Verification of Supervisory Control Software
Using State Proximity and Merging*

Flavio Lerda!**, James Kapinski?, Edmund M. Clarke', and Bruce H. Krogh?

1 School of Computer Science
flerda@cs.cmu.edu, emc@cs.cmu.edu
2 Department of Electrical and Computer Engineering
jpk3Q@ece.cmu.edu, krogh@ece.cmu.edu
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract. This paper describes an approach for bounded-time verifica-
tion of safety properties of supervisory control software interacting with
a continuous-time plant. A combination of software Model Checking and
numerical simulation is used to compute a conservative approximation of
the reachable states. The technique verifies system properties in the pres-
ence of nondeterministic behavior in the software due to, for instance,
interleaving of tasks. A notion of program equivalence is used to char-
acterize the behaviors of the controller, and the bisimulation functions
of Girard and Pappas are employed to characterize the behaviors of the
plant. These notions are used to compute sets of plant states around a
trace that are guaranteed to be safe. These sets are determined by a
backward analysis that starts from the end of a trace and propagates the
safe sets towards the initial states. By using these safe sets, the approach
can conservatively merge traces that reach states that are in proximity
to each other. The technique has been implemented for the case of affine
plant dynamics, which allow efficient operations on ellipsoidal sets based
on convex optimizations involving linear matrix inequalities (LMIs). We
present an illustrative example for a model of the position controller of
an unmanned aerial vehicle (UAV).

1 Introduction

Model-based design of embedded control systems is becoming standard practice.
Applying formal methods to embedded control design is important for reduc-
ing time to market and for meeting safety and performance requirements, but
formal methods are difficult to apply to systems that interact with a contin-
uous dynamic environment. We present a formal verification technique based

* This research was sponsored by the Air Force Research Office (AFRO) under contract
no. FA9550-06-1-0312, and by the National Science Foundation (NSF) under grant
no. CCR-0411152. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either
expressed or implied, of AFRO, NSF, or the U.S. government.

** The first author was supported by General Motors under grant no. GM9100096UMA.

on the combination of software Model Checking and numerical simulation of
a continuous dynamic plant. We use level sets of bisimulation functions [6] for
the plant and a notion of program equivalence for the controller to guarantee
safety bounds and provide an efficient and exhaustive search of the system be-
haviors. The approach narrows the gap between simulation and Model Checking
of control systems.

A nonconservative approach that combines Model Checking [3, 4] and simu-
lation was first proposed in [13]. That approach provides a means of efficiently
searching for counterexamples, but since it is not conservative, it cannot guaran-
tee safety. The approach presented here formalizes and extends that technique
by employing conservative approximations of the set of reachable states.

Various methods have been developed to formally verify hybrid automata,
which can model embedded control systems [8]. These techniques are computa-
tionally expensive, however, and are able to analyze only systems of low com-
plexity. Reachable set estimation is a central problem in performing verification
of safety properties. Other techniques perform a search of the reachable set of
states forward in time and merge the reachable trajectories that are in proximity
to each other in the state space [11, 5]. The work here goes further by using the
safety requirements to construct sets of states that are guaranteed to be safe.

The work by Julius et al. provides a means for determining maximum safety
bounds for simulation traces [10], but the technique does not handle nondeter-
minism in the discrete transitions and it does not consider the semantics of the
control software. The work presented here deals efficiently with the proliferation
of reachable paths that occur due to nondeterministic behaviors in the controller.

The paper is organized as follows. Section 2 describes the model of a su-
pervisory controller interacting with a continuous-time plant. Section 3 presents
the theoretical foundation for our technique and the bounded-time verification
algorithm. Section 4 describes the implementation of our technique and presents
experimental results for an example that is based on a UAV system. Conclusions
and directions for further work are presented in Section 5.

2 System Model

This paper concerns verification of supervisory controllers, by which we mean
feedback controllers that select operating modes for continuous dynamic systems.
The supervisor may select plant operating modes directly or manage lower-level
feedback control loops. For the purposes of our analysis, lower-level control loops
are modeled as part of the plant. This is appropriate if the lower level controller
has a significantly higher sampling rate than the supervisor. A sampled-data
supervisor is able to observe the state of the plant only at fixed times, called
sample instants. We assume that the sample instants are multiples of a fixed
sampling period, ts > 0. In this section we present a model of the system where
the supervisor is represented by a set of tasks, and the plant is described by a
set of differential equations. We assume that the code of the supervisor executes
instantaneously, which is a reasonable assumption if the sampling period of the

supervisor is large compared to the actual execution time of the code. Also,
we assume that all tasks share the same clock. This assumption is appropriate
for analyzing control software implemented as multiple tasks running on one
processor. Systems implemented as tasks running on multiple processors can also
be analyzed using this technique if the clock skew and jitter are small relative
to the sampling period of the tasks.

Consider a set of m supervisor variables taking values from a finite set V, and
a set of n real-valued plant variables. Let v € V™ be the value of the supervisor
variables, and x € R™ be the value of the plant variables, called the plant state.

Definition 1 (Supervisor Task). Given a set of supervisor variables V'™ and
a set of plant states R™, a supervisor task is a tuple T; = (Loc;, i initial; i, finats 0i)
where:

— Loc; is a finite set of control locations;

— i initial, Ui, final € Loc; are two specially designated locations, called the initial
and final control locations of T;; and

— 6; : R — 2LocixV"xLocixV™ s the transition relation of T;. We assume
that there are no transitions from the final control location l; final-

At each sample instant, the task starts executing at the initial control location
li initiar and executes until it reaches the final control location I; fina. Let us
assume that every sequence of task transitions is finite and eventually reaches
the control location l; fnas, i.€., the code has no deadlock or livelock. A Model
Checker can be used to detect deadlocks and livelocks, but these aspects have
been omitted from the presentation for the sake of clarity. An approach that
takes into account these aspects is described in [13]. Notice that the transition
relation d; depends on the current plant state x. Given [;, l; € Loc;, v,veVm
and x € R", there exists a transition from (I;,v) to (I;, V) when the plant state
is equal to x if and only if (I;,v,[;, V) € 6;(x).

Definition 2 (Sampled-Data Control System). A sampled-data control sys-
tem is a tuple SDCS = ({Th,...,T,},V, fv, ts, Init) where:

— {Th,...,T,} is a finite set of supervisor tasks;

— V is a finite domain for the supervisor variables;

— For each v € V™, f, : R® — R" is a Lipschitz continuous function that
describes the flow of the plant and depends on the value of the supervisor
variables;

ts is the sampling period; and

Init C Locy % ... X Loc, x V™ x R" is a set of initial states.

Let Loc denote the set Locy x ... x Loc, of the control locations of each task.
A state of an SDCS is a tuple (q,x) where: ¢ = (L, V) is the supervisor state,
L € Loc specifies the control locations of each task, v € V™ is the value of
the supervisor variables, and x € R" is the plant state. Given a value v for the
supervisor variables and a plant state y, let £&¥ : R — R"™ denote a solution to
the initial value problem %(t) = fy(x(t)),x(0) = y. Since we assumed that f(-)
is Lipschitz continuous, there exists a unique £Y(-) for every y € R™.

Definition 3 (Transitions). Given two states s = (q,x) and § = (§,X) of an
SDCS, there exists a transition from s to 8, denoted by s — 3, if either:

—qg=((l,...,1p),Vv), d= (I, ... ,Zp)7\7), and there exists a task T; such that
X = X, (lj,v,Zj,(f) € 0;(x) and, for every task T; not equal to T}, l; = ;.
This is called a supervisor transition.

—q = (Lfnal,v), § = (Linitiat, V), and x = &5(ts). This is called a plant
transition.

A trace of an SDCS is a finite sequence of states 0 = sg...sg, for some
K, such that sy — sk41 for all 0 < k < K. Figure 1 provides an illustration
of traces of an SDCS. The initial state is so = (Lfinal, Va, Xinit), and the first
transition is a plant transition, sg — s1, where $1 = (Linitial, Va,X) for some
X. Several supervisor transitions are possible starting from s;; nondeterminism
in the supervisor leads to two separate states, s = (Lfinal, Vo, X) and sq4 =
(Lfmal,vc,fc). From each of these states a plant transition is taken, s, — s3,
where s35 = (Linitial, Vb, y) for some y, and s4 — s5, where s5 = (Linitial; Ve, Z)
for some z.

S4’.—\>¢S
X, ! 3
rd :
v, : _X,
: s .
s "
X, P
¥ P
v, Lo X,
SO.'—/_»SI
Xy
e

Fig. 1. An illustration of traces of an SDCS. Solid arrows connecting points repre-
sent plant transitions. Dotted lines connecting points represent sequences of supervisor
transitions.

Definition 4 (Duration). The duration of a trace o is the amount of time
elapsed between its first state and its last state, and it is defined inductively as
follows:

— If 0 = sp, duration(c) = 0.

— Ifo=s5s0...5x and Sx_1 — Sk 1S a supervisor transition then duration(c) =
duration(so, ... Skx—1), since we assume that supervisor transitions erecute
instantaneously.

— Ifo=sp...55 and sx—1 — Sk 1s a plant transition then duration(c) =
duration(so,...Sk—1) + ts.

A state s of an SDCS is reachable within a time bound T if and only if
there exists a trace 0 = sg... sk, for some K, such that sy € Init, sy = s and
duration(c) < T. Given a time bound 7" and a set of states Fail C Locx V™ xR"™,
a state s is safe for time bound T if and only if for every trace o = sq¢... sk,
of arbitrary length K, such that sg = s and duration(c) < T, we have that
sk ¢ Fail. For example, state sg in Figure 1 is safe for time bound 2t;.

Definition 5 (Bounded-Time Safety). Given an SDCS, a set Fail C Loc X
V™ x R™ of fail states, and a time bound T, the SDCS is safe for time bound T
if and only if all initial states are safe for time bound T.

3 Conservative Verification using Merging

In [13], we presented an approach that combines Model Checking and simulation
to check bounded-time safety of an SDCS with a finite set of initial states. That
work also introduces a notion of approximate equivalence that is used to prune
the state space and, therefore, reduces the size of the state space that needs to
be explored. The approach is not conservative, however; it can be used to search
for counterexamples, but it is unable to prove safety.

Our approach for proving bounded-time safety of an SDCS is able to prune
parts of the state space by merging traces, which corresponds to merging a state
with a previously visited one. In Model Checking, merging can be done only
when a state on one trace is identical to a state on another trace. Our approach
is able to perform a merge when two states are in proximity to each other if the
pruned parts of the state space are guaranteed to be safe. In the following, we
show how to determine safe sets of plant states around the points in a trace.
These sets correspond to a set of traces that are in proximity of the visited trace
and are guaranteed to be safe. When a state that is within a safe set is reached,
the trace can be merged conservatively and the successors of such a state do not
need to be explored further.

In general, given a dynamical system and two initial states that are in prox-
imity to each other, the trajectories starting at those initial states may diverge.
This paper uses bisimulation functions to bound the distance between future
evolutions. Bisimulation functions were introduced by Girard and Pappas as a
way to determine the relation between states of a dynamical system [6]. In this
work, we use bisimulation functions to approximate conservatively the plant
transitions.

Definition 6 (Bisimulation Function). [6] Given an autonomous dynamical
system X described by x(t) = fy(x(t)) where x : R — R™ and f : R® — R", a

differentiable function ¢y : R® x R™ — R is a bisimulation function of X if and
only if

— ov(y,z) >0, for ally,z € R™; and
- Vy@v(yvz) : fV(Y) + Vz@v(y»z) ! fv(z) < 07 fOT‘ all y,z < R™.

Definition 7 (Sublevel Sets). Given x € R"™, a bisimulation function ¢ of
x(t) = f(x(t)), and a real value r > 0, the sublevel set of the bisimulation
function ¢ centered at x and of size r, denoted by Ny, (x,1), is defined as

Ny(x,r) ={z e R" |p(x,2z) <r}.

In the following, we assume that the bisimulation functions are symmetric,
ie, p(y,z) = ¢(z,y) for every y,z € R™. If a bisimulation function ¢(,-)
is a metric on R™, then it is called a contraction metric [1]. We assume that
for every value of the supervisor variables v, a bisimulation function ¢, of the
autonomous dynamical system x(t) = f,(x(¢)) is given. We can now state the
following theorem about bisimulation functions and plant transitions, based on
a theorem from Julius et al. [10].

Theorem 1 (Plant Approximation). Given two states s = ((Lfinal,V),y)
and § = ((Linitial, V), ¥) such that s — § is a plant transition, and a bisimu-
lation function ¢y for the differential equation x(t) = fy(x(¢)), for every r >0
and for every z € Ny, (y,7), if (Lfinat,V),2) — ((Linitial, V),2) is a plant
transition, then z € N, (¥,r).

Proof. The theorem is a direct consequence of Corollary 1 of [10].

Given a program state g and a time bound 7T, a set X C R™ of plant states
is safe for T at ¢ if and only if, for every x € X, s = (q,x) is safe for time
bound T'. Given a program state g, the set of fail plant states at ¢ is defined as
Fail; = {x € R" | (¢q,x) € Fuail}.

Theorem 2 (Plant Transition Approximation). Given two states (q,y
and (ijy) such that q = (Lﬁnahv)a (j = (Linitialav)a and (Q7y) — ((iay) is
plant transition, if X C R™ is safe for T at §, then for allr > 0, if N, L(,7r)
and Ny, (y,r) C Faily then N (y,r) is safe for (T +ts) at q.

)
X

Proof. We prove this theorem by contradiction. Assume that A, (y,r) is not
safe for (T + t5) at gq. This means that there exists a plant state z € N, (y,7)
and a trace o = s0$1 ... Sk, for some K, such that sg = (¢,2), sk € Fail, and
duration(o) < T + ts. Since z € Ny (y,r) C Faily, we have that sg ¢ Fail
and therefore the trace must contain at least two states (K > 1). Let 6 denote
81...8k. By Definition 4 we have that duration(5) = duration(o) —ts < T. By
Definition 3, s1 = (§,2) for some z € R™. By Theorem 1 we can deduce that
% € N, (§,7). But, by hypothesis, N, (¥,7) C X and therefore z € X. Since X
is safe for T at ¢, there does not exists any trace starting at (¢, z) that reaches a
state in Fail and whose duration is less than or equal to T. However, & is such
a trace, which is a contradiction, therefore N, (y,r) must be safe for (T + ¢)
at q. O

Theorem 2 allows us to determine a set of plant states that are safe for
(T +ts) at a given supervisor state ¢ given a set of plant states that are safe for
T at the supervisor state § obtained by performing a plant transition. Below we
show how to compute a set of plant states that is safe for T" at a supervisor state
q for the case of discrete transitions. While continuous transitions are always
deterministic, supervisor transitions may lead from one state to a number of
successor states. In order to deal with this, we define a notion of equivalence
between continuous states with respect to a supervisor state.

Figure 2-(a) illustrates the notion of safe plant states and plant transition
approximations. In the example, the plant states have two dimensions, corre-
sponding to the axes labeled x; and z5. The vertical axis represents the value
of the supervisor variables: each plane corresponds to a different value of the
supervisor variables, namely v,, vy, and v.. On each plane, the areas marked
by Fail correspond to the parts of the plant state space that are unsafe for the
corresponding value of the supervisor variables. Plant transitions correspond to
continuous lines within a given plane; supervisor transitions correspond to dotted
lines from one plane to another. The two sets N3 and N5 are safe for time bound
zero as they do not intersect the Fail plant states in the corresponding planes.
By Theorem 2, the sets Ny and N4 are safe for time bound ¢4, the sampling
period, as they are guaranteed to avoid the Fail region if the system evolves for
one sampling period.

v 4 ‘XI v >X]
7 Fall W > 7 Fail z W
xz/ ": N 5 xz/
v,]\f 3 o v, 4 N, »
Nz/% C\ S7,-'%
X, H H Fail X, : Fail
¥’ '; » ;
y X 1 X y N6 H S X
y ‘QJ Fail,” y :ﬁ @ Falil
N . X
.)CZ XZ 6
¥ r 3
(a) (b)

Fig. 2. (a) An illustration of sets safe for a time bound T'. N3 and N5 are safe for time
bound zero. N1 Ny and Ny are safe for tg; (b) An illustration of merging. Ny is safe
for ts since all of its states lead within the set No which is safe for ¢s.

Definition 8 (Program Equivalence). Given a supervisor state q and a pair
of plant states y,z € R™, we say that 'y is program equivalent to z at q, denoted
by y =4 2, if the set of successors of q al plant state y is the same as the set of
successors of q at plant state z, i.e., Qq(y) = Qq(z) where, given a supervisor
state q and a plant state x, Qq(x) = {q| (¢,x) — (¢,%x)} .

The relation ~, defined above is an equivalence relation. Therefore, for every
supervisor state g, ~, defines a set of equivalence classes. Given a supervisor
state ¢ and a plant state y, let [y]. denote the equivalence class of y defined

q
by %lb that iS [y]zq = {Z € Rn ‘y %q Z}'

Theorem 3 (Supervisor Transition Approximation). Given a state (q,y)
with ¢ = (L,v) and L # Lfina, for each ¢ € Qq(y), let)2(; C R™ be a set of
plant states safe for some time bound Ty at . Let T = minqeéq(y) T4 denote the
minimum of the time bounds for each §. The set

X =yle, NFailyn () X5
4€Qq(y)

18 safe for time bound T at q.

Proof. We prove this theorem by contradiction. Assume X is not safe for 7" at
q. This means that there exists a plant state z € A and a trace o = sgs; ... sk,
for some K, such that so = (¢,2z), sk € Fail, and duration(c) < T. Since
z € X C Fail,, we know that sg ¢ Fail and therefore the trace must contain at
least two states (K > 1). The first transition of o must be a discrete transition
because L # Lfinq by hypothesis. Let s1 = (¢,z) and 6 = s1...5k. Since
zec X C [y]zq , by hypothesis, we know that there exists a discrete transition

(¢,y) — (G,y). Therefore, by hypothesis, § € Qq(y). Since we assumed that
z € X and, by hypothesis, X C /'ﬁj, we have that z € XAq. But, by hypothesis, /’\?d
is safe for time bound Tj; at ¢. This means that there does not exist any trace
starting at (G,z) that reaches a state in Fail and whose duration is less than
or equal to T;. But & is such a trace because duration(é) < Tj. This is true
since duration(6) = duration(c) < Ty, by assumption, and T < Tj;. This is a
contradiction and therefore X must be safe for T" at q. O

Figure 2-(a) shows an application of the theorem above. In this case, the
state s; = (gq,y) has two successors, states sy and s4. We assume that the sets
Ny and N, are safe for time bound t;. The set X; in the figure denotes the
equivalence class [y]zq corresponding to s;. Then Nj is safe for ¢4, because Ny
does not intersect the fail states of ¢, every state of N; is program equivalent to
y, and N is contained within both Ny and Ny.

The conservative merging occurs when a trace reaches a state within a safe
set of plant states. State sy in Figure 2-(b) is within N3, which we assume to be
safe for time bound ts. The state s has a single successor, namely s7. The set
X in the figure denotes the equivalence class corresponding to state sg. The set

Ng does not intersect the fail region, Ny is a subset of N, and Ng is a subset
of the equivalence class Xg. Therefore, by Theorem 3, we can deduce that Ng
is safe for t,: any trace starting from a plant state within Ng leads to a state
within NQ.

3.1 Bounded-Time Safety Verification Algorithm

This section gives an algorithm to check bounded-time safety of an SDCS. This
algorithm is based on the explicit-state Model Checking algorithm [4], but uses
level sets of a bisimulation function and the notion of program equivalence to
determine sets of plant states that are safe. The standard explicit-state Model
Checking algorithm is a depth first search of the set of reachable states for each
of the initial states. By using bisimulation functions and the notion of program
equivalence, the algorithm presented here is able to determine, without looking
at every trace, if a certain state encountered during the analysis is guaranteed
not to lead to a fail state.

The procedures main and explore in Figure 3 implement the depth first
search. For each initial state (¢, x), the procedure explore is invoked to perform
a depth first search up the time bound T (lines 5-10). If the initial state is safe,
a set of states that are safe for T at ¢ is returned: this set is added to the set
of initial states that are guaranteed to be safe (Safes,;; on line 8). Otherwise, if
an error was detected, it is returned immediately (line 10). After analyzing each
initial state, the set of safe initial states is returned on line 11. The procedure
explore takes as arguments a state (g, x), a time bound 7, and a trace o which
leads to (g,x). The time bound 7 represents the amount of time remaining from
the given state, that is 7 = T — duration(o). It performs the actual depth first
search starting from the given state up to the time bound. The trace o is used
to generate a counterexample if a fail state is reached (line 13). The current
state is compared with the sets of safe states that have been determined so far
(lines 14-15). If there exists a set of plant states X that is safe for the current
supervisor state ¢ and a longer time bound 7 > 7, the search of this branch can
terminate and the set of plant states X is returned to the caller as safe.

Two ways of computing the successor states are possible. If the current con-
trol state is equal to Lnq, then a plant transition is performed by calling the
function plant_transition (line 17). Otherwise, the transitions of the supervi-
sor are explored by calling the function supervisor_transitions (line 19). In
either case, if the result is that the current state is safe, the set X of plant states
that are computed to be safe for state ¢ and time bound 7 is added to the list
of safe sets (line 21).

The result of a plant transition is computed by the function plant_transition
in Figure 3. Line 25 is executed if the time bound has been reached, i.e., there
is not enough time left to complete an additional plant transition. The set of
plant states that are safe for time bound 7 at ¢ is simply the set of plant states
that are not fail states at supervisor state ¢, since 7 < t, (line 24). Otherwise,
the successor state (4, %) of the current state (g, x) is computed using numerical
simulation (line 26) and by setting the current control location to Liptie (line

: global SDCS, Fail, T;
: global safe_sets < 0; // Sets of safe plant states, initially empty.

1
2
3: main: // Check bounded-time safety of SDCS

4 Safermit < 0 // Set of safe initial states.

5: foreach ((q, x) € Init) // Depth-first search for each initial state.

6 result «— explore(q, x, T, [(q, x)]);

7 if (result = (SAFE, X))

8 Saferm: < Safem: U {(q, x) | x € X} // Add to safe initial states.
9: else

10: return result; // An error was detected.

11: return (SAFE, Safem::); // Return the set of safe initial states.

12: function explore(q, x, 7, o) // Depth-first search from (q, x) up to time T.
13: if ((g, x) € Fuil) return (UNSAFE, o); // Check for fail states.

14: if (3 (g, /f,%)Esafe,sets:q:cj/\xe)(/\rgf)

15: return (SAFE, X); // Merge traces if within a safe set.

16: if (q.L = Lﬁnal)

17: result = plant_transition(q, x, 7, 0); // Plant transition

18: else

19: result = supervisor_transitions(q, x, 7, 0); // Supervisor transitions
20: if (result = (SAFE, X))

21: safe_sets «— safe_sets U {(¢q, X, 7)}; // Plant states safe for T at q.

22: return result;

23: function plant_transition(q, x, 7, o)

24: if (7 < ts) // Stop if time bound is less than sampling time
25: return (SAFE, {x]|(q,x) ¢ Fail});

26: % « sim(x, fq.v); // Numerical simulation

27: d — (Lim'tial: Q-V)§

28: result = explore(§, X, 7 - ts, 0 - (¢, X));

29: if (result = (SAFE, X))

30: Trmaz < INax {r [Nogo(X,7) C ?2'}, // Safe set of plant states
31: return (SAFE, N,, (X, Tmaz));

32: else

33: return result;

34: function supervisor_transitions(q, x, 7, o)

35 Q «— {q| 3i: (¢, §) € 6:(x)}; // Explore each successor
36: X — [x]~, N Fail;

37: foreach (G € Q)

38: result < explore(q, x, 7, o - (4, X));
39: if (result = (SAFE, X))

40: X=xn 22;

41: else

42: return result;

43: return (SAFE, X);

Fig. 3. The conservative merging verification algorithm.

10

27). The search continues from the new state by calling explore. The recursive
call uses a smaller time bound and adds one state to the trace being constructed
(line 28). If the result at line 28 is that state (§,%) is safe, the set of states X
that are safe for time bound 7 — ¢4 at ¢ is used to determine the maximum size
of a sublevel set of the bisimulation function centered around x that is safe for
time bound 7 at ¢ by solving the optimization problem:

Tmaz :max{reR\/\/v(k,T) Q/\A’},

where v is the current value of the supervisor variables and ¢y, is the bisimulation
function for x = fy(x) (line 30). The set Ny, (X, "maez) is returned to the caller
since it is safe for time bound 7 at gq.

The function supervisor_transitions in Figure 3 computes and explores
the successors of a state (¢,x) that originate from transitions of the supervisor.
The set of successors Q is generated by using the transition relations é1,...,d,
of the tasks that make up the supervisor (line 35). Each successor § is visited
by calling the function explore over (g,x) with the same time bound 7 (since
supervisor transitions are instantaneous) and with a trace that adds the new
state (¢,x) to o (line 38). If the state (g, x) is safe, a set of safe plant states X
is returned by the recursive call. The set of safe plant states that is returned to
the caller by this call (line 43), computed by lines 36 and 40, is

X = [x], N Faily N () X
4€Q

This concludes the description of the algorithm. The following theorems es-
tablish correctness and termination of the procedure.

Theorem 4 (Correctness). Consider an SDCS, a set of fail states Fail, and
a time bound T. If the algorithm of Figure 3 returns (SAFE, Safern;t) then the
SDCS is safe for time bound T, Init C Safer,;+, and all states in Safej,;; are safe
for time bound T'. If the algorithm returns (UNSAFE, o) then SDCS is not safe
for time bound T and o is a trace of duration less than T that ends at a state in
Fail.

Proof. (Sketch) We can show, by induction on the time bound 7 that, given a
state (¢,x) and a path ¢ to (¢q,x), if explore returns (SAFE, X), then x € X
and X is safe for 7 at q.

Three cases are possible. The base case is when 7 < t5 and ¢ = (Lfinq, V): in
this case, the algorithm computes a set of states that is safe for 7 at ¢q. Otherwise,
if ¢ = (Lfinai, v) and 7 > t,, a continuous transition is possible: in this case, by
Theorem 2, the computed set is safe for 7 at ¢. If the location of ¢ is not equal to
L final, the set of supervisor transitions is computed and, according to Theorem 3,
the constructed set is safe for 7 at q.

From this, we can deduce that Safej,;; contains every initial state of SDCS
and that each state in Safej,;; is safe for time bound T

11

If the algorithm returns (UNSAFE, o), the trace o is a valid trace from an
initial state to a fail state and its duration is less than T" by construction. This
trace proves that SDCS is unsafe. a

Theorem 5 (Termination). Given an SDCS = ({T1,..., T}, V, fv,ts, Init)
such that Init is finite, the algorithm of Figure 3 always terminates.

Proof. (Sketch) Since we assumed that all sequences of supervisor transitions
are finite, then any trace of duration less than or equal to T" must have finite
length. Since the plant transitions are deterministic and there exists a finite set of
supervisor states, since Loc and V are finite, the recursion tree obtained during
execution of the algorithm has a finite maximum degree. Since the depth of the
tree is finite and the degree of each node is finite, there exists a finite number of
nodes, and the algorithm will terminate after exploring each node. a

3.2 Ellipsoidal Sets for Affine Dynamics

In this subsection, we discuss properties related to our technique for the case of
stable affine plant dynamics.

Bisimulation Functions. For the special case of affine plant dynamics, that is
fv(x) = Ayx + By, a bisimulation function is given by

<Pv(}’7 Z) = (Z - y)TPv(z - Y)v

where Py, satisfies the Lyapunov inequality AP, + P,A, < 0. The level sets
are given by N, (x,7) = {z € R" | (z—x)TPy(z—x) < 7}, which are ellipsoidal.

Maximum Ellipsoid Within an Ellipsoid. In the case of affine dynamics,
an operation required by the procedure given in Section 3.1 is the computation
of the maximum sized ellipsoid contained in a second ellipsoid. Given a set
N, (z,r;) and a point y € R", we want to find the maximum ry such that
N, (y,ry) € Ny, (z,75). Tt is shown in [2] that this is equivalent to the following:

max ¢
¢

—rzQy (Z - y) v Qy
st. |[(z—y)T A—-1 0 <0,A>0,c>0,
v/ Qv 0 =

where ¢ = /Ty, Qv = P, %, Iis the identity matrix, and /Q is the matrix
that satisfies Q, = v/Qv+/Qv, which exists since Q, is positive semidefinite.
This can be formulated as a convex problem with LMI constraints. Numerical
tools exists for solving such problems in polynomial time.

Maximum Ellipsoid Within a Set of Linear Constraints. The other oper-
ation required by the procedure given in Section 3.1 in the case of affine dynamics
is the computation of an ellipsoid of maximum size that satisfies a conjunction

12

of linear constraints. We want to maximize r subject to constraints of the form
Aizsm el'y <b; for ally € Ny, (x,7) = {z € R"| (z—x)TPy(z — x) < r}, where
b; € R, ¢; € R™ for each i. Let Qy, = P, . The maximum r that satisfies the

linear constraints is then given by [12]

*

bi — cTx)?
= (bi — i x)”

min
i€{1emsimaz} €L QyC;

4 Experimental Results

The technique presented in the previous section was implemented using an
existing explicit-state source-code Model Checker. The tool we chose is Java
PathFinder [16]. While the main purpose of the tool is to verify Java programs,
it handles the subset of C that is common to the two languages. This prototype
implementation handles systems where the plant dynamics are affine. We use
the LMI tool CVX with the semidefinite program solver SDPT3 [7,15] to solve
the optimization problems that arise during the verification.

Java PathFinder was extended as follows. The state of a system was enhanced
to include the plant state x, represented by a set of floating-point variables.
Our extension stores sets of plant states that are safe with respect to a given
supervisor state and time bound. Safe sets are represented as ellipsoidal sets, and
program equivalence classes and system requirement are represented as sets of
linear constraints. Ellipsoidal sets are represented by their size parameter r and
their center, while the shape and orientation are determined by the bisimulation
function given for each set of plant dynamics. The set of constraints used to
express the set of fail states as well as the program equivalence classes are given
as annotations. Moreover, since the plant dynamics are affine, it is possible to
convert the continuous-time dynamics into discrete-time difference equations
over the fixed sampling period t.

We applied our technique to an example based on the Stanford Testbed of
Autonomous Rotorcraft for Multi-Agent Control (STARMAC), a quadrotor un-
manned aerial vehicle (UAV) under development at Stanford University [9]. The
vehicle, shown in Figure 4, is composed of a computer controller and power sup-
ply at its center, which is attached to a frame on which four rotors are mounted.
A computer controller sends thrust commands to the four rotors. The supervi-
sor makes its decisions based on measurements of the state of the vehicle. We
consider a model of the STARMAC system containing six plant state variables:
the horizontal position and velocity (z and &), the vertical position and velocity
(z and 2), and the rotation about the y-axis and the corresponding rotational
velocity (6 and 9) The y position and rotation around the x-axis and z-axis are
not included in this model. Motors 1 and 3 provide lift and torque around the
y-axis, while motors 2 and 4 only provide lift. The forces applied by motors 2
and 4 lie on the y-axis and are not shown in Figure 4. Equivalent force is applied
by motors 2 and 4 at all times.

13

mg

Fig. 4. An illustration of the dynamics captured by the enhanced STARMAC model.

The equations of motion are

. b. 1 .
i=——&+ —(ur + us + us + uy) sin(9)
m m

. b, 1
F=——2+4 —(u1 +ug +us +ug)cos(d) — g
m- o m

é: £(U1 —Ug) — £9’

I, I,

where L = 0.236 m is the distance from the center of the UAV to each motor,
b =0.3N-sec/m is the viscous damping due to translation, m = 0.518kg is the
mass of the UAV, I, = 0.048kg - m? is the moment of inertia of the UAV about
the y-axis, ¢ = 0.03N - m - sec/rad is the rotational viscous damping, u; are the
forces produced from each of the four motors, and g is the acceleration due to
gravity in meters per second squared. We linearized the equations and designed
a linear quadratic regulator (LQR) to drive the system to a given set point. The
LQR controller is modeled as part of the plant. The system we obtained is of
the form x = Ax + Bx*, where x* is the set point we want to reach and

-06 00 0.0 00 0.0 9.8
1.0 00 00 00 0.0 0.0
0.0 00 -11-04 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0

—35.4-22.1 0.0 0.0 —70.2 —2221.7
0.0 0.0 00 00 1.0 0.0

A:—B:

The supervisory controller for this system is implemented by two concurrent
tasks: one task determines the target position based on a given list of waypoints;
the other sends position commands to the plant. Due to the interleaving of the
two tasks, the plant might receive the updated target position with a sampling
period delay, and the system will follow slightly different traces every time a new
waypoint is generated.

14

We performed the analysis both with and without state merging. The results,
presented in Figure 5 show a significant reduction in number of visited states
and memory usage. The space overhead due to the ellipsoidal sets that need
to be associated with each visited state was limited and it was offset by the
reduction in memory consumption due to the drastic reduction in number of
visited states. Such a reduction was obtained with just a handful of conservative
state merges: even a single merge can lead to a large reduction because every state
reachable from the merged state no longer needs to be visited. The approach as
implemented showed a significant overhead in terms of running time, however,
which could be reduced by further optimizing the operations involving storing
and lookup of ellipsoids.

Model-Checking-Guided Model Checking
Simulation without Merging | with Safe Sets and Merging
Visited states 43,134 25,493
Running time 17 sec 107 sec
Memory usage 90.2MB 77.0MB

Fig. 5. Visited states, running time, and memory usage for the time bound 7" = 90 sec
with and without merging of safe states. The number of state merges was 282.

5 Conclusions

This paper presents a formal verification technique for embedded control systems
based on the combination of software Model Checking and numerical simulation
of a continuous dynamic plant. The technique can provide a guarantee that a
continuous dynamic plant controlled by a supervisor implemented in software
satisfies safety requirements. The power of a software Model Checker lies in its
ability to efficiently analyze systems with complex behaviors that are due to
program concurrency. This feature is exploited by our technique by using the
Model Checker to explore the nondeterministic behaviors of a controller that are
due to, for example, interleaving of tasks. The technique uses a notion of program
equivalence for the behaviors of the controller and bisimulation functions for the
behaviors of the plant to merge states. This leads to a reduction in the number
of states that need to be visited in order to prove safety.

The algorithm presented in this work can be applied to system with nonlin-
ear plant dynamics; however, the optimization problems involved can only be
solved efficiently under certain assumptions. The work by Parrilo et al. on iden-
tifying Lyapunov functions for a class of nonlinear system is related to the work
presented here [14]. Their technique uses semidefinite programming to compute
sum of squares functions that satisfy Lyapunov equations. Similar techniques
can be applied to determine bisimulation functions, since they satisfy similar

15

constraints. The level sets of these functions can provide safety guarantees for
trajectories that are in proximity to each other using the technique described in
this paper.

References

1.

=

10.

11.

12.

13.

14.

15.

16.

Erin Aylward, Pablo A. Parrilo, and Jean-Jacques E. Slotine. Algorithmic Search
for Contraction Metrics via SOS Programming. In Proc. of the 2006 American
Control Conference, 2006.

Stephen Boyd, Laurent E. Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear Matrix Inequalities in System and Control Theory, volume 15 of SIAM
Studies in Applied Mathematics. STAM, 1994.

Edmund M. Clarke and E. Allen Emerson. Synthesis of Synchronization Skeletons
for Branching Time Temporal Logic. In Proc. of Workshop on Logic of Programs,
1981.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 2000.

Alexandre Donzé and Oded Maler. Systematic Simulation using Sensitivity Analy-
sis. In Proc. of the 10th International Workshop on Hybrid Systems: Computation
and Control, 2007.

Antoine Girard and George J. Pappas. Approximation Metrics for Discrete and
Continuous Systems. Technical Report MS-CIS-05-10, University of Pennsylvania,
2005.

Michael Grant, Stephen Boyd, and Yinyu Ye. CVX User’s Guide. 2007.

Thomas A. Henzinger. The Theory of Hybrid Automata. In Proc. of the 11th
Annual IEEE Symposium on Logic in Computer Science, 1996.

Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, and Claire J. Tomlin.
Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. In
Proc. of the AIAA Guidance, Navigation, and Control Conference, 2007.

A. Agung Julius, Georgious E. Fainekos, Madhukar Anand, Insup Lee, and
George J. Pappas. Robust Test Generation and Coverage for Hybrid Systems.
In Proc. of the 10th International Workshop on Hybrid Systems: Computation and
Control, 2007.

James Kapinski, Bruce H. Krogh, Oded Maler, and Olaf Stursberg’ On System-
atic Simulation of Open Continuous Systems. In Proc. of the 6th International
Workshop on Hybrid Systems: Computation and Control, 2003.

Alexander B. Kurzhanski and Istvan Vilyi. Ellipsoidal Calculus for Estimation
and Control. Birkh&user, Boston, 1997.

Flavio Lerda, James Kapinski, Hitashyam Maka, Edmund M. Clarke, and Bruce H.
Krogh. Model Checking In-The-Loop. In Submitted to the 27th American Control
Conference, 2007.

Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geome-
try Methods in Robustness and Optimization. PhD thesis, California Institute of
Technology, 2000.

Kim-Chuan Toh, Michael J. Todd, and Reha H. Titiincii. SDPTS3 4.0. MIT Press,
2006.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. Model Checking Programs. Automated Software Engineering, 10(2):203—
232, 2003.

16

