An Exception Aware Behavioral Type System for
Object-Oriented Programs

Filipe Militao and Luis Caires

CITI / Departamento de Informética, Universidade Nova de Lisboa, Portugal

We develop a type system for object oriented languages that combines standard type in-
formation with behavioral protocol specifications. The typing rules cover familiar con-
structs, as well as exceptions, which are a main novelty in this work: exceptions may
cause abrupt control transfer in allowed behaviors, and have been particularly difficult to
tackle with behavioral type systems. The type system guarantees protocol fidelity both
at the method level and at the class level by checking consistency in the use of fields
with the class’ usage protocol. It also ensures that program execution always reaches a
safe termination state, even in the presence of behavioral borrowing, that is, temporary
aliasing of object references during methods calls.

1 Introduction

The ever increasing software complexity has always been the striving force behind the
push for more advanced type systems in an effort to reduce the number of software
bugs. Although virtually all modern day verification techniques guarantee the absence
of important errors, such as calling non-existing methods or incorrect conversion of data
structures, they still leave much room for improvements. Namely, most are incapable of
checking the fulfillment of prevalent APIs assumptions such as specific restrictions in
the allowed sequences of calls (that is, making sure a protocol is obeyed) or identifying
possible sources of interferences in the use of objects (due to aliasing, for instance).
Therefore, recent developments in typing methodologies try to address such issues (in-
cluding other emerging use cases such as web services and concurrency) to protect
programs from non-trivial and frequent mistakes.

We focus on the problem of checking the behavior restrictions in the use of meth-
ods, that is, how some objects require specific sequences of calls to be observed in order
to function properly. File objects are an usual example: they require to be opened before
used and closed at the end (to force flushing out any changes). This behavioral protocol
is usually defined in attached documentation and/or checked only at run-time (with any
error flagged as an exception). We propose a type system that uses a formal behavior
description to statically ensure the absence of behavioral errors in sequential programs,
so that such protocols are always obeyed from start to finish. While the idea of exploit-
ing behavioral specifications to discipline the usage of objects in programs is not new,
in this paper we approach language features much more challenging than in other ap-
proaches, such as borrowing behaviors, full class consistency check, and, prominently,
exception handling. We have also implemented our type system in a working prototype
interpreter and runtime system, the yak language [22].

Example 1 shows a Travel class that defines a usage protocol specifying its allowed
behavior. Then, the let expression uses that class accordingly, where each method call

2 Filipe Militdo and Luis Caires

causes a transition in the allowed behavior. The comments show how the behavior of the
new object evolves until it reaches a termination state, stop. This is but a tiny example:
our full protocol description language is capable of describing exceptions, choices, and
behavior selection based on the result of a call (as illustrated on Section 3.3).

Example 1. Travel example.

class TravelOrder ({ let t in
usage flight.hotel. (buy+cancel) t = new TravelOrder();
void flight (){ ... } //TravelOrder#flight.hotel. (buy+cancel)
void hotel () { ..} t.flight(); //TravelOrder#hotel. (buy+cancel)
void buy () { ... } t.hotel(); //TravelOrder#buy+cancel
void cancel () { } if (...) t.buy() //TravelOrder#stop

} else t.cancel () //TravelOrder#stop

In our language each class declares a behavioral protocol that restricts the use of some
of its methods to contexts given by its usage. The syntax and semantics (Section 2)
is similar to the one of mainstream OO languages. The behavioral information is only
used by the type system (Section 3), that handles usual expressions such as branches,
loops, exceptions and is also able to check the behavior in cases of recursion, behavioral
borrowing and subtyping (Section 3.1). The consistency check procedure (Section 3.2)
guarantees behaviors are obeyed, both at the method level and at the class level so that
fields are used correctly during the lifetime of an object. Finally, in Section 3.3, we
briefly address some flexibility issues of the typing rules and give additional examples.
The original contributions of this paper include:

— A simplified type annotation that reduces the burden on the programmer (Section
3), namely, by using a consistency check phase (Section 3.2) that automatically
handles the behavior of fields in each method. Additionally, our typing rules do
not interfere with type abstraction or modularity and are flexible enough not to
require a direct mapping of the protocol into code (Section 3.3). Although due to
space limitations we cannot include a formal proof, our type system is provably
sound [17].

— Addressing changes in behavior due to raised exceptions has not been much ex-
plored even if some proposals [14] explored ideas similar to ours, they have many
limitations and are not used in an OO language. In this work, we address behavioral
exceptions without compromising much expressiveness (Section 3).

— Although we enforce linear aliasing control [21], we do not require all method
arguments to possess unique ownerships. Such features are useful to model usual
call-by-reference and is conceptually consistent with borrowing behaviors of object
references in limited scopes, such as during method calls (details in Section 3).

2 Syntax and Informal Semantics of the Core Language

We develop our type system for a core Java-like object oriented language, based on
ClassicJava [11] (we leave out inheritance, for now). The syntax is shown in Figure 1.
A program in this language is formed by several class definitions (def) each with a
behavioral protocol defined after the usage keyword. The entry point is an expression
(e), after the list of definitions. In a method call the callee object must be represented by

An Exception Aware Behavioral Type System for Object-Oriented Programs 3

e e v prog ::=def* e (program)
7| e;e def ::= class ¢ { (class decl)
| x’ =e usage P (behavior)
| if(e) e else e field” (fields)
| while(e) e meth” (methods)
}
try e catch(\NV z) e .
i th)1"0w e () field == N x
et z in e meth ::= T m(arg®) [throws N*|ox {e}
| new ¢() arg ::= [owned]op 7' = (argument)
e v ::= null
| Bm{e”) | true | false
¢ € class names 3 _‘ s | this
m € method names =T X
z,y,f € variable names T,U = void | N#£P (type)
o N ::= boolean | ¢ (name)

Fig. 1. Syntax of the core language.

a variable or a this pointer (3). An owned modifier informs the type system that an ar-
gument requires permissions to be returned or stored in a variable in the method’s body
(this will be describe in detail in the ownership control section of the type system). Due
to lack of space, we cannot fully describe the operational semantics of our language,
but this will not hinder much the understanding of the reader since most constructs are
standard. Therefore, we move immediately to the most interesting issues in our work,
namely the type system.

3 A Behavioral Type System for OO programs

In this section we describe the key ideas behind the design of our type system. We define
a behavioral type to be a pair of standard (Java-like) type with a behavioral description
for that type. Thus, our type notation is of the form:

Type £ Name# Behavior

The first part (Name) refers to a list of method declarations and to the usage protocol
(i.e., the initial behavior), both defined in the class declaration for Name. The second
part (Behavior) contains the changing protocol (due to a method call, for instance)
that is used during the verification. The language for specifying such usage protocols
is defined in (Figure 2). As shown in Figure 1 a type’s behavioral protocol is declared
after the keyword usage in the class definition.

The behavioral descriptions describe the stages of the protocol on which a call to a
specific method is allowed. We use a regular expressions-like description language, that
includes recursion (&7 to create the recursion point and then r to “jump” back to that
position - assuming 7 to be unique), choice (4), allowing us to express alternatives in
the protocol, and empty behavior (stop). We include a new behavioral construct within

4 Filipe Militdo and Luis Caires

P,Q,V,0 ::= mlexception™].R (method and continuation)

| r (recursion label)
| &r(P) (recursion point)
| P+ P (choice)
| stop (empty)
R:=P
| (true.P) + (false. P) (result based behavioral choice)
exception :== N : P (behavioral exception, if N raised then change to P)

Fig. 2. Syntax for behavioral descriptions.

method calls (ezception), to capture exceptional behavior. We also include a construct
to express behavioral alternatives, based on the value returned by of a method call (only
for booleans, although such a system could be easily extended to support other enumer-
able types). It is convenient to further explain these two novel constructs :

- “m[N : P|...].Q", the description for a method usage. This construction declares
that a method (1m) can be called on that specific context and that it may throw any of
the exceptions inside the square brackets. More precisely, after an exception of type
N the allowed behavior for that type changes to P, this is what we call a behavioral
exception. When no exception is raise the protocol continues with Q;

- “(true.P) + (false.Q)”, declares a change in the allowed behavior based on the
result of a boolean call. Therefore, this construct is only allowed to appear im-
mediately after a method usage. This description allows the type system to e.g.,
distinguish between the availability of the nezt method in an iterator, depending on
the value returned by the hasNext method.

The choice construction offers an external decision (where the programmer is free
to decide which behavioral path to take); and the exception/result-choice is related to
an internal choice as they change the allowed behavior only based on the class’ internal
code. We categorize the methods of a class in two groups: behavioral methods - methods
whose name appears in the usage protocol and thus that have their use restricted; and
free (non-behavioral) methods - methods that do not appear in the protocol and may be
freely used in any context regardless of the state of the protocol, for example, methods
such as toString). When a behavior reaches stop only free methods are available. Such
categorization of methods remains fixed throughout the life of a type since it is related
to the usage protocol, not to the dynamic state of a type.

Although our type system is fully static, it needs to track the dynamic state of the
objects’s protocols. Therefore, the basic typing judgment uses effect-tracking to model
such changes, as caused by the evaluation of expressions. It has the following form:

AbFe: T~ A

The intuitive reading of such judgment is: the initial environment (A) on which the
expression (e) is checked to be of type (1) causes some side-effects on the initial envi-
ronment, and leads to the final environment (A”). When expression ¢ is of type boolean,
A’ has the form (Ar|Ap), reflecting the two possible final states (see [17]).

An Exception Aware Behavioral Type System for Object-Oriented Programs 5

bool £stop = bool
[R-NULL] [R-TRUE] [R-FALSE]
A F null : N#stop ~» A A F true : boolean ~~» A A | false : boolean ~~ A
[R-PROG]

Ve.(c € def™ = (def™ F c: OK ~ def™)) [R-NEW]

def*Fe:T ~ def” stopped(T) ce A

O def e:T ~ 0 A+ new c() : c#tusage(c)® ~ A
[R-SEQ]

At eg:To~ A’ stopped(To) A’ ey : Ty~ A"
Atbegier : Ty ~ A"

[R-IF] [R-WHILE]
A e : boolean ~ (Ar|AF) A+ €™ : boolean ~ (Ar|Ar)
Ar ke T A" Apke®® T A Apte: N#P ~ A stopped(P)
AR if(e®n?) ¢F else 1% 1 T~ A’ A F while(e°°"?) e : N#tstop ~ Ap
[R-THROW]

AFe: N#P ~ A’ stopped(P)
A, (N ~ A') - throw e : T ~
[R-TRY]
A, (N ~ Acaten) F e T ~s A’ (N ~ Acaten)
Acaten, (z 1 Ntstop), (N ~» An) b €™M T ws A’ (z : N#stop), (N ~ Ay)
A, (N ~ An) F try '™V catch(N z) e““*" . T ~s A’ (N ~ Ay)

Fig. 3. Basic typing rules.

A typing environment (A) is a set of declarations, that may contain:

1. (z : T) - variable (labeled z and of type T);

2. (def) - class definition;

3. (N ~» Ay) - exception handler for a type N where Ay is the environment to be
used on the nearest catch branch of a try catch in scope;

Since all the elements of an environment are uniquely declared, we use (A = Ay, ..., A,)
to split them into other disjoint sub-environments. In Figure 3 we present the basic typ-
ing rules of our type system, we briefly discuss each of them.

R-NULL A null value can be used as some type with a stop behavior.

R-PROG To check a program we start by checking the consistency of each class
(c) before moving to the initial expression (e). Since the resulting value cannot be used
elsewhere it must be stopped, the behavior must be able to terminate at this point.

R-NEW The new object starts with the usage protocol and is uniquely owned (noted
by the °) because it is a newly created value.

R-SEQ Since it ignores the result of its left side (1), we require that type to be
stopped so no behavior is lost. Any side-effects that it may produce are carried on to
the right side by the environment A’ which produces the final result and the resulting
environment of this expression.

R-IF Follows the usual if else flow with a double environment (Ar|AF) for the
case when there is a result-based behavioral choice in e,

6 Filipe Militdo and Luis Caires

[R-LET] [R-ASSIGN]
A, (z: N#stop®) Fe: T ~ A’ (z: N#P°) AbFe: N#P° ~ A (z: N#Q°)
stopped(P) stopped(Q)
Abletzine: T ~ A AbFx=e: N#stop ~ A, (x: N#P°)
[R-TAKE] [R-BORROW]
p-r stop Py, Q

A (B: N#P°)F B: N#P° ~ A, (B: N#stop®) A, (B: N#P)F B: NAV® ~ A, (8 : N#Q)

Fig. 4. Ownership control typing rules.

R-WHILE The A environment models the loop invariant. The result type (/N #stop)
ignores the behavior P since we defined the while body as leaving a null result.

R-THROW The run-time catch mechanism does not handle behavior on the raised
object, thus its behavior (P) must be stopped. The exception handler defines that the
catch environment must be the same as the one resulting from e. The empty environment
(D) signals that any following expression will be unreachable.

R-TRY The catch environment (A.q;.p,) for the type NV is used as a handler inside
the try branch and as the initial environment in the catch. Both branches produce the
same environment (A’) so that the behavior afterwards is independent of what happens
at run-time, note the previous handler for type [V is restored.

Any type system as ours, that tracks the flow of calls, has to deal with another
important issue: aliasing control. Aliasing induces interference, which may easily break
the prescribed usage protocols. We decided to use a kind of behavioral linearity for
controlling access to each object’s behavior. Thus, there is no true aliasing as the full
behavior is only visible to one variable at a time. However, the non-behavioral or free
view of any object has no such restrictions since the use of a stopped type never causes
behavioral interferences. Nonetheless, using only this limited view on aliasing would be
too restrictive and so we decided to include the option of “borrowing” these behaviors
for arguments in calls. Thus, an object can be lent for the specific duration of a call and
afterwards continue to be used as if it were always owned by the original variable.

To model this phenomenon, we introduce a simulation operation (P R V). We

assert P —2 V when an object subject to the usage protocol P, may still be used
as defined by V/, after a temporary usage as specified by). The simulation relation is
formally defined by a set of rules, that we cannot include here for lack of space (see [17]
). The simulation relation also deals with exceptions, since the argument’s protocol @)
must be fulfilled in all situations, even when an exception is raised. This solution leads
to a whole new set of problems that we need to solve, namely: how can we save a value
in a field or return it if it could be borrowed by someone else? For this reason, we use the
concept of ownership to distinguish when an object is or not uniquely owned or if that
uniqueness is required in a call. Thus, it is only possible to return values or save them in
fields if they are owned (noted 7°°). After an ownership is taken away, the variable only
retains a stopped view of that object. In the case of borrowed behaviors, the variable
does not truly own the object, instead it has a non-owned type (noted 7'*) that cannot
be returned or assigned (thus, is incompatible with the owned type) but still can call the

An Exception Aware Behavioral Type System for Object-Oriented Programs 7

[R-CALLL]
m(T;)[N;] T° € methods(N) i € {0,...,n} j € {0,...,k}

n
A=A, Agte:Ti—A, |JAL =4 As besore, (Nj ~ Acaten;)
i i=0

i=0
m B.m m.N; B.m.N;
B OIP Ap_pefore ~ Af_after B~V Afpefore ~ " Aj—catch;
Al = A As_apier, (B N#O) Acaten; = A, Ay _careny, (B: N#Vj)

A'}; = A/,A‘f—aftc'ra (B: N#P)
A, (B: N#Q) F Bom(eo, ..., en) : T° ~» AB|AT

Fig. 5. Method Call typing rule.

methods of its protocol. When no explicit ownership notation (7") is given it is assumed
that any ownership value will do. We now explain some key aspects of the ownership
control typing rules.

R-LET Creates a variable (z, with an initial type compatible with null) to be used
inside its body (e). Therefore, before it falls out of scope we must make sure that any
remaining behavior it may have (IN#P) is stopped.

R-ASSIGN An assignment can only occur with variables that are owned. Thus, the
old content (N#Q) will be lost and must be stoppable.

R-TAKE Taking a content (owned read) is removing all the behavior it may have.
It will lose the possession of any behavior, keeping only a stop state.

R-BORROW A borrow read causes some of the behavior to be read in a non-owned
way. That is, it cuts a prefix of the behavior and what remains can continue to be used
afterwards. This kind of read can only occur when checking an argument of a method
call and as such, together with the disjoint checking of arguments (that will be explained
further down), it makes it possible to do behavioral borrowing by using those types for
non-owned arguments.

Example 2. Some examples involving ownership control.

let v in let v in let vO0 in
v = new C(); v = new F(); let vl in
//v: C#a.b.c //v: F#a. (b+stop) v0 = new D();
//"void m(Cka.b x)" //"void m (owned F#a x)" . //v0: D#a vl: D#stop
//'borrows’ C#a.b // => '"x' requires ownership vl = v0;
mv); //v: Chec // F#a.(btstop) <: F#a //v0: Dfstop vl: D#a
v.c() //v: Chstop m(v); //#b+stop is hidden vl.al()
//v: Fi#stop //v0: Di#stop vl: Di#stop

R-CALL This is the most complex rule of out type system. First, each argument
is checked in a disjoint sub-environment (4.,) that excludes any interferences between
them. Then, it must move the behavior of the caller from state () to the normal (non-
exceptional) behavior after the m call (written O|P: an alternative behavior to account
for result-based behavioral choices; equal alternatives are used if it there is no such
choice). This effect is captured by the assertion 3 <% O|P, which is defined from the
simulation relation (see [17]). Self-inflicted calls do not cause changes in the behavior:
from our point of view, the protocol is only meant to express restrictions to clients of

8 Filipe Militdo and Luis Caires

the object (i.e. from the outside) and not internally. Thus, an object may freely call any
of its own methods without causing a change in its current behavior. However, the type
system must anyway keep track of changes in the behavior of the object fields, as stated
in the Ay_, fier environment with the field changes caused the 3.m call. The type rule
also needs to take into account the possibility of the method call raising an exception.
To take care of that, a verification similar to the one expressed in the R-THROW rule
must be performed for each raisable exception (/V;). However, we must account for
behavioral exceptions by stepping the state to the exception behavior V; while also
considering possible changes in the fields (A F—catch;)

3.1 Subtyping

In order to improve flexibility, our type system also includes a rich subtyping rela-
tion. The most interesting feature of our subtyping by structure is the use of behavioral
protocol compatibility. Thus, in our setting, subtyping must also take into account the
interchangeability of usage protocols (so that protocols can be safely replaced without
violating expectations) which is achieved directly with the simulation operation.

As described above, we split a class’ methods into two groups: behavioral and free
methods. A subtype cannot move a method between these two groups, thus a behavioral
method in a subtype 7" must also be behavioral in the supertype U (and an identical
situation with free methods). In general, a type 1" is a subtype of a type U (T <: U) if:

— for each method in U, there must exist a method in 1" with the same name and
with a compatible method signature (usual method subtype) while also belonging
to the same behavioral/free group. As usual, the subtype is free to define additional
methods in any group.

— the simulation of U’s current behavior protocol must be compatible with the pro-
tocol of T, that is, by simulating in 7" the protocol of U it must be able to reach a
stop state so that the subtype includes at least all the behavior of the supertype.

Example 3.
TravelOrder#hotel.(buy + cancel) Order#(buy + cancel)

These two types are incompatible: the TravelOrder requires a method “hotel” that does
not exist in Order and both protocols are incompatible. However, once TravelOrder
calls “hotel” the following relation becomes valid (but not the reversed):

TravelOrder#(buy + cancel) <: Order#(buy + cancel)

Notice that the condition for the behavioral/free methods is based on the usage protocol
of each class. However, the protocol compatibility (through the simulation operation)
uses the current state of the behavior and therefore this relation now holds.

3.2 Consistency Check

Another important feature of our type system is that it verifies that client code respects
usage protocols, but also that server code (e.g., classes) implement the usage proto-
cols they declare. Although we will not go into formal details, this is achieved by a

An Exception Aware Behavioral Type System for Object-Oriented Programs 9

consistency check of the use of fields throughout a class’ behavior (testing if it is OK).
Essentially, it carries the behavior of fields over all possible paths of the usage proto-
col. Thus, these variables start with a stop behavior and at each termination point of the
protocol they must also be in a stoppable state. For free methods, their use of fields is
restricted to a constant and stopped state so that they cannot interfere with behavioral
methods. Finally, at each methods, we must also check that all arguments have been
completely used. We illustrate this consistency checking with a simple example.

Example 4. An example of consistency check with recursion.

class C { // behavior paths: a -> Db
usage a. (b+c) // ->c
N v; //
void a() { // a << [v: N#stop]
v = new N() // v : N#ml+m2
} // a >> [v: N#ml+m2]
void Db () { // b << [v: N#ml+m2]
if(...) // => v: N#ml+m2 (no change)
(v.m2(); // v: N#stop
v = new N(); // v: N#ml+m2
this.b()) // { v: N#ml+m2 } —(b)-> { v: N#stop }
else v.ml () // v: N#stop
} // b >> [v: N#stop]
void c () { // ¢ << [v: N#ml+m2]
this.b () // { v: N#ml+m2 } —(b)-> { v: N#stop }

} o} // c >> [v: N#stop]

3.3 Discussion and Further Examples

So far, some of the presented typing rules may seem too restrictive as, for example,
they require exact matches in the environments of different branches. For this reason,
we will briefly discuss some improvements to the basic type rules, that offer additional
flexibility. Essentially, we define more flexible ways of combining typing environments.

Example 5. The environment subtyping allows for an environment to be safely used as
another if they have compatible content and any “extra” variables are stopped.

{(x : N#b+d), (w: N#u[M : q]), (y : N#stop)} <: {(z : N#d), (w : N#u[M : q|N : w])}

Example 6. The environment intersection merges two environments into one that con-
tains the common behavior (and therefore, is valid in both of the initial environments)
and any name that does no appear in both will be added to the final environment.

{(z: N#tb +d), (y : N#stop)} 1 {(z : N#tq + d)} = {(z : N#d), (y : N#stop)}

These relations allow us to define how a double environment can be converted to a sin-
gle one ((Ar|Ap) <: (Ar M Ap)) and conversely that any environment is a double
environment where both alternatives are itself (A = (A|A)). Therefore, the rules can
adapt to cases where a double environment is not produced or when one is not required.
By combining these operations with the typing rules we gain some additional flexibility.
For instance, the R-IF may have different environments in its branches that are merged
using environment intersection. Or the R-THROW rule does not need to produce ex-
actly the same environment as the one in the exception handler, it just need to be an
environment subtype of it. In conclusion, different environments can be merged using
intersection and two environments are compatible if the subtype relation holds.

10 Filipe Militdo and Luis Caires

We leave the presentation of our formal proof of soundness of the type system, based
on subject-reduction and type-safety proofs, to the companion technical report [17]. Be-
fore concluding the section, we present some examples of programs and their typings.

Example 7. Consistency check with behavioral exceptions.

class C { // paths: a -> b -> ¢
usage a.b[boolean: c].c // -> throw boolean -> ¢
N v; //
void a () { // a << [v: N#stop]
v = new N() // v : N# (b. (b+tc))+(d. (d+c))

} // a >> [v: N# (b. (b+c))+(d. (d+c))]
void b () throws boolean{ // b << [v: N#(b. (b+c))+(d. (d+c))]

if(...) //
(v.d(); // v: N#d+c
throw true) // throw boolean >> [v: N#d+c]
else v.b() // v: Nfb+c
} // b >> [v: N#b+c] (by 'v: N#b+c’ intrs ’{empty}’)
void c () { // c << [v: N#d+c] c << [v: N#b+c]
v.c() // v : N#stop
} o} // c >> [v: N#stop] c >> [v: N#stop]

Example 8. The while body makes a choice that will have behavioral repercussions in
the following cycles. Thus, the initial environment cannot be used directly, it must first
be subtyped into one that correctly models the loop invariant, (v : N#&r(b.r + stop)).
Since we cannot statically know how many times it will loop (or if it will at all) using
a call to “a” after that while is always considered to be illegal since the while’s body
made a behavioral choice and thus changed the allowed behavior.

void method (N#a+&r (b.r+stop) v){ // -> v: N#at+&r (b.r+stop)

while(...) // subtyping environment to
v.b() // v: N#&r (b.r+stop)
} // <= v: N#&r(b.r+stop) (stoppable)

Example 9. The environment intersection can be used to merge two distinct branches (if
and else) with different behaviors into an environment that contains the shared protocol.
void method (N#a+b+stop v){ // -> v: N#a+b+stop

if(...) v.b() // v: N#stop
else v.toString() // v: Nfatb+stop (toString is ' free’)
} // <- intersection results in ’‘v: N#stop’
Example 10. Result based choice and exceptions.
void m(N#a. (true.b+false.c) v){ // >> [v : N#a. (true.b+false.c)
try (if(v.a()) // v: N#b | v: Nic
throw true // —=> throw boolean + v: N#b
else v.c() // v: N#stop
) // v: Nfstop (’'v: Nfstop’ intrs ’{empty}’
catch (boolean b) // <—-- catch boolean + v: N#b
v.b() // v: N#stop
} // << [v: N#stop 1

4 Related Work

The core idea behind our types is based on the spatial-behavioral type system of [6],
where it is developed a type system for a resource aware model of behavior, using the
m-calculus as the underlying model. This work is an attempt to adapt and expand some
of his ideas to a mainstream Java-like language and was developed during Militdo’s
Masters thesis [16], that also lead to a publicly available prototype [22]. This line of
research has its remote roots in Nierstrasz’s regular types for objects [18].

An Exception Aware Behavioral Type System for Object-Oriented Programs 11

DeLine and Féhdrich [8,7,9] explore the idea of enforcing protocols in an ob-
ject oriented language using pre/post conditions to check invariants, that can include
a state-machine like protocol. This work also includes features similar to those of ES-
C/Java [10], by checking other kinds of properties. They includes rules for inheritance
(which we do not handle) and subtyping based on a simplified version of behavioral
subtyping as proposed by Liskov, et al [15]; even they still allows substitutability viola-
tions in some cases. Unlike in our work, they do not use linear typing to ensure sound
state transitions, they do not tackle with exception handling, neither consider behav-
ioral borrowing on references passed to method calls. Typestates [19] for objects have
been further developed by Aldrich and Bierhoff [2,3,4]. where subtyping relation, by
means of state refinement respecting substitutability is defined. Building on the notion
of fractional permissions [5], they define access permissions [3] whose expressiveness
goes beyond linear types. These allow for advanced aliasing control, for example, it is
even capable of modeling some situations where it can statically verify the absence of
concurrent modifications in the use of iterators [1]. Nonetheless, they do not consider
behavioral borrowing as we do here.

A different approach [20] adapts session-types [12] to define dynamic interfaces,
that controls access to object methods. This work differs from ours mainly in that they
do not guarantee termination of behaviors, nor account for exceptions. The aliasing
control is similar, as they also require linearity but without the option of borrowing.

In [13] Igarashi and Kobayashi create a type system for a call-by-value, simply-
typed A-calculus based language that guarantees usage correctness. In later work [14],
they expand their proposal to include exceptions similar to our behavioral exceptions.
However, they limit the raise construct to a single typeless exception at a time, thus it is
not possible to jump to a specific catch branch based on the type of the thrown object,
as we do, and is often needed in realistic programs.

5 Concluding Remarks

We have presented a behavioral type system for object oriented programs that statically
verifies usage conformance of objects by enforcing behavioral fidelity and termination
of protocols declared in class specifications, while extending other existing proposals
with flexible aliasing control, and exception handling. We implemented a version of
this type system into a prototype interpreter [22], and we have provided a formal proof
of its correctness [17]. Our use of a consistency check phase reduces the burden on the
programmer by automatically checking the correct use of object fields in accordance to
the declared behavioral protocol, without the need for additional annotations. All con-
structions (exceptions, branches and loops) are checked in a flexible way, that does not
require the usage protocol to be directly expressed in the client code. A subtyping rela-
tion guarantees that all behavioral expectations are met in accordance with the general
substitutability principle. Although we use a linear ownership control with the notion of
owned and non-owned types, we account for the possibility of borrowing types in well
defined scopes and in a coherent way with normal call-by-reference. We hope in the
future to be able to extend our verification techniques to programs with concurrency.

12

Filipe Militdo and Luis Caires

References

1.

[e BN

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

Kevin Bierhoff. Iterator specification with typestates. In SAVCBS ’06: Proceedings of the
2006 conference on Specification and verification of component-based systems, pages 79-82,
New York, NY, USA, 2006. ACM.

. Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. In

Michel Wermelinger and Harald Gall, editors, ESEC/SIGSOFT FSE, pages 217-226. ACM,
2005.

. Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In

Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
OOPSLA, pages 301-320. ACM, 2007.

. Kevin Bierhoff and Jonathan Aldrich. Plural: checking protocol compliance under aliasing.

In Wilhelm Schifer, Matthew B. Dwyer, and Volker Gruhn, editors, /ICSE Companion, pages
971-972. ACM, 2008.

. John Boyland. Checking interference with fractional permissions. In Radhia Cousot, editor,

SAS, volume 2694 of Lecture Notes in Computer Science, pages 55-72. Springer, 2003.

. Luis Caires. Spatial-behavioral types for concurrency and resource control in distributed

systems. Theor. Comput. Sci., 402(2-3):120-141, 2008.

. R. DeLine and M. Fahndrich. The fugue protocol checker: Is your software baroque, 2003.
. Robert DeLine and Manuel Fiahndrich. Enforcing high-level protocols in low-level software.

In PLDI, pages 59-69, 2001.

. Robert DeLine and Manuel Fahndrich. Typestates for objects. In Martin Odersky, editor,

ECOOP, volume 3086 of Lecture Notes in Computer Science, pages 465-490. Springer,
2004.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for java. In PLDI, pages 234-245, 2002.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In
POPL, pages 171-183, 1998.

Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
S. Doaitse Swierstra, editor, ESOP, volume 1576 of Lecture Notes in Computer Science,
pages 74-90. Springer, 1999.

Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In POPL, pages 331-342,
2002.

Futoshi Iwama, Atsushi Igarashi, and Naoki Kobayashi. Resource usage analysis for a func-
tional language with exceptions. In John Hatcliff and Frank Tip, editors, PEPM, pages
38-47. ACM, 2006.

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811-1841, 1994.

Filipe Militdo. Design and implementation of a behaviorally typed programming system for
web services. Master’s thesis, Universidade Nova de Lisboa, July 2008.

Filipe Militdo and Luis Caires. An exception aware behavioral type system for object-
oriented programs. Technical Report UNL-DI-3-2009, CITI/ FCT-UNL, 2009.

Oscar Nierstrasz. Regular types for active objects. In OOPSLA, pages 1-15, 1993.

Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for en-
hancing software reliability. /EEE Trans. Software Eng., 12(1):157-171, 1986.

Vasco T. Vasconcelos, Simon Gay, Anténio Ravara, Nils Gesbert, and Alexandre Z. Caldeira.
Dynamic interfaces. In International Workshop on Foundations of Object-Oriented Lan-
guages (FOOL’09), 2009.

Philip Wadler. Linear types can change the world! In Programming Concepts and Methods.
North, 1990.

yak home page. http://ctp.di.fct.unl.pt/yak/.

http://ctp.di.fct.unl.pt/yak/

	An Exception Aware Behavioral Type System for Object-Oriented Programs
	Filipe Militão and Luís Caires
	Introduction
	Syntax and Informal Semantics of the Core Language
	A Behavioral Type System for OO programs
	Subtyping
	Consistency Check
	Discussion and Further Examples

	Related Work
	Concluding Remarks

