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Abstract. We present an approach to integrate multiple fMRI datasets
in the context of predictive fMRI data analysis. The approach utilizes
canonical correlation analysis (CCA) to find common dimensions among
the different datasets, and it does not require that the multiple fMRI
datasets be spatially normalized. We apply the approach to the task
of predicting brain activations for unseen concrete-noun words using
multiple-subject datasets from two related fMRI studies. The proposed
approach yields better prediction accuracies than those of an approach
where each subject’s data is analyzed separately.

1 Introduction

The predictive style of fMRI data analysis, in which we try to predict some quan-
tity of interest based on some fMRI data, has recently become more widespread
(for an overview, see [1]). Nonetheless, most of the predictive approaches for
fMRI data analysis have been limited in the sense that they can be applied only
individually to a particular subject’s data from a particular fMRI study. A few
approaches have been proposed to get around this limitation. The most näıve
approach is to first register the different subjects’ brains to a canonical spatial
coordinate frame, then pool all the data together and treat them as coming from
one subject in one study. However, this approach ignores the variability that is
likely to exist across subjects both within a particular study and also across
studies. This can be corrected using, for instance, hierarchical Bayes techniques,
as was proposed in [2]. Even then, these approaches assume that the same voxel
after spatial normalization behaves similarly across subjects and studies of in-
terest, even though the spatial normalization process is imperfect and variability
in activations across subjects can still exist even after spatial normalization.

We present a new approach to integrate multiple-subject multiple-study fMRI
data in the context of predictive fMRI data analysis. Unlike the approaches
mentioned above, our approach treats the data for each subject as a distinct set,
and it does not require that the disparate datasets be in a common normalized
space. We apply our approach to the task of predicting fMRI data for new
stimuli, similar to the task described in [3].



2 Methods

2.1 Datasets

We use previously analyzed datasets based on two fMRI studies: the WP (Word-
Picture) study [3] and the WO (Word-Only) study [4]. In both studies,
each participant was presented with stimuli corresponding to sixty concrete-
noun words, which can be grouped into twelve semantic categories. In the WP
study, each stimulus consisted of a line-drawing picture and the associated word
label, e.g. ”house”. In the WO study, each stimulus consisted only of the word
label, without the line drawing. In each trial, the stimulus was presented for
three seconds followed by a seven-second period of fixation before the next trial
started. The participants were instructed to actively think about the properties
of the object described by the stimulus. Each participant went through six runs
of the experiment during a single session, where each of the sixty words was pre-
sented once in each run. Data from nine (WP) and eleven (WO) right-handed
adult participants are available for the analysis, including data from three par-
ticipants who participated in both studies.

Acquisition and Preprocessing Parameters In both studies, fMRI images
were acquired on a Siemens Allegra 3.0T scanner using a gradient echo EPI
pulse sequence with TR = 1000ms. The data were processed using the SPM2
software to correct for slice timing, motion, and linear trend, and then temporally
filtered using a 190s cutoff and spatially normalized into MNI space resampled to
3×3×6 mm3 voxels. The percent signal change relative to the fixation condition
was computed at each voxel for each stimulus presentation and then a single
fMRI mean image was created for each of the 360 trials (60 words × 6 runs) by
taking the mean of the images collected 4s, 5s, 6s, and 7s after stimulus onset, to
account for the delay in the hemodynamic response. To reduce the effect of noise
in our analysis, for each participant in each study, we analyze the canonical image
for each of the sixty words, obtained by averaging the six images associated with
the corresponding word across the six presentations/runs.

2.2 Model

We analyze the datasets in the context of the predictive computational model
proposed in [3], shown in figure 1. This model assumes that there are intermedi-
ate semantic features—denoted as base features in figure 1—that represent the
meaning of each stimulus word, and that underlie the brain activations asso-
ciated with thinking about that stimulus word. For example, one base feature
to describe semantics of arbitrary stimulus nouns might be the frequency with
which that noun co-occurs with the verb ”eat” in a large collection of text. Given
a particular word and its associated base features, the model assumes that each
subject’s brain activations can be modeled as linear combinations of the base
features. Finding the mapping from the base features to the fMRI brain activa-
tions amounts to learning the coefficients (the β coefficients in figure 1) for the
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Fig. 1. The baseline predictive computational model from [3] (I base features)

multivariate linear regression problem with the base features (the f variables in
figure 1) as covariates and the brain activations in each voxel as responses.

In the baseline model, there exist different mappings from the base features to
the brain activations for the different participants. On the other hand, we might
expect some similarity among the mappings for the various subjects in one or
more related studies. Incorporating this knowledge into the model can potentially
give us better predictive ability by leveraging the similar information available
across subjects and studies. In addition, it potentially allows us to better quantify
the similarities and differences among the various subjects and studies. Yet, we
also would like to avoid the restrictions of the existing methods for integrating
multiple fMRI datasets mentioned in section 1. With these in mind, we propose
an enhancement to the baseline model, which we call the CCA-mult approach.

In the CCA-mult model, shown in figure 2, we introduce a common abstrac-
tion for brain activations for the various subjects, denoted as learned common
features in figure 2. The learned common features are essentially the shared
low-dimensional representation for the various subjects’ brain activations data,
and they are learned based on the regularities present in the various subjects’
brain activations data. In particular, as figure 2 shows, we focus on a linear low-
dimensional representation of the brain activations data, i.e. a low-dimensional
representation such that the brain activations for each subject can be recon-
structed as linear combination of the features in this representation. Now, in-
stead of having a subject-specific direct mapping from the base features to the
brain activations, we have a (linear) subject-independent mapping from the base
features to the subject-independent learned features, and then subject-specific
mappings from the learned common features to the brain activations. The model
parameters are obtained using a two-step process. First, the subject-specific β’s
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Fig. 2. The model for the CCA-mult approach (I base and J learned common features)

are estimated using canonical correlation analysis, described next. Second, the
subject-independent α’s are estimated using multivariate linear regression.

Learning the Common Features To learn the common features across the
various subjects’ brain activations data, we use canonical correlation analysis
(CCA) [5]. The classical CCA is a multivariate statistical technique to discover
correlated components across two datasets. More formally, given two datasets
represented as matrices X (DX × N) and Y (DY × N), CCA tries to find the
vectors wX (DX × 1) and wY (DY × 1) such that the quantities aX = wX

T X
and aY = wY

T Y are maximally correlated. Given this formulation, wX and wY

can be found as a solution to a generalized eigenvalue problem. The pair aX and
aY are called the first canonical variate, while we call wX and wY the pair of
loadings for the first canonical component. By deflating the data matrices with
respect to canonical variates already found and reapplying the process, we can
find subsequent canonical variates. The classical CCA can be extended to handle
more than two datasets [6] [7], and to avoid overfitting, we can also regularize
the loadings w·’s similar to what is done in ridge regression [8] [7].

Tying back to the CCA-mult model, we apply CCA to the fMRI datasets,
each dataset being a matrix with as many rows as voxels and as many columns as
instances/trials. We then take the sample mean of the canonical variates over the
different datasets as the learned common features. The loadings w·’s define the
inverse mappings from brain activations to common features. Notice that there
are no restrictions that all the fMRI datasets have to have the same number of
voxels, as long as we can match the instances/trials in those datasets, since CCA
accepts data matrices with different numbers of rows (corresponding to voxels),



the constraint being that the matrices have to have the same number of columns
(corresponding to instances). As a result, spatial normalization is not necessary.

Prediction In the baseline model, after learning the mapping from the base
features to the brain activations, we can generate predicted brain activations as-
sociated with a new word by using the known base features for that word along
with the learned multivariate linear regression coefficients. In the CCA-mult
model, given the base features for a new word, we first generate a prediction for
the common features for that word by linear regression. Given the predicted com-
mon features, we then generate the predicted brain activations for each subject
by multiplying the predicted brain activations with the Moore-Penrose pseudoin-
verse of the loading matrix for that particular subject, obtained by aggregating
that subject’s loadings wsubj across all the canonical components. In essence,
the pseudoinverses of the loading matrices correspond to the β’s in figure 2.

Parameters We set the number of learned common features to ten (J = 10),
using the first ten canonical variates; the optimal number to use still needs to
be investigated. We use the regularized multiple-dataset version of CCA similar
to that presented in [7], using 0.5 as the regularization coefficient, where the
regularization coefficient ranges from 0 to 1.

3 Experiments

3.1 Setup

To compare the performance of the CCA-mult approach with that of the baseline
approach, we ran experiments using the following methods:

1. LR The baseline method shown in figure 1.
2. CCA-mult-subj The CCA-mult method applied to all the subjects in a

particular study, separately for the WP and the WO studies.
3. CCA-mult-subj-study The CCA-mult method applied to all the subjects

from the two studies combined.

Besides integrating multiple datasets, the CCA-mult approach also performs
dimensionality reduction. In order to contrast the contribution of dataset integra-
tion and the dimensionality reduction aspects, we also consider a fourth method
(PCA) in which we individually run principal component analysis (PCA) on
the fMRI data for each subject, and then perform a linear regression from the
base features to each subject’s first ten PCA components, to match the number
of dimensions of the CCA-mult variations.

Evaluation To evaluate the predictive ability of these four methods, we use
the cross-validation (CV) scheme described in [3]. In this scheme, for each CV
fold, we hold out two words out of the sixty words used and train the model



using the data associated with the 58 remaining words (
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)
or 1770 total folds).

The trained model is then used to generate the predicted fMRI activations for
the two held-out words. We compare the predicted activations with the true
observed fMRI activations using the cosine similarity metric as described in [3],
obtaining a binary accuracy score for each fold indicating whether the model
predicts the fMRI images for the two held-out words well enough to distinguish
which held-out word is associated with which of the two held-out images. These
results are aggregated across all the folds to obtain an accuracy figure.

Base features In [3], a set of base features derived from the statistics of a large
text corpus data was used. In particular, they used co-occurrence counts of the
stimulus words with a set of 25 verbs as base features, the counts derived from a
collection of English Web pages collected by Google. In this paper, we consider
the co-occurrence counts with the following sets of words as base features:

– 25 verbs used in [3] (I = 25)
– 1000 most familiar nouns from the MRC psycholinguistic database1 (I =

1000)
– 1000 most familiar nouns, 1000 most familiar verbs, and 814 most adjectives,

also from the MRC psycholinguistic database (I = 2814)

Voxel selection and data processing To decrease the effect of noise, we
perform our analysis on a subset of the voxels considered relevant: in each CV
fold and for each participant in each study, we rank the voxels based on the
stability [3] of its activations for the 58 words used to train the model across the
six presentations/runs, and choose 500 voxels with the highest stability.

3.2 Results

Figure 3 shows the average accuracies across all the subjects in each study for
all the approaches, across the three sets of base features. As the figure shows, for
all three sets of base features, both CCA-mult variations give better accuracies
compared to the LR and PCA approaches. On the other hand, the differences
in accuracies between the two CCA-mult variations are relatively small.

When using the CCA-mult method, we can also look into what kind of se-
mantic information each of the learned common features represents. We focus
on the common feature corresponding to the dominant CCA component for the
CCA-mult-subj-study variation. In particular, we can see how this common fea-
ture is mapped to the entire brain by regressing it to the full-brain activations.
Figure 4 shows the results for one of the participants that took part in both stud-
ies. In the WP case, we see significant loading magnitude in the fusiform gyri,
highlighted by the pink ellipses, while the WO loadings exhibit significant mag-
nitude around the superior parietal cortex, highlighted by the purple ellipses.

1 http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm
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Fig. 3. Accuracies of the three sets of base features for the WP and WO datasets.

On the other hand, white ellipses denote some of the areas exhibiting similar
loading values in both cases, located among others in the left extrastriate, left
pars opercularis, and left precentral gyrus.

Next, we can check whether this common feature represents some semantic
dimensions by looking at the distributions of its value across all sixty stimulus
words. The top five stimulus words with the most positive value for the first
common feature—knife, cat, spoon, key, pliers—roughly represent the ”manip-
ulability” concept, while the top five stimulus with the most negative value for
the same feature—apartment, church, closet, house, barn—roughly represent the
”shelter” concept, mirroring some of the findings of [4].

4 Conclusion

We have presented the CCA-mult approach to integrate data from multiple
subjects and multiple fMRI studies. The CCA-mult approach does not require
that the datasets be spatially normalized. Our results show that by using the
lower-dimensional feature space discovered by the CCA-mult method, we obtain
better accuracies compared to using the baseline approach from [3] and to using
the dataset-specific lower-dimensional feature space discovered through PCA.

The experiments reported in this paper support our thesis that it is possible
to train more accurate computational models by integrating training data from
multiple subjects participating in multiple related fMRI studies, by incorporating
latent variables that capture commonalities across subjects, yet still allow the
model to estimate parameters that are specific to each participant and study.
Given that many fMRI analyses are limited by the sparsity of training data
relative to the complexity of the phenomena to be modeled, it is important to
develop models like ours that integrate data from multiple subjects and studies.
To that end, one specific direction for future research on our model is to remove
its current restriction that the different studies have matched trials (e.g., in our
case study, each data set must include the same 60 semantic stimuli). We are
currently exploring methods that relax this assumption, to enable training a
model from data in which different subjects are presented with different stimuli.



Fig. 4. The full-brain loadings for one participant in both the WP study (left) and
the WO study (right). White ellipses denote significant loadings present in both cases,
while pink ellipses denote significant loadings present in only the WP case, and purple
ellipses denote significant loadings present in only the WO case.
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