
On Speaker Adaptation of Long Short-Term Memory Recurrent Neural
Networks

Yajie Miao, Florian Metze

Language Technologies Institute, School of Computer Science, Carnegie Mellon University
{ymiao,gowayyed,haoz1,fmetze}@cs.cmu.edu

Abstract
Long Short-Term Memory (LSTM) is a recurrent neural net-
work (RNN) architecture specializing in modeling long-range
temporal dynamics. On acoustic modeling tasks, LSTM-RNNs
have shown better performance than DNNs and conventional
RNNs. In this paper, we conduct an extensive study on speaker
adaptation of LSTM-RNNs. Speaker adaptation helps to reduce
the mismatch between acoustic models and testing speakers.
We have two main goals for this study. First, on a benchmark
dataset, the existing DNN adaptation techniques are evaluated
on the adaptation of LSTM-RNNs. We observe that LSTM-
RNNs can be effectively adapted by using speaker-adaptive
(SA) front-end, or by inserting speaker-dependent (SD) layers.
Second, we propose two adaptation approaches that implement
the SD-layer-insertion idea specifically for LSTM-RNNs. Us-
ing these approaches, speaker adaptation improves word error
rates by 3-4% relative over a strong LSTM-RNN baseline. This
improvement is enlarged to 6-7% if we exploit SA features for
further adaptation.
Index Terms: Long Short-Term Memory, recurrent neural net-
work, acoustic modeling, speaker adaptation

1. Introduction
The application of deep learning has achieved tremendous suc-
cess in acoustic modeling. On a wide range of large vocabu-
lary continuous speech recognition (LVCSR) tasks, deep neural
networks (DNNs) have shown better performance than the tra-
ditional Gaussian mixture models (GMMs) [1, 2, 3]. Although
making significant advances, DNNs, as well as the more ad-
vanced convolutional neural networks (CNNs) [4, 5, 6], can
model only limited temporal dependency that is provided by
the fixed-size window of acoustic frames. As a result, DNNs
are not an optimal modeling tool for the complex speech sig-
nal with long-range dynamics. To resolve this limitation, previ-
ous work [7, 8] has studied recurrent neural networks (RNNs)
as acoustic models. With self-connections on their hidden lay-
ers, RNNs allow temporal information to be propagated through
many time steps. However, training of conventional RNNs can
become problematic due to the gradient vanishing and explod-
ing problem [9]. The Long Short-Term Memory (LSTM) ar-
chitecture [10] provides a solution to overcome the weakness of
RNNs. LSTMs exploit memory cells to store temporal infor-
mation and purpose-built gates to control the information flow.
The incorporation of LSTM enables RNNs to learn long-range
temporal dependency. Past work [11, 12, 13, 14] has applied
LSTM-RNNs to acoustic modeling and shown state-of-the-art
performance.

Another issue that acoustic models, both GMMs and
DNNs, encounter is the mismatch between acoustic models and

testing speakers. Although displaying superior generalization
ability than GMMs [15], DNN models still experience a per-
formance degradation when ported from training speakers to
unseen testing speakers. To mitigate the effects of this mis-
match, past work has proposed various methods for speaker
adaptation [16] of DNN and CNN models. These methods can
be categorized into three classes. First, the SI model, or cer-
tain layers of the model, are re-updated on the adaptation data
of each testing speaker [17, 18]. Second, SI-DNN models are
augmented with additional speaker-dependent (SD) layers that
are learned on the adaptation data [19, 20]. Third, the acous-
tic model is trained (and decoded) using speaker-adaptive (SA)
features [3, 21, 22] or features enriched with SD information
[23, 24, 25, 26]. Though adaptation of DNNs and CNNs is well
studied, to the best of our knowledge, no previous work has
dealt with speaker adaptation of LSTM-RNNs on large-scale
acoustic modeling.

In this paper, we present an extensive study to investigate
the unsupervised speaker adaptation of LSTM-RNN models.
On the benchmark Switchboard dataset, the performance of the
aforementioned three classes of adaptation techniques is evalu-
ated for LSTM-RNNs. Moreover, we propose two approaches
that implement the idea of inserting SD layers. The first ap-
proach is to insert linear input features transforms (IFTs) atop of
single frames of network inputs. To distinguish the behaviours
of different components (memory cells and gates) in LSTM,
separate transforms are added for individual components. Sec-
ond, instead of inserting SD LSTM layers, we propose to insert
hidden activations transforms (HATs) between the outputs of a
LSTM layer and the inputs of the next layer. We study the recur-
rent and non-recurrent versions of HAT. Experiments show that
adaptation with the proposed methods improves a competitive
SI LSTM-RNN model by 3-4% relatively. The improvement
from adaptation can be further enlarged to 6-7% when we apply
adaptive front-end together with IFT-based adaptation.

2. Review of LSTM-RNNs
Compared to the standard feedforward architecture, RNNs have
the advantage of learning complex temporal dynamics on se-
quences. Given an input sequence X = (x1, ..., xT), a tradi-
tional recurrent layer iterates from t = 1 to T to compute the
sequence of hidden states H = (h1, ..., hT) via the following
equations:

ht = σ(Wxhxt + Whhht−1 + bh) (1)

where Wxh is the input-to-hidden weight matrix, Whh is the
hidden-to-hidden (recurrent) weight matrix. In addition to the
inputs xt, the hidden activations ht−1 from the previous time
step are fed to influence the hidden outputs at the current time

Figure 1: A memory block of LSTM.

step. Learning of RNNs can be done using back-propagation
through time (BPTT). However, in practice, training RNNs to
learn long-term temporal dependency can be difficult due to
the well-known vanishing and exploding gradients problem [9].
Gradients propagated though the many time steps (recurrent
layers) decay or blow up exponentially. The LSTM architecture
[10] provides a solution that partially overcomes the weakness
of RNNs. LSTM contains memory cells with self-connections
to store the temporal states of the network. Additionally, multi-
plicative gates are added to control the flow of information: the
input gate controls the flow of inputs into the memory cells; the
output gate controls the outputs of memory cells activations; the
forget gate regulates the memory cells so that their states can be
forgotten. Furthermore, as research on LSTMs has progressed,
the LSTM architecture is enriched with peephole connections
[27]. These connections link the memory cells to the gates to
learn precise timing of the outputs.

Given the input sequence, a LSTM layer computes the gates
(input, output, forget) and memory cells activations sequentially
from t = 1 to T . The computation at the time step t can be
described as:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (2a)
ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf) (2b)

ct = ft � ct−1 + it � φ(Wcxxt + Wchht−1 + bc) (2c)
ot = σ(Woxxt + Wohht−1 + Wocct−1 + bo) (2d)

ht = ot � φ(ct) (2e)

where it, ot, ft, ct are the activation vectors of the input gate,
output gate, forget gate and memory cell respectively. The W.x

terms denote the weight matrices connecting the inputs with the
units. The W.h terms denote the weight matrices connecting the
memory cell states of the previous time step t−1 with different
units. The terms Wic, Woc, Wfc are diagonal weight matrices
for peephole connections. Also, σ is the logistic sigmoid non-
linearity which squashes its inputs to the [0,1] range, whereas
φ is the hyperbolic tangent nonlinearity squashing its inputs to
[-1, 1]. The operation� represents element-wise multiplication
of vectors.

The number of parameters in a LSTM layer is dominated
by the number of memory cells. To reduce the model size, [12]
proposes to add a projection layer over the memory cells. At the
time step t, this layer projects the memory cells outputs ht to a
lower-dimensional vector rt via a linear transform Wrh. This
projection layer is recurrent in that rt will be fed as inputs for
the next time step. That is, ht−1 in Equations 2(a∼d) is replaced
with rt−1. In addition to reducing model parameters, adding the
projection layer is found to generate better recognition accuracy

[12]. In this work, we use the LSTM layer with this projection
layer in our LSTM-RNN architecture.

3. Speaker Adaptation of LSTM-RNNs
This work studies speaker adaptation of LSTM-RNNs. As re-
viewed in Section 1, there have been three classes of adaptation
methods for DNNs and CNNs: re-updating the SI model, insert-
ing (and then learning) SD layers, training and decoding with
SA features. The first and third categories are straightforward
to implement for LSTM-RNNs. We will show more details and
their results in our experiments. In this section, we focus on the
second category, that is, speaker adaptation with additional SD
layers. We propose two approaches to implementing this idea.

3.1. Input Features Transform (IFT)

As with previous work on DNN adaptation, the SD layers can
be inserted atop of the input features. We apply a linear trans-
form over the single acoustic frames, without considering the
context window. Formally, for each testing speaker s, we have
a matrix Ws with the size of d × d, where d is the dimen-
sion of input vector xt. After feature transformation, the inputs
into the LSTM-RNN is zt = Wsxt. The formulation of the
LSTM-RNN on this speaker remains to be Equations 2(a∼e),
with the only modification that xt is replaced by zt. Since zt
is not involved in the recurrence, training of the transform can
be done using error back-propagation in a batch mode. From
BPTT within the LSTM layer, we can get the derivative of the
optimization objective (e.g., cross-entropy) L with respect to zt.
The derivative vector is denoted as δ

(z)
t = ∂L

∂zt
. With this, the

T ×d derivative matrix ∆z = (δ
(z)
1 , ..., δ

(z)
T) is constructed on

the entire sequence. Then, the gradients of Ws accumulated on
this sequence is computed as:

∂L
∂Ws

= ∆T
z X (3)

where X = (x1, ..., xT) is the input matrix with the dimension
of T × d.

So far, we have used a single feature transform with respect
to the different LSTM components it, ft, ct and ot. This solu-
tion may be suboptimal because these components are respon-
sible for different parts of the information flow within LSTM.
Therefore, they may also need to operate in separate feature
spaces in order for better speaker adaptation. We apply a
component-specific version of the IFT approach, in which each
component has an individual feature transform. For example,
the transform W(i)

s is specific to speaker s and the input gate.
The adapted features for the input gate are z(i)t = W(i)

s xt which
replaces xt in Equation 2(a). In this case, learning of the fea-
ture transforms is also component specific. Gradients for each
feature transform are derived from the derivatives of its corre-
sponding transformed features.

3.2. Hidden Activations Transform (HAT)

For speaker adaptation of DNNs, past work has attempted to
augment the SI model with additional SD hidden layers [19, 28].
These SD layers are learned on the adaptation data. In the
LSTM-RNN architecture, the recurrent LSTM layer is complex
and contains many parameters. It is hard to train a SD LSTM
layer reliably on the limited adaptation data. To resolve this is-
sue, we propose to insert a SD linear-transform layer atop of the
LSTM layer. When the LSTM-RNN has projection layers, such

a HAT layer is applied to the memory cell outputs rt. The trans-
form matrix for the speaker s is Ms with the size of |rt| × |rt|.
The transformed activations r̂t = Msrt are propagated as the
inputs to the next layer. There is no temporal recurrence in-
volved in the application of Ms. Therefore, Ms can be applied
to the entire sequence in a batch mode, with a matrix-matrix
multiplication. Learning of such a matrix is also straightfor-
ward. Its gradients are derived easily from the back-propagated
errors of the inputs of the atop layer.

Alternatively, the transform Ms can be applied in a recur-
rent manner. In the forward propagation, the transformed acti-
vations r̂t−1 are treated as ht−1 in Equations 2(a∼d) for com-
putation of it, ft, ct and ot. In this case, the transform has to
be applied sequentially frame by frame. In the back propaga-
tion, the gradients of Ms need to be propagated through the time
steps. Thus, BPTT is employed to optimize Ms on the adapta-
tion data. We evaluate both the recurrent and the non-recurrent
HAT in our experiments.

4. GPU Implementation
We implement training of LSTM-RNNs on GPU devices. Fol-
lowing [12], we use the truncated version of BPTT for model
training. Each utterance is partitioned into short subsequences
of 20 time steps. If the last subsequence of the utterance
is shorter than 20 frames, we pad this last subsequence with
pseudo frames up to 20 frames. These padding frames are ex-
cluded from gradients computation. Activations in the forward
pass and parameter gradients in the backward pass are derived
over the subsequences rather than entire utterances. Within the
same utterance, the final LSTM states (t = 20) from the current
subsequence are used as initialization for the next subsequence.
To fully exploit the power of GPUs, our implementation pro-
cesses subsequences from 20 utterances in parallel. Speed up
is thus achieved by replacing matrix-vector multiplication over
single frames with matrix-matrix multiplication over 20 frames
at a time. To ensure training stability, the activations of memory
cells ct are clipped to the range of [-50, 50] in the forward pass.

5. Experiments
Our experiments are conducted on the Switchboard conversa-
tional telephone transcription task. We use Switchboard-1 Re-
lease 2 (LDC97S62) as the training set which contains over 300
hours of speech. For fast turnarounds, we also select 110 hours
from the training set and create a lighter setup. Our test set is
the Hub5’00 (LDC2002S09) set which consists of 20 conversa-
tions from Switchboard and 20 conversations from CallHome
English. We report results on the Switchboard part and also on
the entire test set. For decoding, a trigram language model (LM)
is trained on the training transcripts. This LM is then interpo-
lated with another trigram LM trained on the Fisher English Part
1 transcripts (LDC2004T19).

5.1. Experiments on the 110-Hour Setup

5.1.1. Baseline GMM-HMM Systems

We first report experiments on the 110-hour setup. The GMM-
HMM systems are built with the standard Kaldi Switchboard
recipe [29]. We train the initial ML model based on 39-
dimensional MFCC (plus deltas and double deltas) features
with per-speaker mean normalization. Then 7 frames of MFCCs
are spliced and projected to 40 dimensions with linear discrimi-
nant analysis (LDA). A maximum likelihood linear transform

(MLLT) is estimated on the LDA features and generates the
LDA+MLLT model. Over the LDA+MLLT model, speaker
adaptive training (SAT) is performed with one FMLLR trans-
form [16] per speaker.

5.1.2. Baseline DNN and LSTM-RNN Models

Adaptation of DNNs and LSTM-RNNs can be naturally accom-
plished by using SA features as network inputs. We investi-
gate three types of features: the SI filterbanks (FBanks), the
SA filterbanks with vocal tract length normalization (VLTN),
the SA FMLLRs. Both FBanks and VTLN-FBanks features
are normalized with per-speaker mean and variance normaliza-
tion. For each feature type, network inputs include 11 neigh-
bouring frames (5 frames on each side of the center frame)
which amount to 440 dimensions. The DNN has 5 hidden lay-
ers each of which contains 1200 neurons. It is initialized ran-
domly by drawing the weights from a Gaussian distribution and
biases from a uniform distribution. DNN fine-tuning optimize
the cross-entropy (CE) objective using an exponentially decay-
ing ”newbob” learning rate schedule. Specifically, the learning
rate starts from 0.008 and remains unchanged until the increase
of the frame accuracy on a cross-validation set between two
consecutive epochs falls below 0.5%. Then the learning rate
is decayed by a factor of 0.5 at each of the subsequent epochs.
The whole learning process terminates when the frame accu-
racy fails to improve by 0.2% between two successive epochs.
A mini-batch size of 256 is adopted for stochastic gradient de-
scent (SGD).

Our LSTM-RNN has 2 projected LSTM layers which are
followed by the softmax layer. Each LSTM layer has 800 mem-
ory cells and 512 output units. Inputs to the architecture are
single frames of FBanks or FMLLRs, without any context splic-
ing. We also use the ”newbob” learning rate schedule, with the
difference of setting the initial learning rate to 0.00002. Table
1 shows the results of DNNs and LSTM-RNNs using different
features. With both FBanks and VTLN-FBanks, the LSTM-
RNN performs better than the DNN, demonstrating its advan-
tage in acoustic modeling. However, the LSTM-RNN fails to
outperform the DNN over the FMLLR front-end, indicating that
FMLLRs are not suited for LSTM-RNN models. This is partly
because FMLLRs are produced by splicing and transforming
the original MFCCs. These complex transforms to some extent
break the inherent temporal dependency between neighbouring
frames. For LSTM-RNNs, the VTLN-FBank features give nice
improvement over the FBank features. Therefore, VTLN is ef-
fective in adapting LSTM-RNNs on the front-end side.

Table 1: Results (% WER) of the DNNs and LSTM-RNNs on the
110-hour set and using different features. The results are shown
on the Hub5’00-SWB and Hub5’00 (in brackets) sets. M refers
to million.

Model #Parameters Feature WER%

DNN
12M FBank 20.2 (26.8)
12M VTLN-FBank 19.3 (25.6)
12M FMLLR 18.1 (24.3)

LSTM-RNN
8M FBank 19.2 (26.1)
8M VTLN-FBank 18.3 (25.1)
8M FMLLR 18.0 (25.2)

5.1.3. Adaptation by Inserting SD Layers

We investigate the IFT and HAT methods presented in Section
3. The transform matrices in IFT and HAT are initialized to an
identity matrix. On each testing speaker, we run 5 epochs of
fine-tuning. The first epoch uses the learning rate of 0.00002
which is decayed by the factor of 0.5 in the following epochs.
In Table 2, we first compare the variants of each method over
the FBank features. For IFT, the component-specific version
gives better results than having a component-uniform feature
transform. This shows that distinguishing the LSTM compo-
nents benefits model adaptation. Within the HAT method, the
non-recurrent variant performs better than the more complex
recurrent implementation. We think this is because under the
recurrent HAT, learning of the transform requires back propa-
gation through time steps. This may explode the parameter gra-
dients, and thus overfit the adapted LSTM-RNN to the adapta-
tion data quickly. At their best cases, both methods improve the
LSTM-RNN baseline by 3.4% relative on the whole Hub5’00
set. When switching to the adaptive VTLN-FBank features,
adaptation with IFT and HAT still generates gains. To this end,
the IFT-adapted LSTM-RNN outperforms the SI LSTM-RNN
by 6.5% relatively (24.4% vs 26.1%) on the entire test set.

Table 2: Results (% WER) of the adapted LSTM-RNNs with the
IFT and HAT methods described in Section 3.

Feature Model WER%

FBank

LSTM-RNN 19.2 (26.1)
+IFT (component-uniform) 18.8 (25.6)
+IFT (component-specific) 18.5 (25.2)
+HAT (non-recurrent) 18.6 (25.2)
+HAT (recurrent) 19.1 (25.7)

VTLN-FBank
LSTM-RNN 18.3 (25.1)
+IFT (component-specific) 18.0 (24.4)
+HAT (non-recurrent) 18.2 (24.7)

5.1.4. Adaptation by Updating SI Models

The final category of adaptation is to update the SI LSTM-RNN
(or part of it) on the adaptation data. Depending on which part
of the model to be updated, adaptation in this section is divided
into three cases. These cases involve updating the entire SI
model, the input-to-component matrices W.x, the projection-
layer matrix Wrh, respectively on the adaptation data. Table
3 shows the results corresponding to the three cases. Without
loss of generality, only the FBank features are used as network
inputs. We observe that updating the whole SI model is vulner-
able to overfitting. Both the frame accuracy and the WER go up
quickly on the adaptation data. This is why the adapted model
performs even worse than the SI model. Adaptation in the latter
two indeed improves the SI model. However, the gains are not
as significant as that achieved by IFT and HAT. Updating the SI
model is not an effective strategy to adapt LSTM-RNNs.

5.2. Experiments on the Complete 300-Hour Setup

Speaker adaptation of LSTM-RNNs is finally evaluated on the
complete 300 hours of training data. We follow the same proce-
dures as described in Section 5.1 to build the GMM and DNN
models. The number of CD states in the GMM model increases
from 4287 to 8929. The DNN model has 6 hidden layers each
of which contains 2048 neurons. The DNN is initialized with

Table 3: Results (% WER) of the adapted LSTM-RNNs by up-
dating different parts of the SI model. We only examine the
FBank features as the network inputs.

Updated Part WER%
The entire model 19.3 (26.0)

The input-to-component matrix W.x 18.9 (25.5)
The projection layer Wrm 19.0 (25.5)

restricted Boltzmann machines (RBMs) that are pretrained in
a greedy layerwise fashion [30]. The LSTM-RNN has 2 pro-
jected LSTM layers. Each LSTM layer has 1024 memory cells
and 512 output units. Under these settings, the DNN has 40 mil-
lion parameters while the LSTM-RNN has 12 million. Table 4
shows the results of the baseline DNN and LSTM-RNN on the
HUB’00 test set. On both FBank and VTLN-FBank features,
the LSTM-RNN model outperforms the DNN model.

For adaptation for LSTM-RNNs, we adopt the best config-
urations discovered in Section 5.1, i.e., the component-specific
IFT and non-recurrent HAT. From Table 4, we can see that on
each feature type, the adapted LSTM-RNN performs consis-
tently better than the unadapted LSTM-RNN. However, the im-
provement we achieve here becomes less significant than the
improvement on the 110-hour set. This is because with more
training data, the LSTM-RNN model encodes richer speaker
availability and thus generalizes better to unseen testing speak-
ers, which decreases the efficacy of speaker adaptation. On the
whole test set, the adapted LSTM-RNN achieves the best WER
of 21.1%. This translates to 2.3% relative improvement over the
SA LSTM-RNN (21.6%) with VTLN-Fbanks and 4.5% over
the SI LSTM-RNN (22.1%) with FBanks.

Table 4: Results (% WER) of the baseline DNN and LSTM-RNN,
and the adapted LSTM-RNN. Adaptation is performed with the
(component-specific) IFT and (non-recurrent) HAT methods.

Feature Model WER%

FBank

DNN 16.9 (23.2)
LSTM-RNN 15.8 (22.1)
+IFT 15.5 (21.5)
+HAT 15.8 (21.8)

VTLN-FBank

DNN *** (***)
LSTM-RNN 15.2 (21.6)
+IFT 15.2 (21.1)
+HAT 15.6 (21.5)

6. Conclusions and Future Work
In this paper, we have studied the problem of speaker adaptation
for LSTM-RNN models. The effectiveness of the DNN adapta-
tion techniques is evaluated for LSTM-RNNs. We propose two
approaches, IFT and HAT, to implementing the idea of inserting
SD layers. Our experiments with the Switchboard dataset show
that adaptation with the proposed methods improves LSTM-
RNN models by 3-4% relative. Applying speaker adaptive fea-
tures enlarges the improvement of adaptation further to 6-7%
relative. For the future work, we will study the incorporation
of speaker i-vectors [31] for adaptation of LSTM-RNNs. Also,
we are interested to port the SAT-DNN idea [25, 26] to LSTM-
RNNs, and achieve SAT for the LSTM-RNN architecture.

7. References
[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent

pre-trained deep neural networks for large-vocabulary speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 30–42, 2012.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Maga-
zine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[3] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering
in context-dependent deep neural networks for conversational
speech transcription,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2011 IEEE Workshop on. IEEE, 2011, pp.
24–29.

[4] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhad-
ran, “Deep convolutional neural networks for lvcsr,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on. IEEE, 2013, pp. 8614–8618.

[5] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recogni-
tion,” IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), vol. 22, no. 10, pp. 1533–1545, 2014.

[6] H. Soltau, G. Saon, and T. N. Sainath, “Joint training of con-
volutional and non-convolutional neural networks,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 5572–5576.

[7] A. L. Maas, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and
A. Y. Ng, “Recurrent neural networks for noise reduction in robust
asr.” in INTERSPEECH. Citeseer, 2012.

[8] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on. IEEE, 2013, pp. 6645–6649.

[9] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” Neural Networks,
IEEE Transactions on, vol. 5, no. 2, pp. 157–166, 1994.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[11] A. Graves, N. Jaitly, and A.-R. Mohamed, “Hybrid speech recog-
nition with deep bidirectional lstm,” in Automatic Speech Recog-
nition and Understanding (ASRU), 2013 IEEE Workshop on.
IEEE, 2013, pp. 273–278.

[12] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic mod-
eling,” in Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH), 2014.

[13] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott,
R. Monga, and M. Mao, “Sequence discriminative distributed
training of long short-term memory recurrent neural networks,”
in Fifteenth Annual Conference of the International Speech Com-
munication Association, 2014.

[14] X. Li and X. Wu, “Constructing long short-term memory based
deep recurrent neural networks for large vocabulary speech recog-
nition,” arXiv preprint arXiv:1410.4281, 2014.

[15] D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide, “Feature
learning in deep neural networks-studies on speech recognition
tasks,” arXiv preprint arXiv:1301.3605, 2013.

[16] M. J. Gales, “Maximum likelihood linear transformations for
hmm-based speech recognition,” Computer speech & language,
vol. 12, no. 2, pp. 75–98, 1998.

[17] H. Liao, “Speaker adaptation of context dependent deep neural
networks,” in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE, 2013, pp. 7947–
7951.

[18] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “Kl-divergence reg-
ularized deep neural network adaptation for improved large vo-
cabulary speech recognition,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 7893–7897.

[19] B. Li and K. C. Sim, “Comparison of discriminative input and out-
put transformations for speaker adaptation in the hybrid nn/hmm
systems,” in Eleventh Annual Conference of the International
Speech Communication Association, 2010.

[20] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong, “Adaptation
of context-dependent deep neural networks for automatic speech
recognition.” in SLT, 2012, pp. 366–369.

[21] S. P. Rath, D. Povey, K. Veselỳ, and J. Cernockỳ, “Improved fea-
ture processing for deep neural networks.” in INTERSPEECH,
2013, pp. 109–113.

[22] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl, G. Saon,
H. Soltau, T. Beran, A. Y. Aravkin, and B. Ramabhadran, “Im-
provements to deep convolutional neural networks for lvcsr,” in
Automatic Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on. IEEE, 2013, pp. 315–320.

[23] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adap-
tation of neural network acoustic models using i-vectors,” in Au-
tomatic Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on. IEEE, 2013, pp. 55–59.

[24] A. Senior and I. Lopez-Moreno, “Improving dnn speaker indepen-
dence with i-vector inputs,” in Proc. ICASSP, 2014.

[25] Y. Miao, H. Zhang, and F. Metze, “Towards speaker adaptive
training of deep neural network acoustic models,” in Proc. Inter-
speech, 2014.

[26] Y. Miao, L. Jiang, H. Zhang, and F. Metze, “Improvements to
speaker adaptive training of deep neural networks,” 2014.

[27] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning
precise timing with lstm recurrent networks,” The Journal of Ma-
chine Learning Research, vol. 3, pp. 115–143, 2003.

[28] P. Swietojanski and S. Renals, “Learning hidden unit contri-
butions for unsupervised speaker adaptation of neural network
acoustic models.”

[29] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” 2011.

[30] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural computation, vol. 18, no. 7,
pp. 1527–1554, 2006.

[31] N. Dehak, R. Dehak, P. Kenny, N. Brümmer, P. Ouellet, and P. Du-
mouchel, “Support vector machines versus fast scoring in the low-
dimensional total variability space for speaker verification.” in In-
terspeech, vol. 9, 2009, pp. 1559–1562.

