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Abstract

Recently hybrid systems of deep neural networks (DNNs)
and hidden Markov models (HMMs) have shown state of
the art results on various speech recognition tasks. Best re-
sults were archived by training large neural networks (NNs)
on huge data sets (>2000h [9, 13, 18]). The required train-
ing data is often generated using different methods of data
augmentation.

We show that a simple approach using room impulse
response (RIR) can be used to train systems more robust to
reverberation, even in large rooms. The method doesn’t re-
quire multiple microphones or complex signal processing
techniques. On a test set simulating large rooms we show
improvements from 59.7 % word error rate (WER) down
to 41.9 % with only a small performance degrade for clean
speech.

In case of known large lectures rooms with varying mi-
crophone positions the approach can be used to adopt the
system to the environment. We present systems trained
with only one RIR, multiple and simulated RIRs.

1 Introduction

Over the past 25 years speech to text (STT) has advanced
a lot and latest systems are now able to transcribe read
speech with word error rate (WER) close or within hu-
man range. However large vocabulary continuous speech
recognition (LVCSR) still remains challenging and for mi-
crophones far from the speaker system performance de-
grades dramatically. Ambient noises, challenging speak-
ers and reverberation are the causes. We will focus on
the reverberation problem. Figure 1 shows how the re-
verberation effects log Mel-frequency filterbank features.
On way of dealing with it, is trying to remove it. Tradi-
tional methods for dereverberation can be split into two
categories [16]:

1. Reverberation Cancellation: Estimate the impulse re-
sponse of the environment and perform inverse-filtering
with it

2. Reverberation Suppression: Exploit characteristics of
speech or use microphone arrays to enhance the signal

Both approaches require extra effort or additional knowl-
edge about the environment, that might not be feasible. In-
stead we show that DNN are capable to deal with reverber-
ated speech. It is widely known that NN perform better if
the match between training and test data increases. Unfor-
tunately collecting and transcribing training data for many
conditions is very expensive. Therefore we use different
sets of impulse responses to transform close talk audio into
far field audio and train our acoustic model (AM) with it.
All other parts of the system remained untouched.

Room impulse response (RIR) characterize the acous-
tics of a room. It is measured by given an impulse into
the room (e. g. gunshot or sine sweep) and measuring the
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Figure 1: Log Mel-frequency filterbank features corre-
sponding to the utterance “invite use in" extracted from
clean and reverberant speech in a classroom.

response. The response will depend on the room dimen-
sions, it’s reflections properties and positions of source and
receiver. By convolution in the time domain the character-
istics of the room can be added to a signal again.

2 Related Work

Ishii et al. and Feng et al. trained a denoising autoencoder
(DAE) to output clean speech features from noisy features
[4, 8]. Their results prove that NNs are able to deal with re-
verberation without prior knowledge. This "blind" derever-
beration can be combined with a "model-based" approach,
performing spectral subtraction based on reverberation time
estimation, as in [23]. Both, the additional DAE and the
special model for spectral enhancement, increase the model
complexity.

The Automatic Speech Recognition in Reverberant En-
vironments (ASpIRE) Challenge held last year by IARPA
forced participants to deal with far field recordings while
limiting the training corpus to close talk [6]. Algorithmic
transformations were allowed and many teams mixed in
noises and impulse responses to simulate different environ-
ments [7, 17]. While we are confident that adding noises
is necessary for real world environments the goal of this
work was to investigated the affect using RIRs separately.

3 Experimental Setup

In the following we will describe the data used for the ex-
periments and provide details of our systems. All experi-
ments were run with Janus and the IBIS decoder [5, 20].
DNN training was performed using a Python tool based on
theano [1].



database #rooms #RIRs
ACE [3] 7 14
AIR [10] 16 214
MARDY [22] 1 9
OMNI [21] 3 468
RWCP [15] 3 118
total 30 823

Table 1: Sources for professional recorded RIRs used for
training and testing. All audio files were downsampled to
16 kHz to match the speech audio files. In MARDY all
recordings were done in the same room, but the acoustic
characteristic (e. g. reflectivity of the walls) was varied.

3.1 Training Data

For training our system we used the following data:

e 167 hours of TED talks from the TED-LIUM corpus
release 2 excluding talks [19], excluding talks in ts2013.

e 10 hours of various noise data, such as snippets of ap-
plause, rustle and music

e 823 RIRs from different sources. Details are shown in
table 1. 658 were used for training and 165 were hold
out for testing.!

e RIRs generated using the "Room Impulse Response
Generator" tool from E. Habets 2. Parameters for the
room, source position and receiver positions were set
randomly for each utterance.

3.2 Evaluation Set

Our systems are evaluated on the official evaluation set of
the International Workshop on Spoken Language Transla-
tion (IWSLT) 2013 (z5t2013) [2]. It contains 28 English
TED talks, each from a different speaker, split into 2246
utterances. Segmentation was provided as part of the dev
set for IWSLT 2015. The audio is close talk and we be
used to measure the performance of the system on clean
speech. We did not target to improve on this test set, but
system should score similar to the baseline.

For evaluation reverberated speech we created a rever-
berated version zst_reverb by chose 28 RIRs from the held
out test set. By picking from different source and differ-
ent rooms we tried to maximize the variance of environ-
ments. In order to see how the RIRs affect the WER have
assigned each speaker a RIR instead of randomly picking
at utterance level. Similar we created tst_classroom test
set by only using RIRs for the ’classroom’ in the OMNI
database.

3.3 Baseline System

Our baseline system is a hybrid DNN-HMM system. We
use a frame shift of 10ms and a window size of 32ms to
compulte 40 IMel and 14 tone features. As demonstrated
in [12] the tonal features also give small gains for non tonal
languages as English is. The combined features are stacked
to a context of 13 frames (+/- 6) and feed into a DNN.
The DNN has 5 hidden layers with sigmoid activa-
tion and 1200 neurons each and an softmax output layer.
First the hidden layers are pretrained layer-wise DAE as

Python code for downloading and organizing the databases is avail-
ableon https://github.com/Marvinl82/rir-database

’https://www.audiolabs—erlangen.de/fau/
professor/habets/software/rir-generator

described in [24]. Afterwards the whole network was fine-
tuned to output probabilities for the 8000 context depen-
dend phone states. We use the New Bob schedule with
threashods [0.005,0.001] and initial learning rate 1.0. For
systems with different versions of the training data we eval-
uate against a validation after each version of the training
data, otherwise after one epoche.

Our language model is the same as in [14]. The model
is combined unigram model built from various source (7.8
billion words in total). Unigram probabilities are deter-
mined to maximze the likelihood of a held-out transcripts
of TED talks. To kick-start our system we used labels writ-
ten with a GMM-HMM development system.

4 Training Reverberated Systems

For the reverberated systems we use the same setup as for

the baseline, but train the DNN on features from reverber-

ated audio. We obtain the feature matrix for an utterance
with the following steps:

1. Sample random RIR h(t) from list of training RIRs.

2. If necessary resample h(t) to match the sampling rate
of utterance.

3. Remove silence at the beginnin of h(t) to eliminate de-
lay for the direct sound signal.

4. Convolve utterance audio with h(t). If available in-
clude samples before the utterance window that would
cause reflections within the utterance time frame. Re-
flections that are after the utterance window are ig-
nored. The audio lenght remains the same.

5. Continue with the preprocessing as described for the
baseline above.

For the supervised fine-tuning of the DNN we need
labeled feature vectors. Using the GMM-HMM develop-
ment system as done for the baseline would give poor re-
sults because it wasn’t trained for far field audio. Instead
we use the same labels it created for the clean speech. In
step 3 we remove the silence at the beginning and there-
for minimizing the shift of the direct sound in the domain.
Some early and all late reflections are likely to effect fol-
lowing frames, but the first frame of a sound is not shifted.

While it might be easier to convolve the whole audio
of a speaker with the same impulse response, using a dif-
ferent impulse response for every utterance leads to greater
diversity and better results as we will show.

5 Results

We did experiments for two scenarios. In the first case the
room is known and dimensions or even RIRs are available.
By using those we try to adapt the DNN to this single room.
The second scenario is more general and the system has to
learn to deal with reverberation and wide variety of rooms.
We call this Multi-Room Adaption.

5.1 Single-Room Adaptation

In this scenario the system should learn to deal with the re-
verberation in the classroom from the OMNI database [21].
The case of having no information of the room is equiva-
lent to the baseline which has a WER of 94.6 %. By us-
ing a single RIR from the room we can improve to 78.3 %
(see table 2). By using more we can improve further down
to 59.1 %. This shows that the DNN is indeed able to
deal with the reverberation even so there is still room for


https://github.com/Marvin182/rir-database
https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator

RIRs for training  tst_classroom WER
0 (Baseline) 94.6 %
1 78.3 %
10 63.0 %
50 62.5 %
100 59.1 %
Reverb Gen 80.7 %
Reverb Real 60.2 %
Reverb Real* 69.5 %

Table 2: WER of systems trained with different number
of RIRs from the ‘classroom* in the OMNI database and
tested against other RIRs from the same room. The Reverb
Gen system is trained with simulated RIRs for rooms close
to the classroom dimensions. The Reverb Real systems
was trained with all 658 training RIRs which also include
RIRs from the classroom. For Reverb Real* these were
explicity removed.
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Figure 2: WER depending on receiver position for a sys-
tem trained with the RIRs from the room. The source was
positioned at (4.5 m, 0.5 m) and the total size of the room
is 7.5m3 x 9m3 x 3.5m>.

improvement. Collecting more than a few RIRs from a
room is not practical and gives only little gains. Simulated
RIRs did not help Using more than 10 RIRs shows only
little gains. Using only RIRs from other rooms for training
scores 69.5 %.

Further we evaluated how the performance correlates
with the distance between speaker and receiver. Figure 2
show the results. For positions closer to the speaker the
system could handle to reverberated audio a lot better. The
worst results can be seen on the outsides of the first row.
This is similar to the findings in [11]. The authors sug-
gest that ASR system performace is better correlated with
a measure that depends not only on the distance but also an
the orientations of both speaker and receiver.

5.2 Multi-Room Adaptation

Our second scenario targeted the adaption to as many rooms
as 30. For the dereverberated version of the #st2013 test set
the performance of our baseline decreased from 19.1 % to
a WER of 59.7 %, proving it unusable in reverberated en-
vironments.

We can improve on that by training with simulated RIRs.

For the presented numbers room dimensions were between

WER
tst2013  tst_reverb
Baseline 19.1 % 59.7 %
Reverb Gen 22.2 % 48.1 %
Reverb Real 26.2 % 419 %

Table 3: WER on the evaluation set of the IWSLT 2013.
Reverb Gen is trained with artificially generated impulse
responses while for Reverb Real real room impulse re-
sponses are used.

WER
tst2013  tst_reverb
per speaker 26.9 % 42.5 %
per utterance  26.2 % 41.9 %

Table 4: Convolving each utterance with a different im-
pulse response instead of using one for all utterances of
a speaker gives a small gain in system performance. Our
training set has 723 different speakers, for a smaller train-
ing set the difference should be bigger.

4m3 x5m3 x2m? and 8m3 x 9m3 x 3m3. Positions of
source and receiver were sampled for each room. The im-
provement by 10 % is promising, but still far from WERs
on clean speech. We did not see significant gains by using
bigger rooms.

Next we used the RIRs we collected from various sources.
Even so some of the impulse responses were recorded in
big lecture rooms and with reverberation times around 2
seconds the DNN was able to find some features and learn
from them. The final WER was 41.9 %. Results for the
experiments are shown in table 3. Testing against 7512013
was performed to measure the performance losses on clean
speech. Both Reverb systems show performance drops on
tst2013, but score much better than on the reverberated
speech.

As mentioned before we believe that convolving each
utterance of a speaker with a different impulse response
leads to greater diversity which is known to improve per-
formance of DNNGs. This is true as seen in table 4. Further
training with multiple versions of an utterance by sampling
more than 1 RIRs per utterance leads to further perfor-
mance improvements.

6 Conclusion

In this study we investigated how RIRs can be used to train
a DNN based acoustic model, and making it more robust
to reverberated speech, with very little effort. RIRs from
already available databases gave better results than simu-
lated impulse responses. The method does not introduce
new hyper parameters and no other optimizations are nec-
essary.

We will perform further experiments on how to better
utilize simulated impulse responses. Ideally multi-condition
training should lead to improvements for both reverberated
and clean speech.
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