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Motivation

• Mutable state can be useful in certain cases.

• Precisely tracking the properties of mutable 
state avoids a class of state-related errors.

• However, aliasing makes tracking such 
properties challenging.
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  x.open(...);
  x.write(...);
  x.write(...);
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  x.open(...);
  x.write(...);
  x.write(...);
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Opened
  y.close()



Closed
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  y.close()

  x.open(...);
  x.write(...);
  x.write(...);



  x.open(...);
  x.write(...);
  x.write(...);

Closed
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The assumption that x was pointing to 
an Opened file can be invalidated due 

to the interference caused by y.



A novel interference-control mechanism,         
Rely-Guarantee Protocols, to statically 

handle interference in the use of mutable state 
that is shared by aliases through statically 

disconnected variables.
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Contribution



Language

• Polymorphic λ-calculus with mutable 
references (and immutable records, tagged 
sums, ...).

• Technically, we use a variant of L3 adapted for 
usability and extended with new constructs, 
and our sharing mechanism.
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[Ahmed, Fluet, and Morrisett. L3: A linear language with 

locations. Fundam. Inform. 2007.]
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 let y = x in

  delete y;
  x := false

 end

x : ref p rw p string

  x := 1;
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 let y = x in

  x := 1;
  delete y;
  x := false

 end

x : ref p rw p stringy : ref p
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 let y = x in

  delete y;
  x := false

 end

x : ref p rw p inty : ref p

  x := 1;
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 let y = x in

  delete y;

  x := false

 end

x : ref py : ref p

  x := 1;
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 let y = x in

  delete y;

  x := false

 end

x : ref py : ref p

Type Error: Missing 
capability to location p.

  x := 1;



Why sharing?
Capabilities are linear (a.k.a. “unique”)!
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Sharing
A capability is split into rely-guarantee protocols 
to safely coordinate access to the shared state.
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Disjoint
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A * B

• Linearity ensured disjointness.

• Sharing causes fictional disjointness.

[Dinsdale-Young, et al. Concurrent Abstract Predicates.

 (ECOOP’10), and other works].



Fictionally
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A * B

shared

Disjoint

[Dinsdale-Young, et al. Concurrent Abstract Predicates.

 (ECOOP’10), and other works].

• Linearity ensured disjointness.

• Sharing causes fictional disjointness.



Problems of Sharing

1. Account for interference (public changes).
Consider all possible interleaved uses of aliases and 
how they may change the shared state.

2. Handle private changes.
Making sure other aliases do not see any 
intermediate or inconsistent states of the shared 
state (which may appear due to type changing 
assignments like int to string, etc.).
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20

  x := 1;
  doSomething();
  !x // what do we get?

Alias Interleaving
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fun().1

fun().x := false

fun().delete x

doSomething interleave zero or more aliases 
to the same state as referenced by x.

  x := 1;
  doSomething();
  !x // what do we get?

Alias Interleaving
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If doSomething did change the same state as aliased 
by x (i.e. interfered), what change occurred?

  x := 1;
  doSomething();
  !x // what do we get?

Alias Interleaving



Handling Interference
• One solution is to ensure that each alias obeys an initially 

held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee reasoning to a 
state-centric model by generalizing the specification of 
shared state interactions.

By individually constraining the actions of each alias, we can 
make stronger (as in more precise) assumptions how 
interference may change the shared state.

23
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held invariant, invariant-based sharing.

• Instead, we adapt the spirit of rely-guarantee reasoning to a 
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Modeling Interference

A Rely-Guarantee Protocol models the shared state 
interaction from the alias’ own view/perspective:
• The alias’ actions are constrained to fit within 

what the protocol specifies/allows.
• Interference is observed through new state(s) 

that may appear when inspecting the shared 
state. Thus, the protocol may specify actions 
over states that can only be produced by other 
aliases.
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Rely-Guarantee 
Protocols

• An interference-control mechanism.

• I will focus on presenting the following:

1. Protocol Specification (“public changes”)

2. Protocol Use (“private changes”)

3. Protocol Conformance (“alias interleaving”)
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( see the paper for more technical details )
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1. Protocol 
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The shared state satisfies A, and requires 
the alias to obey the guarantee P.



1. Protocol 
Specification
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Requires the client to establish (guarantee) 
that the shared state satisfies A before 
continuing the use of the protocol as P.



1. Protocol 
Specification
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Shared Pipe
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Shared by two aliases interacting via a common 
buffer, here modeled as a singly linked list.

1. The Producer alias may put new elements in or 
close the pipe.

2. The Consumer alias may only tryTake elements 
from the buffer. 

The result of tryTake is one of the following states: 
either there was some Result, or NoResult, or 
the pipe is fully Depleted. 
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Pipe
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Consumer

Producer
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Consumer

Producer

Shared Buffer

Producer Protocol

Consumer Protocol
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none
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Producer
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none



Consumer
47

Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

head :  rec X.(  ( Empty ⇒ Empty ; X )

                        ⊕ ( Filled ⇒ none ; none )

                       ⊕ ( Closed ⇒ none ; none )  )



Consumer
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

head :  rec X.(  ( Empty ⇒ Empty ; X )

                        ⊕ ( Filled ⇒ none ; none )

                       ⊕ ( Closed ⇒ none ; none )  )



Consumer
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

head :  none



Consumer
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Producer

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none

head :  rec X.(  ( Empty ⇒ Empty ; X )

                        ⊕ ( Filled ⇒ none ; none )

                       ⊕ ( Closed ⇒ none ; none )  )
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Producer Protocol:

Consumer Protocol:

head : rec X.(   ( Empty ⇒ Empty ; X )

                       ⊕ ( Filled ⇒ none ; none )

                      ⊕ ( Closed ⇒ none ; none )  )

tail : Empty ⇒ ( Filled ⊕ Closed ) ; none
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T[t] = rw t Empty#[] ⇒ 
 ( (rw t Node#[...]) ⊕ (rw t Closed#[]) ); 

none

H[t] = rec X.(
    ( rw t Empty#[] ⇒ rw t Empty#[] ; X )
  ⊕ ( rw t Node#[...] ⇒ none ; none )
  ⊕ ( rw t Closed#[] ⇒ none ; none ) )

Producer Protocol:

Consumer Protocol:



Pipe Typestate
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∃P.∃C.( ![

      put : !( ( !int :: P ) ⊸ ( ![] :: P ) ) ,
    close : !( ( ![] :: P ) ⊸ ![] ) ,
  tryTake : !( ( ![] :: C ) ⊸ Depleted#![] +

  NoResult#(![] :: C) + Result#(!int :: C) )
] :: ( C * P ) )
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∃P.∃C.( ![

      put : !( ( !int :: P ) ⊸ ( ![] :: P ) ) ,
    close : !( ( ![] :: P ) ⊸ ![] ) ,
  tryTake : !( ( ![] :: C ) ⊸ Depleted#![] +

  NoResult#(![] :: C) + Result#(!int :: C) )
] :: ( C * P ) )

rw p ∃p.(ref p :: T[p])

rw c ∃p.(ref p :: H[p])



Problems of Sharing

1. Account for interference (public changes).
Consider all possible interleaved uses of aliases and 
how they may change the shared state.

2. Handle private changes.
Making sure other aliases do not see any 
intermediate or inconsistent states of the shared 
state (which may appear due to type changing 
assignments like int to string, etc.).
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Syntax
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2. Protocol Use

• Protocols are used through focus and 
defocus constructs. 

• They serve two purposes:

a) Hide private changes from the other 
aliases of that shared state.

b) Advance the step of the protocol, by 
obeying the constraints on public changes.
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Focus / Defocus
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Focus / Defocus
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defocus-guarantee

focused state



Empty ⇒ Filled ; Next

Focus / Defocus
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Empty ,   Filled ; Next

focus Empty

   ...

defocus



Empty ⇒ Filled ; Next

Focus / Defocus
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focus Empty

   ...

defocus

PartiallyFilled , Filled ; Next

Empty ,   Filled ; Next



Focus / Defocus
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Filled ,   Filled ; Next

Empty ⇒ Filled ; Next

Empty ,   Filled ; Next

focus Empty

   ...

defocus
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Filled ,   Filled ; Next

Empty ⇒ Filled ; Next

Next

focus Empty

   ...

defocus

Empty ,   Filled ; Next



Focus / Defocus
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Empty ⇒ Filled ; Next , Δ

Empty,   Filled ; Next▷ Δ

Filled,   Filled; Next▷ Δ

Next , Δ

{private
changes

focus Empty

   ...

defocus
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Empty ⇒ Filled ; Next , Δ

Empty,   Filled ; Next▷ Δ

Filled,   Filled; Next▷ Δ

Next , Δ

{private
changes

focus Empty

   ...

defocus



Focus / Defocus
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Empty ⇒ Filled ; Next , Δ

Empty,   Filled ; Next▷ Δ

Filled,   Filled; Next▷ Δ

Next , Δ

{private
changes

focus Empty

   ...

defocus

hides any state that may allow 
reentrant accesses to focused state



Problems of Sharing

1. Account for interference (public changes).
Consider all possible interleaved uses of aliases and 
how they may change the shared state.

2. Handle private changes.
Making sure other aliases do not see any 
intermediate or inconsistent states of the shared 
state (which may appear due to type changing 
assignments like int to string, etc.).
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• Protocols are introduced explicitly, in pairs, through 
the share construct:

share A as B || C

“type A (either a capability or an existing protocol) 
can be safely split in types B and C (two protocols)”

• Arbitrary aliasing is possible by continuing to split an 
existing protocol.

3. Protocol 
Conformance
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• We must check that a protocol is aware of all 
possible states that may appear due to the 
“interleaving” of other aliases of that shared state.

• Checking a split is built from two components:

a) a stepping relation, that “simulates” a single use of 
focus-defocus (i.e. a step of the protocol).

b) a protocol conformance definition that ensures the 
protocol considers all possible alias interleaving.

Checking share



Protocol
Conformance

Example
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share E as 

rec X.( E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none )

|| E ⇒ ( N ⊕ C )



Producer

Consumer

Protocol
Conformance

Example

69

share E as 

rec X.( E ⇒ E;X ⊕ N ⇒ none ⊕ C ⇒ none )

|| E ⇒ ( N ⊕ C )
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PC

E

PC PC

PC PC

Initial state.

{possible 
interleaving



70

PC

E

PC PC

PC PC

Initial state.

{possible 
interleaving

However, our protocols can only list a finite 
number of distinct states, and each 

protocol lists a finite number of distinct 
protocol steps.

This will ensure that there is finite number of 
distinct configurations, each representing one 
possible alias interleaving in the use of the 
state that is being shared by the protocols.
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ProducerConsumer

Configurations:

State:

none

none

none
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 - We are limited to finite state representations, i.e. typestates.

 + Protocols can express changes over time (“temporal sharing”), 
without requiring the use of auxiliary variables to distinguish steps.

 + Sharing is a typing artifact and is not tied to a module.

 + Can be type checked without manual intervention.



Summary
• Contribution: novel interference-control mechanism, 

Rely-Guarantee Protocols, to control sharing of state mutable 
by statically disconnected variables.

• Topics Covered: (more details in the paper)

1. Protocol Specification (“public changes”)

2. Protocol Use (“private changes”)

3. Protocol Conformance (“alias interleaving”)

Experimental Prototype Implementation: 

• http://deaf-parrot.googlecode.com

76

http://deaf-parrot.googlecode.com
http://deaf-parrot.googlecode.com

