
Execution Monitoring with Quantitative Temporal Bayesian Networks

Dirk Colbry
colbrydj@eecs.umich.edu

Bart Peintner
bpeintne@eecs.umich.edu

Computer Science and Engineering
University of Michigan

1101 Beal Ave.
Ann Arbor, MI 48103

Martha E. Pollack
pollackm@eecs.umich.edu

Abstract

The goal of execution monitoring is to determine
whether a system or person is following a plan ap-
propriately. Monitoring information may be uncertain,
and the plan being monitored may have complex tem-
poral constraints. We develop a new framework for
reasoning under uncertainty with quantitative tempo-
ral constraints – Quantitative Temporal Bayesian Net-
works – and we discuss its application to plan-execution
monitoring. QTBNs extend the major previous ap-
proaches to temporal reasoning under uncertainty:
Time Nets (Kanazawa 1991), Dynamic Bayesian Net-
works and Dynamic Object Oriented Bayesian Net-
works (Friedman, Koller, & Pfeffer 1998). We argue
that Time Nets can model quantitative temporal rela-
tionships but cannot easily model the changing values
of fluents, while DBNs and DOOBNs naturally model
fluents, but not quantitative temporal relationships.
Both capabilities are required for execution monitor-
ing, and are supported by QTBNs.

Introduction

The goal of execution monitoring is to determine
whether a system or person is following a plan ap-
propriately or is heading toward a failure state. Most
execution monitoring systems build an internal model
of the domain and use sensor inputs to update the
model. Because sensors are error-prone, the execution
monitoring process must be able to reason under un-
certainty. Bayesian belief networks that support plan
execution monitoring under uncertainty can be gener-
ated directly from the plans being monitored (Huber,
Durfee, & Wellman 1994). However, previous work
on this topic has generally been restricted to classical
plans, which use only qualitative ordering and causal
constraints. For many realistic domains, planning and
execution systems must also model quantitative tempo-
ral constraints between actions. The execution monitor
in such systems also needs to be able to model quantita-
tive temporal constraints, and reason with them under
conditions of uncertainty.

Copyright c© 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

One existing method for temporal reasoning under
uncertainty is the Time Net (Kanazawa 1991). Al-
though Time Nets effectively model quantitative tem-
poral relationships between actions, they cannot easily
model the changing state of fluents that influence ac-
tions. Other approaches to modeling temporal reason-
ing under uncertainty include Dynamic Bayesian Net-
works (DBNs) and Dynamic Object Oriented Bayesian
Networks (DOOBNs) (Friedman, Koller, & Pfeffer
1998). These approaches naturally model fluents, but
because they utilize the Markov Assumption they give
up the ability to model arbitrary quantitative temporal
relationships. For execution monitoring, both capabili-
ties are required. In this paper, we present a new frame-
work to support execution monitoring, called Quantita-
tive Temporal Bayesian Networks (QTBN), which com-
bine the advantages of Time Nets and DBNs.
In the next section, we describe an execution-

monitoring example that we will use throughout the
rest of the paper. We then review the previous
approaches to temporal reasoning under uncertainty.
Next, we present QTBNs, and illustrate their use with
our running example. Finally, we conclude by describ-
ing ongoing and future research issues on this topic.

Example

Execution monitoring is an important component of
plan management (Pollack & Horty 1999). In this pa-
per, we illustrate the QTBN framework using an exam-
ple from the Autominder system (Pollack et al. 2002),
which is being developed as part of the Initiative on
Personal Robotic Assistants for the Elderly (Nursebot),
a multi-university research effort 1 aimed at investiga-
tions of robotic technology for the elderly. The Au-
tominder system manages and monitors the execution
of plans involving activities of daily living for elderly
clients, providing appropriate reminders to clients and
reports to caregivers. The plans used by the Auto-
minder system are represented as Disjunctive Temporal
Problems (DTPs) (Stergiou & Koubarakis 2000), an

1The initiative includes researchers from the University
of Pittsburgh, Carnegie Mellon University, and the Univer-
sity of Michigan.

extension of Simple Temporal Problems and Tempo-
ral Constraint Satisfaction Problems (Dechter, Meiri,
& Pearl 1991). DTPs allow traditional causal relation-
ships between actions as well as complex qualitative and
quantitative temporal relationships. The DTPs differ-
entiate between the start and end times of an action,
allowing action durations to be specified as well. The
following very simple example from the Autominder do-
main will be used throughout the rest of this paper:
An Autominder client must eat breakfast sometime af-
ter she wakes up in the morning and before 11:30am
(after 11:30, the client is assumed to have missed
breakfast and is eating lunch). The client must take
her vitamins with a full stomach. This means that
she needs to take them within a half hour after fin-
ishing breakfast.
The Autominder system thus must observe the cli-

ent’s activities, and attempt to infer whether the client
has initiated the action of eating breakfast on her own
or whether she needs a reminder to do so. This in-
ference is in large part on information received from a
sensor about whether and when the client enters the
kitchen.2 Additionally, once the system has inferred
that the client has finished eating breakfast, it needs to
update the client’s plan to set the actual deadline for
taking vitamins.
To achieve these goals, it is necessary for the system

to generate a model of the expected behavior of the
client directly from her plan, and to update that model
as time passes and as new information is obtained. It is
important to note the distinction between the client’s
plan and the client model that is used for execution
monitoring. The client plan is a specification of daily
activities and associated constraints; it is established by
the client and her caregiver. The derived client model is
a set of beliefs about the execution status of the actions
in the client plan. The client model supports inference
about what the client has done so far, what she is doing
now, and at what times she is will likely perform other
actions in the plan.
Thus, given our example plan, the execution moni-

tor should first generate a model in which we expect
that the client will eat breakfast before 11:30 and take
her vitamins between 11:30 and noon. Default assump-
tions will initially need to be made about the exact
time of the specified actions: for instance, we might as-
sume that the probability that vitamins will be taken
at time t is described by a probability distribution that
is 0 outside of the time period 11:30-noon, and is uni-
formly distributed within that period. Over time, as the
system observes the client’s routines, it should learn a
more accurate probability function, but that aspect of
the system is outside the scope of the current paper.
When sensors provide the model with additional in-

formation, the model is updated accordingly. For exam-
2Autominder is currently deployed on a mobile robot

(Baltus et al. 2000), which has a variety of sensors including
a camera, microphone, and a laser rangefinder.

ple, if the sensors report that the client is in the kitchen
at 9:30, the probability that the client has begun eating
breakfast should be increased. As additional informa-
tion arrives, and the probability of breakfast having be-
gun and then ended goes over some threshold, the client
plan should be updated to represent that fact that the
vitamins must be taken by, say 10:15 (if the system in-
fers that breakfast ended at 9:45). This change in the
client plan will then be reflected back in an updated
client model.
This example illustrates how the execution monitor

must perform temporal reasoning in uncertain environ-
ments. We next consider several approaches to such
reasoning.

Existing Approaches

A lot of research has been done on temporal reasoning
without uncertainty. Most of this work extends first-
order logic and uses similar inference methods to reason
about time. (For a survey, see (Vila 1994)). Because
these methods have first-order logic at their core, incor-
porating uncertainty into them is at least as difficult as
incorporating uncertainty into first-order logic. This
difficulty has led researchers to work from the other
direction: to incorporate time into methods for reason-
ing under uncertainty. This section reviews three ap-
proaches that incorporate time into Bayesian Networks.

Time Nets
Time Nets (Kanazawa 1991) model temporal informa-
tion by assigning time values to the nodes in a stan-
dard Bayesian Network. Each node in a Time Net
represents an event or a property of the environment.
Each value of a node N represents an interval of time
during which the event or property represented by N
may occur. Taken together, the values of a node pro-
vide a probability distribution that signifies the belief
that the event has occurred or will occur at particu-
lar times. The arcs between nodes represent causal in-
fluences and temporal constraints between events and
properties. Associated with each node is a Bayesian up-
date function that specifies how to update the node’s
value based on the current values of its parent nodes
in the network. Time Nets often make use of continu-
ous update functions, but these can be discretized and
represented with conditional probability tables (CPTs)
that associate values with distinct time intervals. For
example, the CPT for End(Breakfast) might record the
probabilities that that event will occur between 7 and
8, between 8 and 9, and between 9 and 10, contingent
upon the time at which Start(Breakfast) occurred. Fig-
ure 1 shows how our example is represented by a Time
Net; for ease of presentation, we omit the CPTs.
Because we do not show the CPTs, it may be easy

to mistake Figure 1 as a diagram of the client plan. It
is not this, but rather is a diagram of the client model.
As such, it is descriptive, and represents the system’s
beliefs about the execution status of the plan and about

Figure 1: Example Time Net (CPTs omitted)

sensor information. This contrasts with the client plan,
which is prescriptive, and represents the actions that
the client should (is obliged to) perform. All the dia-
grams in this paper represent client models.
Time Nets effectively model quantitative temporal

constraints: for example, it can represent the be-
lief that the probability that the client will take her
medicine within 30 minutes of finishing breakfast is, say,
95%. However, these networks have difficulty modeling
changes in the value of a fluent over time. For example,
the sensors may report that the client is in the kitchen
multiple times over the course of the day. Unfortu-
nately, there is a single Sense InKitchen node in the
network, and it is thus impossible to represent multi-
ple occurrences of the event that triggers such a sensor
report.
Consider the case in which the client moves to the

kitchen at 7:30 and again at 9:00, and imagine for a
moment that we have a perfect sensor. When the sys-
tem receives the sensor data at 7:30, it encodes the fact
that Sense InKitchen occurred at 7:30 with probabil-
ity 1, and sets to 0 the probability that this event oc-
curred at any other time. This evidence then propa-
gates backward in the Time Net, changing the beliefs
about InKitchen and Start(Breakfast). What happens
at 9:00 when another perfectly accurate report is re-
ceived from the sensor? Either this new report must
be thrown out, because the system is already “certain”
that the client entered the kitchen at 7:30, or the ear-
lier, equally certain report must be discarded, to enable
the Sense InKitchen node to have its value to set to be
1 at 9:00. To correctly model the actual situation, a
different node would be required for each time a client
enters the room. Dynamic Bayes Nets provide a way of
modeling fluents without introducing a large number of
copies of each node.

Dynamic Bayes Nets
Dynamic Bayes Nets (DBN) are an extension to stan-
dard Bayes Nets. DBNs work by maintaining two copies
of a standard Bayes Net: one representing the beliefs at
the the current time (T), and the other representing be-
liefs about the “next” time (T+1). These two copies are
referred to as time slices, and should not to be confused

with the time intervals in the CPTs for a Time Net. A
time slice in a DBN does not represent a fixed duration
of time: rather, a transition between time slices occurs
whenever a new piece of evidence arises. In the moni-
toring setting, this corresponds to the occurrence of an
action, or the observation of such via the sensors.
DBNs make a first-order Markov assumption, mod-

eling the next state of the system as depending only on
the current state. Given a DBN, when new evidence
arises, it is added to time slice T, values for nodes in
the second (T+1st) time slice are inferred, and “roll
up” then occurs. During roll-up, slice T is deleted,
slice T+1 becomes the new T slice, and a new copy
of slice T+1 is created: essentially, the “next” time be-
comes the new “current” time slice, and a new “next”
time slice is generated. In this way, a DBN can model
changes in a world state over time. DBNs have been
successfully used to model causal relationships in plan-
ning (Boutilier, Dean, & Hanks 1999), execution mon-
itoring (Albrecht, Zukerman, & Nicholson 1998) and
plan recognition (Huber, Durfee, & Wellman 1994), for
plans without quantitative temporal constraints.

TakeVitamin TakeVitamin

HasTakenVitamin HasTakenVitamin

SenseTakeVitamin

SenseInKitchen

InKitchen InKitchen

EatBreakfast EatBreakfast

AteBreakfast

T T+1

AteBreakfast

SenseTakeVitamin

SenseInKitchen

Figure 2: Example DBN

Figure 2 shows a basic DBN representation of our
example; again, we omit the CPTs for clarity. Note
that unlike the nodes in a Time Net, whose values are
time intervals, the nodes in a DBN take more standard
values. In our example, the nodes are all Boolean, and
indicate the belief that a action is occurring or a prop-

erty is true either “now” (in time slice T) or in the next
state (in T+1). Most of the nodes are directly derived
from the client plan or from the sensor model and are
standard types of DBNs nodes:

• TakeVitamin and EatBreakfast are associated with
the two actions in our example

• InKitchen represents a precondition, or property, of
the action EatBreakfast.

• The sensor nodes, SenseTakeVitamin and SenseIn-
Kitchen map to the sensors of the system and are
influenced by the properties they represent.

However, there is also another class of nodes that we
add to the DBN:

• Each action has an associated cumulative belief in-
fluencing it. In our example, these are the nodes
HasTakenVitamin and AteBreakfast. A cumulative
belief in time slice T represents the belief that the
associated action either has already occurred (prior
to the current time slice T) or is currently occurring.
Similarly, such a node in T+1 represents the belief
that the action has occurred, is currently occurring,
or will occur next.

Cumulative belief nodes weaken the force of the
Markov assumption, and are essential in plan execu-
tion monitoring because this is not easily modeled as
a straightforward Markovian process. The probability
that a client will eat breakfast during the next time
slice depends not only on the probability that she is
currently eating breakfast, but also on the probability
that she has eaten breakfast at any previous time (dur-
ing the current day).
Although DBNs can model change in fluent values

over time, and with the inclusion of cumulative belief
nodes, can be applied to plan execution monitoring for
classical plans, they are inadequate for monitoring plans
with quantitative temporal constraints. A DBN cannot,
for example, model the belief that lunch normally oc-
curs 3-4 hours after breakfast. One conceivable way to
incorporate such constraints would be to assign clock
times and durations to each time slice and construct
networks with many time slices. With this approach,
a quantitative temporal constraint can be represented
with an arc that spans the correct number of time slices.
However, assigning appropriate times and interval sizes
to each time slice is very difficult. Large intervals pro-
vide too coarse of a model, making it impossible to
represent constraints that are smaller than the interval
size. On the other hand, small intervals increase the
size of the network and make inference intractable.
Another problem with DBNs in general is drift in the

probability values. Not all events modeled in a DBN
evolve at the same rate. In our domain, for example,
we want to monitor a client’s vital statistics as well
as provide day-to-day action monitoring. However, a
client’s temperature will tend to change must less fre-
quently than her location. But every time the client
is observed to have moved to a new room, all belief

node values will be updated during rollup. Suppose
that at time slice T, we observe a normal temperature,
and further assume that the probability is 98% that the
temperature is normal at time slice T+1 if it is normal
at slice T. If the client does not perform any observable
actions for the next hour, p(temp=Normal) remains at
98%. On the other hand, if the client is observed to
move to five different locations in the next hour, then
p(temp=Normal) is only 90% (= .985) by the end of the
hour. Thus, because of the mechanics of roll-up, the be-
lief about the client’s temperature ends up depending
upon her actually independent movements around the
house.
In summary, DBNs effectively model changes in flu-

ent values without creating multiple nodes for each flu-
ent, but they fail to model quantitative temporal con-
straints between actions in a computationally tractable
way, and they suffer from the problem of unwarranted
probability drift.

DOOBNs
A third approach to handling temporal information in
a Bayes Net is using Dynamic Object Oriented Bayes
Nets (DOOBN) (Friedman, Koller and Pfeffer 1998).
DOOBNs combine the benefits of object-oriented tech-
niques with uncertainty reasoning to model temporal
situations similar to those handled by DBNs. This
object-oriented structure mainly facilitates software en-
gineering. However, by enhancing objects with addi-
tional information, DOOBNs can also directly address
the problem of drift, and can lead to more efficient roll-
up.
The DOOBN formalism categorizes nodes into two

types: persistent and transient. During rollup, the
conditional probability tables (CPT) of the persistent
nodes are updated to reflect the newly inferred infor-
mation. Thus, the information persists into the future
time slices of the DBN. This allows the property infor-
mation to be maintained inside the persistent node. In
contrast, transient nodes do not maintain state. When
rollup occurs, the CPTs of the transient nodes retain
their original values. This distinction will become rele-
vant when we discuss the DBN portion of our QTBN.
Additionally, the DOOBN formalism allows nodes in

a DBN to be grouped into objects. To each object, one
can attach a parameter that represents the frequency in
which to update the nodes in the object. This granu-
larity parameter allows the DOOBN to propagate only
information about nodes that are important at any par-
ticular time. This limited propagation can greatly de-
crease the required inference time compared to a stan-
dard DBN because of the reduced number of nodes that
need to be queried during each rollup. It also addresses
the problem of drift because nodes are updated at a
rate that coincides with their rate of change.

QTBNs
We now present a new approach designed to model both
the change in fluent values over time as well as the

TimeReferencePoint TakeVitamin

EatBreakfast

(a)

 TakeVitamin
EatBreakfast Didn’t Occur 7am - 8am 8am - 9am 9am -10am 10am -11am

6-7am 0.1 0.6 0.2 0.1 0

7-8am 0.2 0.1 0.6 0.1 0

8-9am 0.2 0 0.1 0.6 0.1

9 -10am 0.3 0 0 0.1 0.6

Didn’t Occur 0.2 0.2 0.2 0.2 0.2

 (b)

Figure 3: (a) A Time Net designed to represent temporal dependencies of actions.
(b) the conditional probability table for the TakeVitamins action.

causal and quantitative temporal relationships between
actions. As described above, DBNs are well suited for
the task of modeling causal relationships and the change
in fluent values over time, while Time Nets effectively
model quantitative temporal relationships. We define
Quantitative Temporal Bayes Nets (QTBNs), which use
interface functions to combine a simplified version of the
Time Nets with an enhanced version of the DBNs. We
first describe the structure of the individual components
(Time Nets and DBNs) and how they are automati-
cally derived from the plan to be monitored. Then we
describe the interface mechanism that shares temporal
information between the Time Net and DBN compo-
nents of the model.

Components of a QTBN

We build a QTBN using information from the plan it
monitors and from available sensors. As is typical in the
planning literature, we model plans as a set of actions,
their pre- and postconditions, causal links between ac-
tions, and temporal constraints between actions. Al-
though we use the term “action” for consistency with
the DBN literature, we are referring to action instances-
steps of the plan. Each action occurs only once; if the
plan contains two instances of the same type, then it
contains two distinct actions, each of which is separately
modeled in the QTBN. In our small example, TakeVi-
tamin is an action, and occurs only once during the
scope our model. In the Autominder system, the scope
of a QTBN is one full day; the QTBN is reinitialized
each morning. In a larger example, in which the client
takes vitamins twice a day, the QTBN would model two
different actions: TakeVitamin1 and TakeVitamin2.
In contrast, state properties–specifically the pre- and

postconditions of actions–are modeled in the QTBN as
fluents whose values change over time. InKitchen may
become true and false multiple times during the day,
but it can be represented as a single fluent. We treat
actions and properties differently to minimize the size of
the network: in order to perform execution monitoring,
we need to be able to separately track each distinct
action in the plan. But we do not need copies of the

state properties: it suffices to reason about the truth of
each property at particular times.3

Name Location Node Values
AT IMENODE TimeNet {setof

T imeIntervals}
AT RANSIENT DBNTimesliceT {true,false}
ACUMULAT IV ET DBNTimesliceT {true,false}
ACUMULAT IV ET+1 DBNTimesliceT+1 {true,false}
AT IN DBNTimesliceT {true,false}

Table 1: Nodes required to model each action

Table 1 shows the set of nodes that are required by
the QTBN to model each action in the plan. We will
explain the purpose of each in the paragraphs below.

Time Net Component
The Time Net component of the QTBN models all tem-
poral relationships that exist between events in the do-
main. It maintains probability distributions for each
event that describe when each event is likely to occur.
It can answer queries such as, “What is the probability
that event A will occur in a interval I?” and “When is
event A most likely to occur?”. This component is used
to give the DBN component information about the like-
lihood of events occurring during particular intervals.
The Time Net component is automatically con-

structed by building a single node (identified as
ATIMENODE in Table 1) for every action in the plan
and an arc between the nodes for every Temporal Con-
straint associated with the plan. One additional node,
the TimeReferencePoint, indicates an arbitrary starting
time (e.g., midnight) to ground quantitative temporal
references. Figure 3a shows the Time Net for our exam-
ple. Note that it is much simpler than the one shown in
Figure 1 because it does not need to represent the whole

3This is actually a simplification. Sometimes it is neces-
sary to distinguish among multiple instances of properties
when they participate in quantitative temporal constraints.
However, in general the number of such properties will be
very small.

plan. To reason about quantitative constraints amongst
actions (e.g., “X should happen now because Y hap-
pened 10 minutes ago”) it is sufficient for the Time Net
to contain only the actions and temporal constraints
amongst them.
Figure 3b shows the CPT for one of the TimeNodes,

TakeVitamin. Each column in the CPT represents
a specific interval of time. These TimeIntervals are
sized based on the granularity that the action requires.
Therefore, different actions can have different sets of
possible values, as long as the intervals cover a contin-
uous interval of time. Taken as a whole, the values as-
signed to each node represent a belief distribution over
time. From these belief distributions, we can extract
information about what has happened in the past and
predict what will happen in the future. We can also
extract information about the current time slice for use
in our DBN component.

DBN Component
The DBN Component of the QTBN models the causal
relationships between actions, domain properties and
sensors. At any given time, the information in the DBN
represents and reasons about a small interval of time,
called the CurrentTimeInterval. The DBN retrieves
information about the CurrentTimeInterval from the
Time Net and then operates like a standard DBN.
To construct the DBN component, it is necessary to

construct a structure containing both transient and per-
sistent nodes for each action A in the plan, as illus-
trated in Figure 4. The node structure is centered on
ATRANSIENT , which represents the belief that action
A is occurring in the current time slice. This node is in-
fluenced by the persistent node ACUMULATIV E , repre-
senting the cumulative belief that A has or is currently
occurring. Also influencing ATRANSIENT is the Tem-
poral Influence Node (ATIN), which summarizes all of
the quantitative temporal beliefs about A for the Cur-
rentTimeInterval. Unlike traditional DBNs, we take
advantage of the observations made with DOOBNs and
only copy persistent nodes into time slice T+1, i.e. only
ACUMULATIV E .

T T+1

ATIN
A TRANSIENT

ACUMULATIVE(T) ACUMULATIVE(T+1)

Figure 4: Generic DBN action structure

Once the nodes for each action have been created,
we can add arcs to specify casual relationships between

actions and their pre- and postconditions. Quantitative
temporal constraints are not modeled here; they are
already represented in the Time Net.
Figure 5 shows the DBN for our example plan. It in-

cludes instantiations of the generic structure of Figure 4
for both of the actions in the plan. The node InKitchen
does not represent an action, but rather a property of
the current state (i.e., a fluent), so it is treated as a
normal DBN node.

Figure 5: Example DBN Component

Every property node that represents a perceivable
feature of the client’s environment can influence a sen-
sor node. When our system is given sensory informa-
tion, the sensor nodes are set in evidence, which influ-
ences the action’s transient node through the property
nodes.
As stated earlier, a TIN can be considered a sum-

mary of all temporal information related to the action
it influences and to the CurrentTimeInterval. A TIN is
a binary node whose values are determined by query-
ing the Time Net. The result of the query, “What is
the probability that this event will occur in the Cur-
rentTimeInterval?” is set to the TRUE value of the
TIN. This query is performed by probing the associ-
ated TimeNode in the Time Net and extracting the por-
tion of the returned probability distribution that cor-
responds to the current time interval. This process is

described more formally in the next section.
Intuitively, the value of a TIN can be viewed in the

following way. Suppose you are trying to decide if it is
time to start cooking breakfast. You check your clock,
consider all the actions that must be performed before
it is time to eat breakfast, and end up with a decision
about whether to start breakfast now or wait. At the
end of this reasoning, you may be 90% sure you want
to start breakfast. This would be analogous to a value
of 0.9 being assigned to the TIN influencing the ‘Start-
Breakfast’ action. The TIN summarizes the result of
reasoning with the temporal information in the Time
Net, so the DBN does not have to consider the various
temporal constraints. Given the TIN, the DBN can
instead just reason about what is happening now.
TINs are updated differently from all the other nodes

in a DBN or DOOBN. They are neither transient nor
persistent. Rather than being rolled up or reinitialized
each time there is a time slice transition, a TIN has its
CPT updated by an interface function that relates the
Time Net and DBN.

The Interface
The Time Net/DBN Interface provides an information
channel between the DBN and Time Net through the
various action nodes. This interface has two functions:
(1) UpdatePredictions, which extracts the summary

temporal data from the Time Net to be used to influ-
ence reasoning in the DBN. (2) RecordHistory, which
extracts data from the DBN for use as historical data
in the Time Net.
The main algorithm for updating the model is shown

in Figure 6. It is driven by two possible events: the
addition of evidence (i.e. a new sensor value) or a time
change. As with any DBN, the addition of evidence
occurs any time the model receives new information; at
such a point, Bayesian update and rollup are performed.

Main loop(evidence or time change)

if evidence

Record evidence in the DBN

RollupDBN

else if time change

RecordHistory()

UpdatePredictions()

RollupDBN

End if

Figure 6: Main Algorithm

A time change only occurs when the actual clock time
crosses the boundary of two values in one of the Time-
Nodes in the Time Net. For example, if ‘EatBreakfast’
in the Time Net has the values (time intervals) 7-8am,
8-9am, and 9-10am, then time changes would occur at
7, 8, 9, and 10. If another Time Net node had time
intervals 7-8:30 and 8:30-10, then an additional time
changes would occur at 8:30.
Whenever a time change occurs, information flows

between the TIN and the DBN. It flows from the DBN

to the Time Net via the RecordHistory interface func-
tion, which updates the TimeNodes’ CPTs to reflect be-
liefs about what has occurred since the last time change.
The UpdatePredictions interface function carries infor-
mation from the Time Net to the DBN-specifically to
a TIN–so that the TIN always reflects the summary
information the actual current time interval.
Let us consider this information transfer in a bit more

detail. Every time a time-interval boundary is crossed
for some action, a different column of the CPT for that
action’s TimeNode (in the Time Net) becomes valid.
For example, if we use the Time Net CPT from Table
3(b), then from 7:00 until 8:00, the relevant probabil-
ity distribution for the occurrence of TakeVitamin is
the second column of the table. At 8:00, the third col-
umn becomes relevant. The TIN in the DBN encodes
the result of quantitative temporal reasoning done us-
ing the relevant distribution. If we assume that client
ate breakfast at 7:45 and that we have not yet observed
the client taking a vitamin, then when 8:00 arrives, the
probability that the client will take a vitamin is 60%.
This value can be extracted from the Time Net using
the algorithm in Figure 7, which queries each TimeN-
ode, obtains the belief distribution for the represented
action, selects the value corresponding to the current
clock time, and sets the TIN CPT in the DBN accord-
ingly.

UpdatePredictions()

For each A ∈ Actions

ProbDistribution ⇐ bayesNetQuery(AT IMENODE)

p ⇐ getProbForValue(ProbDistribution, CurrentTimeInterval)

AT IN ⇐ {p, 1-p}

Figure 7: Update Predictions

However, a one-way flow of information is not suffi-
cient. Before we call UpdatePredictions to update the
TIN values at the beginning of the new time interval,
we need to execute the RecordHistory algorithm, which
records the information inferred by the DBN about the
current time interval as history in the Time Net. For
example, if an action’s Cumulative Belief node has in-
creased from 0.2 to 0.35 throughout the 7-8am time
interval, we need to update that action’s TimeNode to
reflect the following fact: we believe that the event oc-
curred in the interval 7-8am with probability 0.15 (0.35-
0.2). After this update, any query of the event’s Time-
Node will show 0.15 in the 7-8am interval. The algo-
rithm for RecordHistory is shown in Figure 8.

RecordHistory()

For each A ∈ Actions

ProbDistribution ⇐ DBN Query(AP ROP ERT Y (T+1))

p ⇐ getProbForValue(ProbDistribution, True)

AT IMENODE ⇐ adjustCPTwithNewBelief(AT IMENODE , p)

Figure 8: RecordHistory Algorithm

The function adjustCPTwithNewBelief replaces each

value in the CPT column representing the current time
interval with the value p. This ensures that any query
to the TimeNode will return a distribution with the
value p for that time interval. However, by adjust-
ing the time interval probability, the sum of the row
will change and will violate the requirement that all
values in each row must sum to 1. (This is a require-
ment in all Bayes Nets). We address this by adjusting
the remaining values (i.e. the future time intervals) in
the row to restore the sum to 1. Essentially, we dis-
tribute the difference between p and the original value
over the remaining time intervals. In our system, we
distribute this difference proportionally to the original
beliefs. However, one can imagine other ways of dis-
tributing this difference. We hope to evaluate other
methods in future work.

Performance
Bayesian inference (and thus inference in Time Nets,
DBNs, DOOBNs, and QTBNs) is known to be an NP-
hard problem. However, we hope that in “reasonable”
domains, inference will be tractable and we will be able
to obtain feasible computation times. We consider the
Autominder domain to be a reasonable one. To study
performance issues, we implemented a system to con-
struct and update QTBNs in Java running on a Pen-
tium4 1.7GHz processor with 256Megs of RAM. Ex-
perimental testing of the time and space needs of the
algorithm involved developing plans for our domain and
then testing our model based on these plans. For ana-
lyzing performance, these test plans do not necessarily
have to be valid plans, so we used random methods to
build our plans and then constructed our QTBN based
on the random plans. The random methods were pa-
rameterized by the following conditions that encompass
the plan’s complexity with respect to our model:

• NumTimeIntervals- The number of time intervals
used by the actions in the Time Net.

• NumActions - The number of actions in the plan.
• ClperAction - The average number of causal links per
action.

• TcperAction - The average number of temporal con-
straints per action

Using these variables, our plan generator creates a
plan with the given number of actions and divides its re-
quired time of performance into the number of intervals
specified. Pairs of actions are then randomly picked to
form the causal links and temporal constraints. Each
of these links is connected to two of the existing ac-
tions. We pick which actions they are connected to at
random to give some variation in the trials. From these
parameters, we developed the following base case that
is plausible for the Autominder domain.

• NumTimeItervals - 100
• NumActions - 25
• ClperAction - 0.5

• TcperAction - 0.5
Once the QTBN has been constructed, we force a

time change event, which causes both interface func-
tions to run as well as a DBN rollup. We then record
the running time of each function for each trial.

Experiment 1 - Base Case
In the first experiment, we ran the base case trial 50
times to establish an average run time. The average
run time of the 50 trials is 2.5 minutes with a standard
deviation of .46 minutes. This average may be accept-
able for some Autominder situations-after all, change
tends to occur very slowly in this application. However,
more work is clearly needed to increase the efficiency of
QTBN update.

Experiment 2 - Time Complexity Profile
To better understand where we can make efficiency
gains, we conducted an experiment in which we var-
ied NumActions, and we profiled the performance of
the three main processes: DBN Rollup, RecordHistory,
and UpdatePredictions (which includes propagation in
the Time Net). We varied the number of actions per
plan from 0 to 50, and used base-case levels for the
other conditions. The results are shown in Figure 9
(UpdatePredictions takes a trivial amount of time and
is not shown). Not surprisingly, inference in the DBN
component dominates the total time. This is because
our DBN is more complex than our Time Net and rollup
is more costly that simple Bayes Net updating. Also
note that the interface algorithms that we have imple-
mented are very cheap compared to the DBN rollup
time.

Figure 9: Number of Actions vs. Inference time.

Theoretically, growth of DBN inference time is ex-
ponential with respect to the number of actions in
the plan. In the preliminary experiment shown here,
growth is only polynomial, but still very costly.

Experiment 3 - Other Factors on Growth

Experiment 2 varied the number of actions in the plan.
In Experiment 3, we fixed the number of actions to the
baseline (25 actions) and varied the number of temporal
constraints. This variance has no effect on the inference
time of the DBN rollup or RecordHistory because tem-
poral constraints only add complexity to the Time Net
component. Figure 10 shows the relationship between
the TcperAction condition and the UpdatePredictions
running time. Unsurprisingly, there is large order in-
crease in the inference time as TcperAction increases.
Notice, however, that the inference time for UpdatePre-
dictions remains insignificant (less than 1 second) com-
pared to both DBN rollup and RecordHistory.

Figure 10: Number of Temporal Constraints per
Action vs. Inference time.

Discussion

As just shown, the computational time increases for
rollup and the interface functions as the number of
actions and the complexity of the plan structure in-
creased. Memory usage can also be an issue when the
client model is initially built from the client plan. Al-
though most of the time the base case was not a prob-
lem, even with these settings we occasionally ran out
of memory. The frequency of this problem increased as
the NumTimeIntervals and/or Tcperaction increased.
This occurred because the size of the CPTs associated
with the Time Net actions grow exponentially with the
number of temporal constraints in the actions. Thus,
our initial experiments show that while QTBNs can be
used to solve some problems, especially in domains in
which change is not rapid, more work on increased effi-
ciency is required before the framework can be used as
widely as we would like. The efficiency challenge we face
is not unique to QTBNs: the bulk of processing time is
consumed by DBN update. Current research on mak-
ing DBNs more efficient, such as the use of DOOBNs,

is thus directly relevant to our effort. We discuss this a
bit more in the next section.

Conclusions
In this paper, we have presented an approach to moni-
toring the execution of plans with quantitative, as well
as qualitative, temporal constraints. We argued that
previous approaches to temporal reasoning under un-
certainty are not adequate for this purpose, and we
developed a new reasoning framework, QTBNs, which
combine the ability of Time Nets to reason about arbi-
trary quantitative temporal constraints with the abil-
ity of DBNs to reason about the changing value of flu-
ents. QTBNs consist of three components: a dynamic
model that represents the evolution of events over time,
a model that reasons about quantitative temporal rela-
tionships between events, and interface functions that
manage the flow of temporal information between the
two models.
We have fully implemented a working version of an

execution monitor, and have integrated it with the
other components of Autominder. Our preliminary
testing indicates that the model is accurate, and is ef-
ficient enough for the Nursebot Autominder domain.
QTBNs can also be applied to other domains that main-
tain plans with quantitative temporal relationships. For
example, autonomous mobile robots need to reason
about how the world evolves over time when choosing
their actions and reasoning about the outcome of their
actions.
Although designed specifically for execution monitor-

ing, QTBNs are not limited to reasoning about plans.
In general, they reason about causal and temporal rela-
tionships between events and domain properties, mak-
ing them applicable to expert systems as well. One
class of expert systems, Medical Decision-Support Sys-
tems, has a particular need to model time (Aliferis et
al. 1997).
We have given three items priority in our plans for

future work:

• Proving the validity of the model.
• Reducing the memory requirements of the Time Net.
• Increasing the efficiency of query processing.
Although we have encouraging experimental evidence

that our system is correctly modeling our domain, we
have no proof that the interface functions we defined
correctly transfer information between the DBN and
Time Net components of our model. Currently, we
are looking for transformations between QTBNs and
proven, yet inefficient techniques. We hope this exer-
cise will uncover the extent (if any) of the information
loss/distortion that occurs using our interface functions.
As discussed in the previous section, the memory

requirements of the Time Net can be crippling. We
are developing an alternate representation for the in-
formation in the Time Net that only requires space lin-
ear in the number of nodes, intervals, and temporal

constraints. The representation we have developed is
equivalent to that of the Time Net, but an inference
method has not yet been designed.
To improve efficiency, we are incorporating the gran-

ularity parameter of DOOBNs (Friedman, Koller, & Pf-
effer 1998) as mentioned above. This additional param-
eter will help prevent drift, as well as increase the speed
of inference by reducing the number of nodes that are
propagated during each update of the dynamic part of
the network. In our current implementation, each ac-
tion node in the Time Net component contains the same
values representing fixed intervals of time. Adding the
granularity parameter will allow the designer to inde-
pendently specify the divisions of time for each action.
Because the memory requirements in the Time Net de-
pend on the number of time intervals represented, this
flexibility grants the designer some control over memory
usage.
Koller et al. (Friedman, Koller, & Pfeffer 1998) also

suggest another method for reducing the number of
nodes: posting a guard on some objects. A guard is
associated with an object and has a Boolean test that
is made during the building of the model. An object
whose guard is set to false is omitted from the model.
In the Nursebot Autominder domain, there are many
situations where it is impossible for an action to occur
at a specific time. For example, we could easily say
that a client cannot eat lunch before 10:00am. If she
eats before 10:00am, she is eating breakfast or a snack.
In this case a guard could be put on the lunch node to
prevent it from being activated before 10:00am.
Our expectation is that by combining these new

ideas, we will create a model that will only need to roll
up a fraction of the modeled events at any one time.
This would mean that our model would not be limited
by the total number of events that must be modeled,
but would depend only on the number of events that
must be reasoned about at any specific time.

Acknowledgements

This research was supported by the National Science
Foundation (IIS-0085796) and by the Air Force Office of
Scientific Research (F49620-01-1-0066). The views and
conclusions herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
AFOSR or the U.S. Government.

References

Albrecht, D. W.; Zukerman, I.; and Nicholson, A. E.
1998. Bayesian models for keyhole plan recognition in
an adventure game. User Modeling and User-Adapted
Interaction 8(1-2):5–47.
Aliferis, C. F.; Cooper, G. F.; Pollack, M. E.; Buch-
anan, B. G.; and Wagner, M. M. 1997. Representing
and developing temporally abstracted knowledge as a
means towards facilitating time modeling in medical

decision-support systems. Computers in Biology and
Medicine 27(5):411–434.
Baltus, G.; Fox, D.; Gemperle, F.; Goetz, J.; Hirsch,
T.; Magaritis, D.; Montemerlo, M.; Pineau, J.; Roy,
N.; Schulte, J.; and Thrun, S. 2000. Towards personal
service robots for the elderly. Workshop on Interactive
Robots and Entertainment (WIRE 2000).
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence
Research 11:1–94.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence 49:61–95.
Friedman, N.; Koller, D.; and Pfeffer, A. 1998. Struc-
tured representation of complex stochastic systems.
Proceedings of the 15th National Conference on Ar-
tificial Intelligence (AAAI) 157–164.
Huber, M. J.; Durfee, E. H.; and Wellman, M. P. 1994.
The automated mapping of plans for plan recognition.
UAI94 - Proceedings of the Tenth Conference on Un-
certainty in Artificial Intelligence 344–350.
Kanazawa, K. 1991. A logic and time nets for proba-
bilistic inference. Proceedings of the 9th National Con-
ference on Artificial Intelligence (AAAI) 5:142–150.
Pollack, M. E., and Horty, J. F. 1999. There’s more to
life than making plans: Plan management in dynamic,
multi-agent environments. AI Magazine 20(4):71–84.
Pollack, M. E.; McCarthy, C. E.; Ramakrishnan, S.;
Tsamardinos, I.; Brown, L.; Carrion, S.; Colbry, D.;
Orosz, C.; and Peintner, B. 2002. Autominder: A
planning, monitoring, and reminding assistive agent.
7th International Conf. on Intelligent Autonomous
Systems.
Stergiou, K., and Koubarakis, M. 2000. Backtracking
algorithms for disjunctions of temporal constraints.
Artificial Intelligence 120:81–117.
Vila, L. 1994. A survey on temporal reasoning in
Artificial Intelligence. AI Communications 7(1):4–28.

