
Filipe Militão1,2 Jonathan Aldrich1 Luís Caires2

1 Carnegie Mellon University, Pittsburgh, USA
2 Universidade Nova de Lisboa, Lisboa, Portugal

Rely-Guarantee
Protocols

ECOOP 2014

Motivation

• Mutable state can be useful in certain cases.

• Precisely tracking the properties of mutable
state avoids a class of state-related errors.

• However, aliasing makes tracking such
properties challenging.

2

3

 x.open(...);
 x.write(...);
 x.write(...);

4

 x.open(...);
 x.write(...);
 x.write(...);

Opened

 x.open(...);
 x.write(...);
 x.write(...);

5

Opened
 y.close()

Closed

6

 y.close()

 x.open(...);
 x.write(...);
 x.write(...);

 x.open(...);
 x.write(...);
 x.write(...);

Closed

7

The assumption that x was pointing to
an Opened file can be invalidated due

to the interference caused by y.

A novel interference-control mechanism,
Rely-Guarantee Protocols, to statically

handle interference in the use of mutable state
that is shared by aliases through statically

disconnected variables.

8

Contribution

Language

• Polymorphic λ-calculus with mutable
references (and immutable records, tagged
sums, ...).

• Technically, we use a variant of L3 adapted for
usability and extended with new constructs,
and our sharing mechanism.

9

[Ahmed, Fluet, and Morrisett. L3: A linear language with

locations. Fundam. Inform. 2007.]

State as a
Linear Resource

10

ref A

State as a
Linear Resource

10

ref A reference with
contents of type A

State as a
Linear Resource

10

ref A reference with
contents of type A

rw p A

{
ref p

State as a
Linear Resource

10

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

State as a
Linear Resource

10

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

ref p
ref p
ref p
ref p
ref p
ref p

State as a
Linear Resource

10

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

linear (“unique”)
read+write

capability of
location p with

contents of type A

ref p
ref p
ref p
ref p
ref p
ref p

State as a
Linear Resource

10

ref A reference with
contents of type A

rw p A

{
ref pduplicable

reference to
location p

linear (“unique”)
read+write

capability of
location p with

contents of type A
p links ref to

capability

ref p
ref p
ref p
ref p
ref p
ref p

11

 let y = x in

 delete y;
 x := false

 end

x : ref p rw p string

 x := 1;

12

 let y = x in

 x := 1;
 delete y;
 x := false

 end

x : ref p rw p stringy : ref p

13

 let y = x in

 delete y;
 x := false

 end

x : ref p rw p inty : ref p

 x := 1;

14

 let y = x in

 delete y;

 x := false

 end

x : ref py : ref p

 x := 1;

14

 let y = x in

 delete y;

 x := false

 end

x : ref py : ref p

Type Error: Missing
capability to location p.

 x := 1;

Why sharing?
Capabilities are linear (a.k.a. “unique”)!

15

Why sharing?
Capabilities are linear (a.k.a. “unique”)!

15

Sharing
A capability is split into rely-guarantee protocols
to safely coordinate access to the shared state.

16

Sharing
A capability is split into rely-guarantee protocols
to safely coordinate access to the shared state.

16

Disjoint

17

A * B

• Linearity ensured disjointness.

• Sharing causes fictional disjointness.

[Dinsdale-Young, et al. Concurrent Abstract Predicates.

 (ECOOP’10), and other works].

Fictionally

18

A * B

shared

Disjoint

[Dinsdale-Young, et al. Concurrent Abstract Predicates.

 (ECOOP’10), and other works].

• Linearity ensured disjointness.

• Sharing causes fictional disjointness.

Problems of Sharing

1. Account for interference (public changes).
Consider all possible interleaved uses of aliases and
how they may change the shared state.

2. Handle private changes.
Making sure other aliases do not see any
intermediate or inconsistent states of the shared
state (which may appear due to type changing
assignments like int to string, etc.).

19

20

 x := 1;
 doSomething();
 !x // what do we get?

Alias Interleaving

21

fun().1

fun().x := false

fun().delete x

doSomething interleave zero or more aliases
to the same state as referenced by x.

 x := 1;
 doSomething();
 !x // what do we get?

Alias Interleaving

22

If doSomething did change the same state as aliased
by x (i.e. interfered), what change occurred?

 x := 1;
 doSomething();
 !x // what do we get?

Alias Interleaving

Handling Interference
• One solution is to ensure that each alias obeys an initially

held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee reasoning to a
state-centric model by generalizing the specification of
shared state interactions.

By individually constraining the actions of each alias, we can
make stronger (as in more precise) assumptions how
interference may change the shared state.

23

I I

R G

⇒

⇒

Handling Interference
• One solution is to ensure that each alias obeys an initially

held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee reasoning to a
state-centric model by generalizing the specification of
shared state interactions.

By individually constraining the actions of each alias, we can
make stronger (as in more precise) assumptions how
interference may change the shared state.

23

I I

R G

⇒

⇒Relied state

Handling Interference
• One solution is to ensure that each alias obeys an initially

held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee reasoning to a
state-centric model by generalizing the specification of
shared state interactions.

By individually constraining the actions of each alias, we can
make stronger (as in more precise) assumptions how
interference may change the shared state.

23

I I

R G

⇒

⇒Relied state Guaranteed state

Modeling Interference

A Rely-Guarantee Protocol models the shared state
interaction from the alias’ own view/perspective:
• The alias’ actions are constrained to fit within

what the protocol specifies/allows.
• Interference is observed through new state(s)

that may appear when inspecting the shared
state. Thus, the protocol may specify actions
over states that can only be produced by other
aliases.

24

Rely-Guarantee
Protocols

• An interference-control mechanism.

• I will focus on presenting the following:

1. Protocol Specification (“public changes”)

2. Protocol Use (“private changes”)

3. Protocol Conformance (“alias interleaving”)

25

(see the paper for more technical details)

26

Types

27

Types

28

Types

29

Types

30

Types

31

Types

1. Protocol
Specification

32

1. Protocol
Specification

33

1. Protocol
Specification

34

1. Protocol
Specification

35

1. Protocol
Specification

36

The shared state satisfies A, and requires
the alias to obey the guarantee P.

1. Protocol
Specification

37

Requires the client to establish (guarantee)
that the shared state satisfies A before
continuing the use of the protocol as P.

1. Protocol
Specification

38

Shared Pipe

39

Shared by two aliases interacting via a common
buffer, here modeled as a singly linked list.

1. The Producer alias may put new elements in or
close the pipe.

2. The Consumer alias may only tryTake elements
from the buffer.

The result of tryTake is one of the following states:
either there was some Result, or NoResult, or
the pipe is fully Depleted.

40

Pipe

41

Consumer

Producer

42

Consumer

Producer

Shared Buffer

Producer Protocol

Consumer Protocol

43

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

44

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

45

Producer

tail : none

46

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

Consumer
47

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

head : rec X.((Empty ⇒ Empty ; X)

 ⊕ (Filled ⇒ none ; none)

 ⊕ (Closed ⇒ none ; none))

Consumer
48

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

head : rec X.((Empty ⇒ Empty ; X)

 ⊕ (Filled ⇒ none ; none)

 ⊕ (Closed ⇒ none ; none))

Consumer
49

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

head : none

Consumer
50

Producer

tail : Empty ⇒ (Filled ⊕ Closed) ; none

head : rec X.((Empty ⇒ Empty ; X)

 ⊕ (Filled ⇒ none ; none)

 ⊕ (Closed ⇒ none ; none))

51

Producer Protocol:

Consumer Protocol:

head : rec X.((Empty ⇒ Empty ; X)

 ⊕ (Filled ⇒ none ; none)

 ⊕ (Closed ⇒ none ; none))

tail : Empty ⇒ (Filled ⊕ Closed) ; none

52

T[t] = rw t Empty#[] ⇒
 ((rw t Node#[...]) ⊕ (rw t Closed#[]));

none

H[t] = rec X.(
 (rw t Empty#[] ⇒ rw t Empty#[] ; X)
 ⊕ (rw t Node#[...] ⇒ none ; none)
 ⊕ (rw t Closed#[] ⇒ none ; none))

Producer Protocol:

Consumer Protocol:

Pipe Typestate

53

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

Pipe Typestate

53

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

Pipe Typestate

53

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

rw p ∃p.(ref p :: T[p])

Pipe Typestate

53

∃P.∃C.(![

 put : !((!int :: P) ⊸ (![] :: P)) ,
 close : !((![] :: P) ⊸ ![]) ,
 tryTake : !((![] :: C) ⊸ Depleted#![] +

 NoResult#(![] :: C) + Result#(!int :: C))
] :: (C * P))

rw p ∃p.(ref p :: T[p])

rw c ∃p.(ref p :: H[p])

Problems of Sharing

1. Account for interference (public changes).
Consider all possible interleaved uses of aliases and
how they may change the shared state.

2. Handle private changes.
Making sure other aliases do not see any
intermediate or inconsistent states of the shared
state (which may appear due to type changing
assignments like int to string, etc.).

54

Syntax

55

Syntax

56

Syntax

57

2. Protocol Use

• Protocols are used through focus and
defocus constructs.

• They serve two purposes:

a) Hide private changes from the other
aliases of that shared state.

b) Advance the step of the protocol, by
obeying the constraints on public changes.

58

Focus / Defocus

59

focus Empty

 ...

defocus

Focus / Defocus

59

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

59

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

60

defocus-guarantee

focused state

Empty ⇒ Filled ; Next

Focus / Defocus

61

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

61

Empty , Filled ; Next

focus Empty

 ...

defocus

Empty ⇒ Filled ; Next

Focus / Defocus

62

focus Empty

 ...

defocus

PartiallyFilled , Filled ; Next

Empty , Filled ; Next

Focus / Defocus

63

Filled , Filled ; Next

Empty ⇒ Filled ; Next

Empty , Filled ; Next

focus Empty

 ...

defocus

Focus / Defocus

64

Filled , Filled ; Next

Empty ⇒ Filled ; Next

focus Empty

 ...

defocus

Empty , Filled ; Next

Focus / Defocus

64

Filled , Filled ; Next

Empty ⇒ Filled ; Next

focus Empty

 ...

defocus

Empty , Filled ; Next

Focus / Defocus

64

Filled , Filled ; Next

Empty ⇒ Filled ; Next

Next

focus Empty

 ...

defocus

Empty , Filled ; Next

Focus / Defocus

65

Empty ⇒ Filled ; Next , Δ

Empty, Filled ; Next▷ Δ

Filled, Filled; Next▷ Δ

Next , Δ

{private
changes

focus Empty

 ...

defocus

Focus / Defocus

65

Empty ⇒ Filled ; Next , Δ

Empty, Filled ; Next▷ Δ

Filled, Filled; Next▷ Δ

Next , Δ

{private
changes

focus Empty

 ...

defocus

Focus / Defocus

65

Empty ⇒ Filled ; Next , Δ

Empty, Filled ; Next▷ Δ

Filled, Filled; Next▷ Δ

Next , Δ

{private
changes

focus Empty

 ...

defocus

hides any state that may allow
reentrant accesses to focused state

Problems of Sharing

1. Account for interference (public changes).
Consider all possible interleaved uses of aliases and
how they may change the shared state.

2. Handle private changes.
Making sure other aliases do not see any
intermediate or inconsistent states of the shared
state (which may appear due to type changing
assignments like int to string, etc.).

66

67

• Protocols are introduced explicitly, in pairs, through
the share construct:

share A as B || C

“type A (either a capability or an existing protocol)
can be safely split in types B and C (two protocols)”

• Arbitrary aliasing is possible by continuing to split an
existing protocol.

3. Protocol
Conformance

68

• We must check that a protocol is aware of all
possible states that may appear due to the
“interleaving” of other aliases of that shared state.

• Checking a split is built from two components:

a) a stepping relation, that “simulates” a single use of
focus-defocus (i.e. a step of the protocol).

b) a protocol conformance definition that ensures the
protocol considers all possible alias interleaving.

Checking share

Protocol
Conformance

Example

69

share E as

rec X.(E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none)

|| E ⇒ (N ⊕ C)

Producer

Consumer

Protocol
Conformance

Example

69

share E as

rec X.(E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none)

|| E ⇒ (N ⊕ C)

70

PC

E

PC PC

PC PC

Initial state.

{possible
interleaving

70

PC

E

PC PC

PC PC

Initial state.

{possible
interleaving

However, our protocols can only list a finite
number of distinct states, and each

protocol lists a finite number of distinct
protocol steps.

This will ensure that there is finite number of
distinct configurations, each representing one
possible alias interleaving in the use of the
state that is being shared by the protocols.

71

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

71

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕E

none

Configurations:

State:

71

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕E

none

Configurations:

State:

71

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

72

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

CN ⊕

72

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

E

none

Configurations:

State:

CN ⊕

72

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕E

none

Configurations:

State:

CN ⊕

72

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

none

Configurations:

State:

CN ⊕

72

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E E ⇒ CN ⊕

none

Configurations:

State: CN ⊕

⊕

73

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E

none

Configurations:

State: CN

none

73

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E

none

Configurations:

State: CN

none

73

⊕
E

none⇒
⊕

ProducerConsumer

C

N

⇒

⇒

E

none

Configurations:

State:

none

none

74

ProducerConsumer

Configurations:

State:

none

none

none

Related Work

Krishnaswami, Turon, Dreyer, Garg. Superficially Substructural Types. ICFP
2012.

Dinsdale-Young, Birkedal, Gardner, Parkinson, Yang. Views: compositional
reasoning for concurrent programs. POPL 2013.

• Powerful generalization of split and merge operations (using commutative
monoids) that enables expressive and precise descriptions of sharing.

Gordon, Ernst, Grossman. Rely-Guarantee References for Refinement
Types over Aliased Mutable Data. PLDI 2013.

• References extended with predicate (for expressing local knowledge), rely and
guarantee relations to handle sharing of state.

75

(Paper includes additional Related Work.)

Related Work

Krishnaswami, Turon, Dreyer, Garg. Superficially Substructural Types. ICFP
2012.

Dinsdale-Young, Birkedal, Gardner, Parkinson, Yang. Views: compositional
reasoning for concurrent programs. POPL 2013.

• Powerful generalization of split and merge operations (using commutative
monoids) that enables expressive and precise descriptions of sharing.

Gordon, Ernst, Grossman. Rely-Guarantee References for Refinement
Types over Aliased Mutable Data. PLDI 2013.

• References extended with predicate (for expressing local knowledge), rely and
guarantee relations to handle sharing of state.

75

(Paper includes additional Related Work.)

 - We are limited to finite state representations, i.e. typestates.

 + Protocols can express changes over time (“temporal sharing”),
without requiring the use of auxiliary variables to distinguish steps.

 + Sharing is a typing artifact and is not tied to a module.

 + Can be type checked without manual intervention.

Summary
• Contribution: novel interference-control mechanism,

Rely-Guarantee Protocols, to control sharing of state mutable
by statically disconnected variables.

• Topics Covered: (more details in the paper)

1. Protocol Specification (“public changes”)

2. Protocol Use (“private changes”)

3. Protocol Conformance (“alias interleaving”)

Experimental Prototype Implementation:

• http://deaf-parrot.googlecode.com

76

http://deaf-parrot.googlecode.com
http://deaf-parrot.googlecode.com

