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Abstract 

This paper reports novel applications of supervised learning 
methods intended to directly impact fMRI technology with the aim 
of improving data acquisition and analysis. 

1 Introduction 

Within both the machine learning and cognitive neuroscience communities, there 
has been a remarkable surge in interest focused on brain state classification using 
functional magnetic resonance imaging (fMRI) data. This interest has been fostered 
by a growing number of fundamental methodological studies of brain state 
classification approaches [1-10] combined with an increasing awareness that such 
analyses can make profound contributions to how we interpret mental 
representations [11-17]. This has given rise to inventive experimental designs aimed 
at a broad number of applications ranging from unconsciously perceived sensory 
stimuli [18], behavioral choices in the context of emotional perception [19], early 
visual areas [20], information-based mapping [21], and memory recall [22]. 

This talk focuses on the author’s work in applying supervised learning methods to 
directly impact fMRI technology with the aim of improving data acquisition and 
analysis. Specifically, we will describe i) the development of data-driven validation 
techniques for evaluating and optimizing the experimental parameters of image 
acquisition and analysis [3,4,8,10,8] ii) the recent implementation of a real-time 
fMRI biofeedback system based on brain state classification [23], and iii) the 
application of multivariate regression to achieve image-based eye tracking [24]. In 
addition, we will give a brief update on the status and capabilities of an AFNI [25] 
plugin that we have developed to enable support vector machine learning of fMRI 
data. 

2 Data-driven val idat ion 

Neuroimaging techniques such as fMRI and positron emission tomography (PET) 
are unique among imaging modalities in terms of validation. Unlike a system for 
detecting fractures or tumors, there is no direct, independent method for verifying 
detected locations of brain activity. As an alternative to simulation-based receiver 



 

operator characteristic (ROC) analysis, our approach [3,4] applied the data analysis 
framework developed in [10] to generate prediction vs. reproducibility curves for 
evaluating methodological decisions of fMRI preprocessing. The curves shown in 
Fig. 1 represent motion correction, temporal filtering, spatial filtering, as well as 
model complexity. Favorable preprocessing methods are as far to the upper right 
hand corner of the plot as possible. 

3 Real-t ime brain state  feedback 

Using brain state-based real time feedback (Fig. 2) is distinctly different from 
spatially localized real-time implementations since it does not require prior 
assumptions about functional localization and individual performance strategies. 
Since feedback is provided based on estimated brain state, the approach is 
applicable over a broad spectrum of cognitive domains and provides the capability 
for a new class of experimental designs in which real-time control of the stimulus is 
possible. This means that, rather than using a fixed paradigm, experiments can 
adaptively evolve as subjects receive brain-state feedback. In addition to describing 
our implementation and characterization of its basic performance capabilities, we 
will discuss the implications of human adaptation arising from feedback-enhanced 
learning and rehabilitation. Beyond basic research, this technology can complement 
electro-encephalography-based brain computer interface (EEG-BCI) research, and 
has potential applications in the areas of biofeedback rehabilitation, lie-detection, 
learning studies, virtual reality-based training, and enhanced conscious awareness. 

4 Eye tracking 

Eye tracking is a common behavioral measure for cognitive studies and is often a 
valuable complement to fMRI, particularly for experiments that require visual 
fixation. The most common approach in an fMRI environment is to use reflected 
infrared light from the cornea to track eye movement and determine fixation. 
Installation of such a system can pose a significant challenge since the optics and 
path of the transmitted and reflected infrared light usually must avoid interference 
with the visual paradigm display. During an experiment, setup of the optics can 
become time consuming. Another obvious drawback is that fMRI compatible eye-
tracking systems are generally expensive. We have recently proposed PEER 
(Predictive Eye Estimation Regression) as a simple alternative approach that is 
adequate for determining fixation on a TR-by-TR basis. With PEER, calibration, 
instead of being performed right before scanning, takes place during an added 
imaging run. Support vector regression (SVR) [26] is used to model each calibration 
image and its corresponding (known) fixation location. This model can then be used 
to predict eye fixation during the session’s fMRI runs. The idea of eye tracking with 
MRI is completely novel. It is important to note that PEER does not alter fMRI 
results, and, as a retrospective analysis tool, it can be applied at any fMRI site. As 
such, it is possible to acquire the calibration run at any point in the scanning 
session. Of course, extensions to real-time applications are also possible. Very rapid 
eye movements, such as saccades, would require much faster sampling frequencies. 
However, a great number of eye tracking applications only require information 
concerning fixation. Our preliminary results (Fig. 3) are encouraging and we 
anticipate that further refinements will advance the limits of temporal resolution and 
estimation precision. 
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Figure 1. Prediction vs. reproducibility curves
for data-driven evaluation of preprocessing
choices in fMRI. 
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Figure 2. Block diagram of real-time
classification of fMRI time-volumes using
SVC. 
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Figure 3. Vertical Tracking for a Single
Subject. Red lines represent estimated
tracking. Black represents symbol
position. A) represents the fixation run,
while B) shows the random position
changes at each TR for run 3. 

 

 

 

 


