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Abstract

Sound event detection is the task of detecting the type, on-
set time, and offset time of sound events in audio streams.
The mainstream solution is recurrent neural networks (RNNSs),
which usually predict the probability of each sound event at
every time step. Connectionist temporal classification (CTC)
has been applied in order to relax the need for exact annotations
of onset and offset times; the CTC output layer is expected to
generate a peak for each event boundary where the acoustic
signal is most salient. However, with limited training data, the
CTC network has been found to train slowly, and generalize
poorly to new data.

In this paper, we try to introduce knowledge learned from a
much larger corpus into the CTC network. We train two variants
of SoundNet, a deep convolutional network that takes the audio
tracks of videos as the input, and tries to approximate the visual
information extracted by an image recognition network. A
lower part of SoundNet or its variants is then used as a feature
extractor for the CTC network to perform sound event detection.
We show that the new feature extractor greatly accelerates the
convergence of the CTC network, and slightly improves the
generalization.

Index Terms: sound event detection (SED), connectionist
temporal classification (CTC), transfer learning, convolutional
neural networks (CNN)

1. Introduction

Sound event detection (SED) is the task of detecting the type,
onset time, and offset time of sound events in audio. The
current state of the art uses recurrent neural networks (RNNs)
[1,2, 3, 4]. These networks make a prediction at each time step.
For monophonic SED, where only one sound can be active at
a given moment, the RNN employs a softmax output layer to
generate a distribution over all target events, from which the
event with the highest probability is considered active. For
polyphonic SED, where multiple sound events can overlap, the
RNN dedicates one output neuron to each event and performs
binary classification. In either case, the frame-level predictions
need to be smoothed to generate a (type, onset, offset) tuple for
each occurrence of a sound event.

In order to train these RNNs that make frame-level predic-
tions, it is necessary to annotate the exact onset and offset times
of sound events in the training data, which can be a tedious
process. Inspired by the successful application of connectionist
temporal classification (CTC) [5] to speech recognition, CTC
has also been used for SED [6]. CTC is an objective function
that computes the total probability of a sequence of input
tokens, marginalizing over all possible alignments (i.e. onset
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and offset times of sound events); with CTC, it is sufficient
to annotate the training data with sequences of sound events,
without exact timing information. For polyphonic SED, since
it is difficult to define the order of overlapping sound events,
the boundaries (i.e. onsets and offsets) of sound events are used
as tokens, instead of the events themselves. [6] demonstrates
preliminary success of applying CTC to sound event detection,
and points out that CTC is especially good at detecting short,
transient events, which has been hard for conventional methods.
However, the system in [6] converges slowly, and generalizes
poorly to unseen data.

A limiting factor for the success of CTC is the lack of
labeled training data. Because a CTC-RNN needs to figure out
the alignment of the input sequences on itself, it takes more data
to train a CTC network than a framewise RNN. Unlike speech
recognition, for which hundreds or even thousands of hours of
training data is easily available, current annotated corpora for
SED (e.g. the noiseme corpus [7] and the TUT-SED corpus [8])
hardly exceed 10 hours. This not only impairs the generalizing
power of networks, but also limits their depth to 1 or 2 layers,
so they cannot enjoy all the benefits of deep learning.

A hopeful means to overcome this limitation is transfer
learning. The image and video analysis community has pro-
duced huge corpora with visual annotations; these have been
successfully applied to audio analysis tasks such as acoustic
scene classification [9]. In this paper, we attempt to learn better
representations of sound signals by transferring knowledge
from SoundNet [10]. SoundNet is a deep convolutional network
that takes raw wave-forms as the input, and it is trained to
predict the objects and scenes in video streams at certain points.
The ground truths of the objects and scenes are produced by
image recognition networks such as VGG16 [11] or AlexNet
[12]. Even though what can be seeen in the video may not
always be heard in the audio and vice versa, with sufficient
training data, the network can still be expected to discover
the correlation between the audio and the video. After the
network is trained, the activations of an intermediate layer can
be considered a representation of the audio suitable for object
and scene recognition.

SoundNet is a fully convolutional network, in which the
frame rate decreases with each layer. In sound event detection,
since we need to predict the onset and offsets of sound events
with reasonable precision, we cannot extract features from
the higher layers of SoundNet directly. However, the higher
layers may contain more abstract representations of the audio
signals that are more useful for sound event detection. In order
to extract features from these layers with sufficient temporal
resolution, we train two variants of SoundNet with the top few
layers replaced by fully connected layers or recurrent layers
that do not reduce the frame rate. We study how these feature
representations affect the SED performance, as well as the
speed of convergence when training the CTC-RNN.



Table 1: The structure of the original SoundNet

Layer | input | convl | pooll | conv2 | pool2 | conv3 | conv4 | conv5 | poolS | conv6 | conv7 | conv8 (output)
# feature maps 1 16 16 32 32 64 128 256 256 512 | 1024 1000 + 401
Filter size 64 32 16 8 4 4 4 4
Activation relu relu relu relu | relu relu relu softmax
Batch normalization yes yes yes yes yes yes yes
Subsampling 2 8 2 8 2 2 2 4 2 2 2
Frame rate (Hz) | 22,050 | 11,025 | 1,378 | 689 86 43 215 | 108 | 2.69 | 1.35 | 0.67 0.34
Reception Field 29ms [3.5ms |26 ms [ 36 ms | 0.21 s | 0.37s | 0.51s|0.79s|191s |4.16s 8.59 s
Table 2: The structure of SN-F, with layers above “pool5” replaced by fully connected layers.
Layer | input | convl | pooll |conv2 | pool2 | conv3 | conv4 | conv5 | pool5 | fcl fc2 fc3 output
# feature maps 1 16 16 32 32 64 128 | 256 | 256 | 100 | 100 | 100 | 1000 + 401
Filter size 64 32 16 8 4
Activation relu relu relu | relu | relu tanh | tanh | tanh softmax
Batch normalization yes yes yes yes yes
Subsampling 2 5 2 5 2 2 2 4
Frame rate (Hz) | 16,000 | 8,000 | 1,600 | 800 | 160 80 40 20 10 10 10 10 10
Reception Field 40ms |[45ms|24ms |29 ms [0.125|0.215[0.295|0.445|0.445|0.445 (044 s 0.44 s

2. Model Structure

2.1. The CTC-RNN for Sound Event Detection

Sound event detection is performed by a simple RNN with a
CTC output layer, identical to the network in [6]. The input
features are fed into a single bidirectional LSTM layer, with
400 hidden units in each direction and the ReLLU non-linearity.
The CTC output layer has a vocabulary size of 2n + 1, where
n = 17 is the number of sound event types; the output tokens
are the onset and offset of each sound event type, plus a “blank”
token. An output sequence of the CTC layer can be reduced to
a sequence of event boundaries by first collapsing consecutive
repeated tokens into a single one, and then removing the blank
tokens. The network is trained to maximize the total probability
of all output sequences that can be reduced to the ground truth
sequence of event boundaries. Best-path decoding is performed
during testing, i.e. we take the most probable token at each time
step, and reduce this sequence of output tokens into a sequence
of event boundaries.

2.2. SoundNet and its Variants for Feature Extraction

The input features for the CTC-RNN are provided by SoundNet
[10] or its two variants, SN-F and SN-R.

SoundNet is a fully convolutional network that predicts
objects and scenes from raw waveforms. The input is a monau-
ral waveform with a sample rate of 22,050 Hz. The network
has seven hidden convolutional layers, interspersed with max-
pooling layers. Each convolutional layer doubles the number
of feature maps and halves the frame rate; each max-pooling
layer halves the frame rate as well. The output layer is also
convolutional. It has 1,401 output units, split into two softmax
groups of sizes 1,000 and 401, standing for the distributions of
objects and scenes, respectively. The structure of SoundNet is
summarized in Table 1.

The output layer of SoundNet has a frame rate of about
1/3 Hz. During training, the audio tracks of 20-second video
excerpts are fed into the network. This corresponds to about
6.7 frames, but considering boundary effects, the output only
contains the distributions of objects and scenes at 4 time steps.

Table 3: The higher, recurrent layers of SN-R. Layers up to
“pool5” are identical to SN-F.

Layer| grul gru2 gru3 output
# feature maps| 100 x 2100 x 2|100 x 2{1000 + 401
Activation| relu relu relu softmax
Batch normalization| yes yes yes
Frame rate (Hz)| 10 10 10 10

Ground truth distributions are extracted using VGG16 [11] from
the video track at 3 s, 8 s, 13 s, and 18 s. The network
is trained to minimize the KL divergence from the ground
truth distributions to the predicted distributions. There is a
misalignment between the timestamps of the two distributions,
but it is ignored.

To localize the onsets and offsets of sound events with
reasonable precision, the CTC-RNN for sound event detection
must run at a sufficient frame rate. Conventionally, we have set
this to 10 Hz [6]. In SoundNet, only one layer (“conv5”) has a
frame rate close to this value. Therefore, we use the lower part
of SoundNet (up to layer “conv5”) as a feature extractor for the
CTC-RNN.

It may be expected that higher layers of SoundNet compute
representations of the input audio that are closer to objects and
scenes, i.e.closer to sound events. However, these layers in
SoundNet have been subsampled too much to be used for SED.
In order to make use of the information in the higher layers,
we train two variants of SoundNet, SN-F and SN-R. Instead of
using convolutional layers all the way up, we switch to fully
connected (SN-F) or recurrent (SN-R) layers after the frame
rate has been reduced to the desired value of 10 Hz. After three
fully connected or recurrent layers, a fully connected output
layer performs the object and scene classification. Also, we
have changed the input sampling rate to 16,000 Hz to match the
“noiseme” corpus [7] we use for SED. The structures of SN-F
and SN-R are summarized in Tables 2 and 3. The values at the
“pool5” layer or any higher layer may be used as input features
for the CTC-RNN.
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Figure 1: Training the variants of SoundNet: The evolution of

the validation KL divergence of SN-F and SN-R, the latter using
either GRU or LSTM cells.

3. Experiments

3.1. Training the Variants of SoundNet

We train SN-F and SN-R using the same data as SoundNet,
which can be downloaded from the SoundNet demo page
(https://projects.csail.mit.edu/soundnet/).
The training data contains the videos from the YFCC100M
[13] corpus as well as additional Flickr videos, totaling about
2 million. Truncated to at most 20 seconds long, the total
duration of these videos amounts to about 1 year. The number
of frames with automatically generated object and scene
distributions was about 7 million. The validation set contains
data of similar quality, whose size amounts to 1/15 of the
training set; we randomly picked 1,000 videos.

We optimized the networks using the Keras [14] toolkit.
The loss function was the sum of the KL divergences of the
object and scene distributions, measured in nats per frame.
We used a batch size of 64 videos (identical to the original
SoundNet), and checked the loss on the 1,000-video validation
set after every 160 minibatches, which we call an epoch. Each
epoch took about 18 minutes; going over the entire training set
would take 2.5 days. The original SoundNet was trained using
the Adam optimizer with a constant learning rate of 0.001; we
decayed the learning rate with a factor of 0.9 when the minimum
validation loss did not see any update for 5 epochs. We found
this decay helpful for the network to reach a lower loss.

We studied the effect of the recurrent cell type for SN-R,
as well as the effect of the activation function. It turned out
that GRU cells [15] reached a lower KL divergence than LSTM
cells [16], but the activation function did not make a difference
for either SN-F or SN-R. In Fig. 1, we plot the evolution of
the validation loss of SN-F and SN-R, all using the “tanh”
activation function. SN-F converged faster thanks to its simpler
structure; by Epoch 175 (after seeing about 90% of the training
data), it reached a validation loss of 5.39. We trained SN-R
until Epoch 300. With LSTM cells, the final validation loss
was 5.58; with GRU cells, 5.43. For comparison, the loss of
the original SoundNet on the 1,000-video validation set is 5.15,
but this number was measured after excluding about 2% of the
3,418 frames on which SoundNet predicted zero probabilities
for some object or scene classes.

We also studied the effect of batch normalization [17].
The original SoundNet used batch normalization for all the
convolutional layers, and we found it essential to do the same.
In the fully connected or recurrent layers, batch normalization
made no difference on the KL divergence, but we found it to
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Figure 2: Training the CTC-RNN for sound event detection: The
evolution of the training loss and the token error rate (TER)
on the training, validation and test sets, using either low-level
acoustic features or transfer learning features extracted from
SoundNet or its variants. Note that low-level features do not
yet achieve convergence at 200 epochs. Also note the different
scales of the training TER vs the validation and test TER, which
indicates severe overfitting.

slightly improve the SED performance of SN-R. Consequently,
for the experiments in the next subsection, we used a SN-R with
GRU cells, the ReLU non-linearity and batch normalization
in the recurrent layers, as described in Table 3. Because the
non-linearity is not the final step of computation in GRU cells,
batch normalization was applied after all the GRU computation.
This is different from the convolutional layers, where batch
normalization was performed before the non-linearity.

3.2. Sound Event Detection Using a CTC-RNN

We conducted SED experiments on the noiseme corpus [7],
with a setup almost identical to [6]. The corpus contained 464
recordings totaling 9.6 hours, annotated with 17 sound event
types. The data was partitioned into training, validation and test
sets with a duration ratio of 3:1:1.

We implemented the CTC-RNN using the [18] toolkit.
With input features extracted from SoundNet, SN-F or SN-R,
pre-training was found to be unnecessary, so we initialized
the weight matrices of the CTC-RNN using Glorot uniform
initialization [19], and biased the forget gates to 1 [20, 21]. Each
minibatch contained 5 sequences of 500 frames each, and an
epoch was defined as a pass through all the training data. The
loss function was per-frame negative log-likelihood, with the
alignment hinting tolerance (see [6] for details) set to 10 frames
(i.e. each peak was allowed to occur within a 2-second window
around the ground truth). We ran the stochastic gradient descent
(SGD) algorithm for 200 epochs with a Nesterov momentum
[22] of 0.9. The initial learning rate was 3.0, and was decayed
by a factor of 0.8 when the token error rate on the validation
set saw no update in 5 epochs. The token error rate (TER) is
computed the same way as word error rate (WER), treating the
sound event boundaries as words.

Fig. 2 shows the evolution of the loss function and the TER
on the training, validation and test sets, using the “conv5” layer



Table 4: Evaluating the CTC-RNN: Token error rate (TER) at
convergence (Epoch 200) using features extracted from different
layers of SoundNet, SN-F and SN-R. “BN” means after batch
normalization. The TER values of low-level features are mea-
sured at Epoch 500.

Feature | Layer |[#Dims|Train TER |Val. TER|Test TER
Low-level| N/A 50 15.2 82.8 81.0
SoundNet| conv5 | 256 2.3 76.6 74.0
pool5 | 256 35 80.5 774
fcl 100 6.1 79.9 77.8
SN-F fc2 100 6.5 82.2 79.2
fc3 100 4.6 80.8 77.6
pool5 | 256 3.0 78.9 74.9
grul 200 3.0 77.8 78.4
grul-BN| 200 1.2 75.8 76.7
SN-R gru2 200 3.0 84.5 80.6
gru2-BN| 200 2.3 82.3 79.0
gru3 200 90.6 96.4 96.4
gru3-BN| 200 60.9 90.5 91.2

of SoundNet, “fc1” layer of SN-F, and “grul” layer of SN-R
(after batch normalization), respectively. For comparison, the
curves produced using a 50-dimensional low-level acoustic fea-
ture [6] are also included. Using features learnt by transferring
from an image recognition task substantially accelerated the
convergence. When using low-level features, the CTC network
exhibited a “warm-up” stage when it did not output anything;
pre-training the network with a frame-wise sound event clas-
sifier shortened this stage from 60 epochs to 40 epochs. But
with transferred features, the warm-up stage was almost non-
existent. The final test-set TER was also lower than using low-
level features (see Table 4). Actually, before we switched to
SoundNet features, we had tried several techniques on the CTC-
RNN (including dropout [23] and data augmentation) in order
to improve the generalization, but none of these techniques
brought the test TER below 80%. The transfer learning based
features broke this barrier easily; however, the gap between the
training and test sets remained huge.

Next, we look at which layer of SoundNet or its variants
yielded features that led to the best SED performance. Table 4
shows the TER on the training, validation and test sets after
200 epochs when using features extracted from different layers.
We find that features extracted from the “conv5” layer of the
original SoundNet remains competitive. With SN-F, features
extracted from the higher, fully connected layers yield better
SED performance than low-level features, but still fall short of
SoundNet’s “conv5” layer. With SN-R, we first notice that it
is always better to extract features after batch normalization.
We also notice the SED performance gets worse as features are
extracted from higher layers, which is counter-intuitive.

We try to understand the cause of this performance deteri-
oration by visualizing the activations of some higher layers of
SN-F and SN-R in Fig. 3. We can see a clear transition in the
activations at 4.5 s, which is preserved in all the layers of SN-F.
In SN-R, however, the transition becomes blurred out at the
“gru2” layer, and disappears altogether at the “gru3” layer. This
indicates that recurrent layers, which have access to information
at distant moments, may not be good at representing local infor-
mation. The fully connected layers of SN-F, on the other hand,
maintain a reception field of 0.44 seconds, and therefore are
able to concentrate on what happens within this time window.
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Figure 3: The activations of the higher layers of SN-F and SN-R
on a validation recording. For the recurrent layers of SN-R, the
activations have been batch normalized.

4. Conclusion and Future Work

Sound event detection with a CTC-RNN suffers from a lack of
labeled training data. In this paper, we have studied the possibil-
ity of transferring knowledge learnt from an image recognition
task to help with sound event detection. We extracted features
from intermediate layers of SoundNet and its two variants,
SN-F and SN-R, to replace the low-level acoustic features used
in the past. The new features greatly accelerated the training of
the CTC-RNN for sound event detection, and slightly improved
its generalization.

We expected that features extracted from layers closer to
the target would yield better SED performance, but we were
not able to observe this in the experiments. With SN-R, the
reason is the loss of temporal resolution in the recurrent layers.
SN-F, which maintained its temporal resolution by limiting the
size of its reception fields, was also unable to close the gap
between the training and testing token error rates. This indicates
the necessity of a careful analysis of the errors made by the
SED network, in order to find out where the bottleneck of the
performance lies.

Because the training data for SoundNet is labeled for visual
objects and scenes, and the labels are generated automatically,
there may be a limit to what can be learnt from this data for
sound event detection. Recently, Google released Audio Set
[24], a huge manually annotated corpus for SED. It contains
2 million 10-second audio excerpts taken from YouTube videos,
weakly labeled with the presence or absence of 632 sound event
types. Since Audio Set is directly annotated for sound event
detection, it can be expected that features learnt from this corpus
may lend further assistance to CTC-based SED. We will explore
this possibility in the future.
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