

 The CMU-KIT Submissions to the
OpenSAT 2017 Evaluation

Florian Metze, Yun Wang, Rajat Kulshreshta, and Markus Müller

CMU-LTI-17-004

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

© 2017, Carnegie Mellon University

THE CMU-KIT SUBMISSIONS TO THE OPENSAT 2017 EVALUATION

TECHNICAL REPORT CMU-LTI-17-004

Florian Metze, Yun Wang, and Rajat Kulshreshta

Language Technologies Institute
Carnegie Mellon University

Pittsburgh, PA; U.S.A.
{fmetze|yunwang|rkulshre}@cs.cmu.edu

Markus Müller

Interactive Systems Labs
Karlsruhe Institute of Technology

Karlsruhe; Germany
m.mueller@kit.edu

ABSTRACT

This paper describes the development of the CMU-KIT sub-
missions to the NIST OpenSAT 2017 Evaluation, SAD (not
LRL) and ASR (LRL only) tracks. No submissions were
made to the KWS track.

The main goals of our submission were (a) to evaluate the
performance of a segmentation and non-speech audio event
detection algorithm that was originally developed for the
Trecvid MED task [1], and (b) to evaluate the performance of
our CTC-based end-to-end speech recognition approach [2].

On development data, we achieved DCF=0.091 (SV),
DCF=0.040 (PSC), and WER=45.8% (LRL).

Index Terms— OpenSAT evaluation, diarization, speech-
to-text, end-to-end speech processing

1. INTRODUCTION

The authors learned of the OpenSAT evaluation only in the af-
ternoon of the last day of the sign-up period, while discussing
data requirements for the 2017 JSALT workshop [3], which
Carnegie Mellon was organizing, while participating in this
evaluation.

The submitted systems thus necessarily present relatively
small efforts on top of existing resources. We decided to focus
our efforts on SAD for VAST and STT for LRL, while also
applying our existing SAD system to the SSSF task without
further significant tuning. An existing SAD is available for
the LRL task, which had however been tuned for KWS and
ASR performance rather than SAD performance, so we de-
cided to re-use it for the LRL submission, but not submit

Despite the limited time available, the performance on the
LRL task improved significantly since the Babel BP evalua-
tion in 2013: our single-model system improved from ⇠ 57%
word error rate (WER) in 2013 to 45.8% WER using auto-
matic segmentation (or 44.0% WER with manual segmenta-
tion, both results computed on the DEV data). In 2013, even
multi-site system combinations did not break the 50% barrier

for the Pashto FLP NTAR condition. We re-used the same
automatic segmentation that was developed for the 2013 Ba-
bel evaluation for the OpenSAT submission, and made only
small tweaks to the n-gram language model, so almost all of
the improvements can be attributed to the end-to-end trained
acoustic model (see Section 3.1).

While our previous systems used adapted context-dependent
HMM-based “hybrid” acoustic models, our current system
uses a bi-directional LSTM network trained using the Con-
nectionist Temporal Classification (CTC) [4] loss function. In
our setup, a single network is trained towards (context inde-
pendent) phonetic and character targets in a multi-task train-
ing setup, using unadapted lMEL features. During decoding,
both outputs are being evaluated with different language
models and the hypotheses are combined with ROVER.

Our SAT submissions rely on a large-scale feature extrac-
tion that was originally developed for the NIST Trecvid MED
task (audio modality), but includes a significantly improved
classifier based on recurrent neural networks. The systems
were originally developed with information retrieval metrics
in mind, rather than speech acitivity detection, but manual in-
spection on the DEV data indicates good overall performance
of the submitted systems. See Section 3.2 for details.

2. DATA RESOURCES

Our systems were trained only on the provided data, specif-
ically, the Full Pashto Language Pack, IARPA-babel104b-
v0.4bY, and the provided VAST and SSSF DEV corpora. No
external resources were used.

3. ALGORITHMIC DESCRIPTION

3.1. LRL – BABEL Pashto

Our submission uses the Eesen toolkit [2], which combines
an acoustic model that has been trained with the Connec-
tionist Temporal Classification [4] (CTC) loss function with

weighted Finite State Transducer (FST) [5] based decoding.
Compared to conventional frame-based approaches, this sys-
tem leads to much faster training, lower memory use, and
better performance. We implemented the acoustic model in
Tensorflow [6], which lead to further improvements, and al-
lows us to experiment quickly with new architectures or ideas,
such as open domain audio-visual speech recognition [7], or
character-based (open vocabulary) speech recogition [8]. For
further speedup, the LSTM acoustic model uses the cuDNN
5.1 backend.

More information on the Eesen wFST approach can be
found in [2]. We experimented with open vocabulary decod-
ing approaches [8], but were not able to further improve WER
results, probably due to the small amount and comparably
high quality of the Pashto data provided for OpenSAT 2017.

Our acoustic model uses 40 lMEL filter banks as input,
and we are adding 3 pitch-related features. We are stacking 3
neighboring frames, for a 129-dimensional input feature vec-
tor. The vector is extracted with a step size of 30 ms, in line
with other recent DNN work. We are performing data aug-
mentation by extracting three copies of each input utterance,
with different offsets of 0, 10, and 20 ms. An acoustic model
with 6 bi-directional LSTM layers and 140 cells in each di-
rection performed best in our experiments, and we use an 80-
dimensional projection layer between the stacked inputs and
the LSTM. The system is trained using the Adam optimizer.

The main novelty for the OpenSAT system is a multi-
task training approach: we train a single bi-directional LSTM
acoustic model towards both phonetic and (UTF-8) character-
based targets. The phonetic dictionary is taken from the train-
ing database release, while the characters are given by the set
of individual UTF-8 symbols found in the training transcrip-
tions. The system thus predicts 58 phonetic targets and 54
character targets in parallel (in addition to blank) in separate
soft-max output layers, while the overall training loss of the
system is given by the sum of these two soft-max layers

We trained a 3-gram and a 4-gram language model with
IRSTLM [9]. These are then usedto decode the phone pos-
teriors predicted by the acoustic model, after whitening with
a “temperature” [10] of 1.5 and scaling down the blank label
with 0.7.

We combind the output of the phone-based and character-
based decoding approach together using ROVER [11], which
proved a simple and effective method to combine the two

3.2. SV – VAST

3.2.1. Feature Extraction

Features are extracted using the OpenSMILE toolkit [12].
The input audio is cut into 25 ms frames shifting by 10 ms. A
variety of low-level features are extracted from each frame,
such as MFCCs, fundamental frequency, etc. Statistics
(e.g. min, max, mean, variance) of these features are com-
puted over 2-second windows shifting by 0.1 s. This yields

6,669 highly correlated dimensions; PCA is applied to reduce
them to 50 dimensions. The resulting representation of each
audio recording is a sequence of 50-dimensional feature vec-
tors with a frame shift of 0.1 s. This is also the time resolution
of the SAD output.

3.2.2. Model Structure

The SAD is performed by a simple bidirectional RNN. It has
one single hidden layer with 200 LSTM units in each direc-
tion. It has 50 input units and a single output unit, which
predicts the probability of speech at each frame.

3.2.3. Model Training

The RNN is trained on the DEV part of the VAST data. The
DEV data is partitioned equally into four folds; four models
are trained simultaneously, each using three folds as training
data and one fold as validation data. The objective function is
average cross-entropy, with all frames carrying equal weight.
The training algorithm is SGD with a Nesterov momentum of
0.9. Each minibatch contains 5 sequences of 500 frames. The
initial learning rate is 0.1, and adjusted according to the cross-
validation accuracy. A fifth model is trained simultaneously
using all the DEV data as training data, and is used to make
predictions on the eval data. This system is described in more
detail in Section 3.2 of [13].

3.2.4. Prediction

For each recording of the DEV data, we predict frame-wise
probabilities of speech using the RNN whose training data
does not contain this recording. For the eval data, we use the
RNN trained on all DEV data. A maximum filter of length 7 is
applied to smooth the probabilities, which are then binarized
with a threshold of 0.960691. The filter length and threshold
are optimized on the DEV data.

3.3. PSC – SSSF

3.3.1. Feature Extraction

Same as VAST, as described in Section 3.2.

3.3.2. Model Structure

The SAD is performed by a bidirectional RNN originally
trained for sound event detection (SED). It has one single
hidden layer with 400 LSTM units in each direction. It has
50 input units and 18 output units in a softmax group. The
output units correspond to 17 types of sound events and
“background”.

System SUB DEL INS WER
Character 30.7 12.4 3.9 47.0
Phone 29.7 13.0 3.9 46.6
Joint 26.5 14.0 3.5 44.0
Character 30.1 14.4 4.4 49.0
Phone 28.9 15.4 4.2 48.5
Joint 26.1 15.7 4.0 45.8

Table 1: Pashto Babel FLP ASR results (in %) on DEV
data, using manual (top half) and automatic (bottom half) seg-
mentation. Character and phone-based systems have virtually
identical performance, their combination (using ROVER) re-
sults in significant improvement.

3.3.3. Model Training

The RNN is trained on the “noiseme” corpus annotated at
CMU [14]. This is a corpus for sound event detection. It con-
tains 464 recording totaling 9.6 h. 17 types of sound events
are annotated with onset and offset times. 60% of the corpus
is used for training, and 20% for validation. The objective
function is average cross-entropy, with all frames carrying
equal weight. The training data is augmented four times, by
using both channels and two versions of OpenSMILE (1.0.1
and 2.1). The training algorithm is SGD with a Nesterov mo-
mentum of 0.9. Each minibatch contains 5 sequences of 500
frames. The initial learning rate is 0.05, and adjusted accord-
ing to the validation accuracy.

3.3.4. Prediction

For each recording of the DEV data, we predict frame-wise
distributions of sound events using the RNN. The total prob-
ability of the classes “speech, non-English speech, singing,
singing with music, human” are considered as the probabil-
ity of speech. Even though the evaluation plan postulates that
singing should not count as speech, including singing yields
better DEV performance. No maximum filter is applied; the
threshold is 0.190860 (optimized on the DEV data).

4. RESULTS ON THE DEV SET

4.1. LRL – BABEL Pashto

Table 1 shows the results of our FLP Pashto system. It is
important to note that no adaptation or multi-pass decoding
strategies are being used. Character- and phone-based system
are implemented as a multi-task acoustic model, and decoded
with a tri-gram and four-gram language model respectively,
before being combined using ROVER. This setup results in
an efficient and effective single-pass decoding strategy.

System DCF pMiss pFA
VAST 0.091 0.056 0.194
SSSF 0.040 0.018 0.109

Table 2: Results for SAD on the VAST and SSSF corpora.

4.2. SV – VAST and PSC – SSSF

Table 2 shows the results for speech activity detection on the
DEV data. Both systems use largely the same ideas, but have
been trained and tuned on different data sets.

5. HARDWARE DESCRIPTION AND TIMING
REPORT

The systems were mostly trained on CMU’s “Rocks” cluster,
using NVidia K20 GPUs (4 per server) and 16-core Intel Xeon
E5-2660 (at 2.2 GHz) servers, all with 128 GB of RAM. Some
experiments were also run on Nvidia Titan X (Pascal) GPUs
(one per server, with 32 Gb).

Training a phone/ character multi-task acoustic model
took about 12 h on a Titan X GPU (for ⇡25 iterations on the
Pashto FLP pack, including 5-fold data augmentation). A
single-task system without data augmentation takes less then
20 h to train on a single K20 GPU. Feature extraction requires
about an hour on an entire machine, while language model
training can be achieved within a few minutes.

In the submitted configuration, decoding involves extrac-
tion of acoustic model scores on a CUDA-enabled GPU, fol-
lowed by WFST decoding and extraction of the best hypothe-
sis on CPUs. Extraction of the required state posteriors takes
less than 30 mins on a K20 GPU for the 10 h DEV set. This
setup enabled us to build and test acoustic models quickly
and exclusively on GPUs, while testing many different con-
figurations on a large number of available CPUs. Decoding
most models takes less than 0.1 RTF (ten times faster than
real-time), so that an end-to-end test run on 10 h of data (with
given segmentation) can be turned around in less than one
hour on one of our CPU servers and one GPU.

The SAD systems similarly trained in a few hours each.
Given the nature of the large-scale feature extraction, it is im-
portant to use local storage for keeping temporary and inter-
mediate files whenever possible.

It is thus possible to re-train a system from scratch in less
than a day, on a single machine, including all feature extrac-
tion and preparation steps. No multi-pass decoding is be-
ing used, making ours a very efficient system well suited for
rapid prototyping and testing of different setups (e.g. lexicons,
script normalizations, data cleaning techniques, etc).

6. CONCLUSION AND FUTURE PLANS

The submitted (single and non-adapted) system is about 5%
absolute better than a multi-site system combination from
2013. At the same time, a CTC model is extremely simple
to build (our system models context independent phones and
characters directly), demonstrating the improvements that
deep learning has brought to the speech recognition commu-
nity over the last few years.

We are currently exploring the following ideas to further
improve our CTC-based approach to speech recognition:

• Further tuning and improvements such as batch nor-
malization, improved data augmentation have since im-
proved our performane on other tasks such as Switch-
board. We believe most of these techniques could also
help on the Babel LRL task.

• We have implemented a wFST-free decoding approach,
which rescores the CTC output with an RNN charac-
ter language model. At present, this approach gener-
ally performs a little worse than our wFST baseline,
but a vocabulary-free speech recognizer may be useful
for recognizing low resource languages with high mor-
phological complexity, as such a system does not suf-
fer from the OOV problem generally associated with
closed vocabularies.

• We are implementing adaptation of CTC models (and
RNN language models), specifically to visual or audi-
tive context (e.g., if a “car” can bee seen in a video, the
ASR is adapted to prefer outdoor acoustics, and vocab-
ulary (strings) from the transport domain.

7. REFERENCES

[1] F. Metze, S. Rawat, and Y. Wang, “Improved audio features
for large-scale multimedia event detection,” in Proc. ICME,
Chengdu; China, July 2014, IEEE.

[2] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-
End Speech Recognition using Deep RNN Models and WFST-
based Decoding,” in Proc. Automatic Speech Recognition
and Understanding Workshop (ASRU), Scottsdale, AZ; U.S.A.,
Dec. 2015, IEEE, https://github.com/srvk/eesen.

[3] Carnegie Mellon University, “2017 frederick jelinek memorial
summer workshop,” https://www.lti.cs.cmu.edu/2017-jelinek-
workshop, July 2017.

[4] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: labelling unsegmented

sequence data with r ecurrent neural networks,” in Proceed-
ings of the 23rd international conference on Machine Learn-
ing. ACM, 2006, pp. 369–376.

[5] M. Riley, C. Allauzen, and M. Jansche, “Openfst: An open-
source, weighted finite-state transducer library and its appli-
cations to speech and language,” in Proceedings of Human
Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics, Companion Volume: Tutorial Abstracts. Associa-
tion for Computational Linguistics, 2009, pp. 9–10.

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems,” 2015, Software available from tensorflow.org.

[7] A. Gupta, Y. Miao, L. Neves, and F. Metze, “Visual features
for context-aware speech recognition,” in Proc. ICASSP, New
Orleans, LA; U.S.A., Mar. 2017, IEEE, Best student paper
candidate.

[8] T. Zenkel, R. Sanabria, F. Metze, J. Niehues, M. Sperber,
S. Stüker, and A. Waibel, “Comparison of decoding strategies
for ctc acoustic models,” in Proc. INTERSPEECH, Stockholm,
Sweden, Aug. 2017, ISCA, Accepted.

[9] M. Federico, N. Bertoldi, and M. Cettolo, “Irst language mod-
eling toolkit, version 5.50. 02: User manual,” FBK-irst, Trento,
Italy, November, 2010.

[10] J. Chorowski and N. Jaitly, “Towards better decoding and
language model integration in sequence to sequence models,”
arXiv preprint arXiv:1612.02695, 2016.

[11] J. Fiscus, “A post-processing system to yield reduced word er-
ror rates: Recognizer output voting error reduction (ROVER),”
in Proc. Automatic Speech Recognition and Understanding
Workshop, Santa Barbara, CA; U.S.A, 1997, IEEE, pp. 347–
354.

[12] F. Eyben, M. Wöllmer, and B. Schuller, “opensmile – the mu-
nich versatile and fast open-source audio feature extractor,” in
Proc. ACM Multimedia (MM), Firenze; Italy, Oct. 2010, ACM.

[13] Y. Wang and F. Metze, “A first attempt at polyphonic sound
event detection using connectionist temporal classification,” in
Proc. ICASSP, New Orleans, LA; U.S.A., Mar. 2017, IEEE.

[14] S. Burger, Q. Jin, P. F. Schulam, and F. Metze, “Noisemes:
Manual annotation of environmental noise in audio streams,”
Tech. Rep. CMU-LTI-12-07, Carnegie Mellon University,
Pittsburgh, PA; U.S.A., 2012.

