steps using the
(subtyping) rule.

For (field assign), the old content is returned while the new
one (v) is extracted from the environment as in the previous
rule. Note that it requires the field to be non-const (not of
the form this.xconst) so that it must be the unpacked field of a
view with write permissions. There is no restrictions on the
type of the new value, which eases the transitions between
views as they just need to be packable to the correct type
at the end of the call.

The (new) just returns a type of the instantiated class,
since there are no arguments to be checked (they are all
initialized to null and typed with none).

In (let), the result of e0 (that will be substituted into x at
runtime) is forwarded to e1. Therefore, the typing environ-
ments follow the same flow. The rule does not return the
type of x (the variable that will fall out of scope) to the envi-
ronment at the end. For that, we could define an additional
construct let-borrow that models such behavior by creating
an intermediate auxiliary method where all arguments are
borrows (thus, it is just syntax sugar).

In the (call) rule, any possibly T? views in the argument
types need to be instantiated to the appropriate fraction.
This is done using a notation similar to standard substitu-
tion but that gets applied solely to the type. After this in-
stantiation, one checks that the arguments’ type are correct
for the call and proceeds with the out-types of the signature
(adjusted to the appropriate fraction instantiation). Check-
ing the correctness of the method’s body is done through the
(method check) rule and the correctness of a class with the
(class check) one. Notice that the (subtyping) rule incor-
porates all the view split and merge principles, as discussed
above.

Finally, we need rules to check the well-formedness be-
tween views and equations: views can only be set as repli-

∆0 <:> ∆1 ∗∆2

∆0, (v : T ∗ U) <:> (∆1, (v : T)) ∗ (∆2, (v : U))

T <: U

(∆, (v : T)) <: (∆, (v : U))

(∆1,∆2) <:> ∆1 ∗∆2

fields(T) = [const]opt U x [frac(T)/!]U = J

(this : T) <:> (this.x[const]opt : J)
(pack/unpack)

Figure 3: Subtyping on environments.

∆0 <: ∆1 ∆1 ` e : U a ∆2 ∆2 <: ∆3 U <: T

∆0 ` e : T a ∆3
(subtyping)

class c { V E M } ∈ C

∆ ` new c() : c a ∆
(new)

∆ ` null : none a ∆
(null)

mtype(m,K) = T ′ � U ′ [K′ � J ′]→W
[frac(K)/?] (K′ � J ′) = (K′′ � J) K <: K′′

[frac(T)/?] (T ′ � U ′) = (T ′′ � U) T <: T ′′

∆ ∗ (v : K,u : T) ` v.m(u) : W a ∆ ∗ (v : J, u : U)
(call)

this.x 6= this.xconst

(∆, this.x : K) ∗ (v : T) ` this.x = v : K a (∆, this.x : T)
(assign)

∆0 ` e0 : U a ∆1

∆1, (x : U) ` e1 : T a ∆2, (x : K)

∆0 ` let x = e0 in e1 : T a ∆2
(let)

∆ ∗ (v : T) ` v : T a ∆
(read)

mtype(m, c) = T � U [K � J]→W
x : T , this : K ` e : W a x : U, this : J

W m(T � U x) [K � J] { e } OK
(method check)

M OK E OK

class c { V E M } OK
(class check)

fields(T) = “fields of type T” methods(T) = “methods of type T”
frac(T) = “fraction of T” mtype(m,T) = “type of method m in type T”

Figure 4: Typing rules.

cable in an equation if all its fields are both constant and
with a replicable type (so that the replication cannot cause
unwanted interferences); and that the set of writable fields is
disjoint (non-overlapping) when splitting a view (to ensure
a unique writer for each field). Thus, on a split, the set of
fields of a view is either disjoint, or non-disjoint fields are
const and replicable.

6. RELATED WORK
In [2] Bierhoff and Aldrich define an aliasing control mech-

anism to modularly check state use in Java based on a set
of 5 different kinds of access permissions. Our work has
its roots in an attempt to unify both the state and alias-
ing control under the same abstraction (that we call views).
Although our model is generally cleaner, we have not yet
reached the same level of expressiveness of aliasing modali-
ties (such as allowing for multiple writers to share an object
with limited guarantees on what the type system can as-
sume about its current state). Similarly, our approach was
also influenced by the Plaid language [1]. However, our focus
on views means that instead of changing the set of fields at
each state, we model this by changing the types accordingly
(the field is still “there” but without a permission to use it).
In general, a view is identical to a state except that it can
be recombined (merged and split using the same mechanism
as Boyland’s fractional permissions but applied to views),
and therefore we are approaching a separation algebra [5]
over views, as accountable “parts” of typestates. The repli-
cable view types are inspired in the shared types of [4]. Our
research is also related to masked types [11], were a type

system statically ensures that uninitialized fields are never
read. In our case, we can use views to model the same sit-
uation: a class that has not yet been properly initialized is
represented by giving all its fields a none type in the initial
view. However, masked types handle inheritance which we
do not. Data groups [10] are also similar to our views since
they allow to partition fields into separate groups with re-
stricted access to an object’s fields but does not include a
mechanism similar to our view equations for complex recom-
bination (merges and splits).

7. CONCLUSION AND FUTURE WORK
We have presented a new abstraction to control aliasing:

views. They create a limited projection of an object that
is then managed by the type system to provide safe use of
state in the presence of aliasing. By allowing the program-
mer to specify these views as well as the way in which they
can be mixed, we showed that this increased flexibility not
only helps understanding the code but also provides a more
fine grained permission granularity. So far, our approach
is capable of handling alias of the form of a single-writer
/ multiple-readers by using fractions to track whether all
readers have been collected into the single writer.

In future work, we plan to explore how to model more
complex forms of interaction between views to handle other
cases of aliasing (such as coordination between different ends
of a pipe) and improve the expressiveness of our system.

Acknowledgements.
This work was partially supported by Fundação para a

Ciência e Tecnologia and the Information and Communica-
tion Technology Institute at CMU, INTERFACES NGN44-
2009-2012, and the Æminium project SE38-2009-2012. The
Plaid group is acknowledged for many insightful discussions.
We also thank the anonymous reviewers for their helpful
comments.

8. REFERENCES
[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks.

Typestate-oriented programming. In Proc. Onward!,
pages 1015–1022, 2009.

[2] K. Bierhoff and J. Aldrich. Modular typestate
checking of aliased objects. In Proc. Object-Oriented
Programming Systems, Languages, and Applications,
pages 301–320, 2007.

[3] J. Boyland. Checking interference with fractional
permissions. In Proc. Static Analysis Symposium,
pages 55–72, 2003.

[4] L. Caires. Spatial-behavioral types for concurrency
and resource control in distributed systems. Theor.
Comput. Sci., 402(2-3):120–141, 2008.

[5] C. Calcagno, P. W. O’Hearn, and H. Yang. Local
action and abstract separation logic. In Proc. Logic in
Computer Science, pages 366–378, 2007.

[6] F. Damiani, E. Giachino, P. Giannini, and
S. Drossopoulou. A type safe state abstraction for
coordination in java-like languages. Acta Inf.,
45(7-8):479–536, 2008.

[7] R. DeLine and M. Fähndrich. Typestates for objects.
In European Conference on Object-Oriented
Programming, pages 465–490. Springer, 2004.

[8] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert,
and A. Z. Caldeira. Modular session types for
distributed object-oriented programming. In Proc.
Principles of Programming Languages, pages 299–312,
2010.

[9] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: a minimal core calculus for Java
and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001.

[10] K. R. M. Leino. Data groups: specifying the
modification of extended state. SIGPLAN Not.,
33(10):144–153, 1998.

[11] X. Qi and A. C. Myers. Masked types for sound object
initialization. In Proc. Principles of Programming
Languages, pages 53–65, 2009.

[12] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proc. Logic in Computer
Science, pages 55–74, 2002.

[13] A. Sabry and M. Felleisen. Reasoning about programs
in continuation-passing style. In Proc. LISP and
Functional Programming, pages 288–298, 1992.

[14] R. E. Strom and S. Yemini. Typestate: A
programming language concept for enhancing software
reliability. IEEE Trans. Software Eng., 12(1):157–171,
1986.

[15] P. Wadler. Linear types can change the world! In
Programming Concepts and Methods. North, 1990.

