
To appear in Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11)
This version is reformatted from the official version that appears in the conference proceedings.

SILT: A Memory-Efficient, High-Performance Key-Value Store

Hyeontaek Lim1, Bin Fan1, David G. Andersen1, Michael Kaminsky2

1Carnegie Mellon University, 2Intel Labs

ABSTRACT
SILT (Small Index Large Table) is a memory-efficient, high-
performance key-value store system based on flash storage that
scales to serve billions of key-value items on a single node. It re-
quires only 0.7 bytes of DRAM per entry and retrieves key/value
pairs using on average 1.01 flash reads each. SILT combines new
algorithmic and systems techniques to balance the use of memory,
storage, and computation. Our contributions include: (1) the design
of three basic key-value stores each with a different emphasis on
memory-efficiency and write-friendliness; (2) synthesis of the basic
key-value stores to build a SILT key-value store system; and (3) an
analytical model for tuning system parameters carefully to meet the
needs of different workloads. SILT requires one to two orders of
magnitude less memory to provide comparable throughput to cur-
rent high-performance key-value systems on a commodity desktop
system with flash storage.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.7
[Operating Systems]: Organization and Design; D.4.8 [Operating
Systems]: Performance; E.1 [Data]: Data Structures; E.2 [Data]:
Data Storage Representations; E.4 [Data]: Coding and Information
Theory

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Algorithms, design, flash, measurement, memory efficiency, perfor-
mance

1. INTRODUCTION

Key-value storage systems have become a critical building block for
today’s large-scale, high-performance data-intensive applications.
High-performance key-value stores have therefore received substan-
tial attention in a variety of domains, both commercial and academic:

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP’11, October 23–26, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0977-6/11/10...$10.00.

Metric 2008→ 2011 Increase
CPU transistors 731→ 1,170 M 60 %
DRAM capacity 0.062→ 0.153 GB/$ 147 %
Flash capacity 0.134→ 0.428 GB/$ 219 %
Disk capacity 4.92→ 15.1 GB/$ 207 %

Table 1: From 2008 to 2011, flash and hard disk capacity
increased much faster than either CPU transistor count or
DRAM capacity.

 0

 2

 4

 6

 0 2 4 6 8 10 12

Fl
as

h
re

ad
s p

er
 lo

ok
up

Memory overhead (bytes/key)

FAWN-DS
FlashStore

HashCache
BufferHash

SkimpyStash

SILT

Figure 1: The memory overhead and lookup performance of
SILT and the recent key-value stores. For both axes, smaller is
better.

e-commerce platforms [21], data deduplication [1, 19, 20], picture
stores [7], web object caching [4, 30], and more.

To achieve low latency and high performance, and make best use
of limited I/O resources, key-value storage systems require efficient
indexes to locate data. As one example, Facebook engineers recently
created a new key-value storage system that makes aggressive use
of DRAM-based indexes to avoid the bottleneck caused by multiple
disk operations when reading data [7]. Unfortunately, DRAM is up
to 8X more expensive and uses 25X more power per bit than flash,
and, as Table 1 shows, is growing more slowly than the capacity of
the disk or flash that it indexes. As key-value stores scale in both size
and importance, index memory efficiency is increasingly becoming
one of the most important factors for the system’s scalability [7] and
overall cost effectiveness.

Recent proposals have started examining how to reduce per-key
in-memory index overhead [1, 2, 4, 19, 20, 32, 40], but these solu-
tions either require more than a few bytes per key-value entry in
memory [1, 2, 4, 19], or compromise performance by keeping all
or part of the index on flash or disk and thus require many flash
reads or disk seeks to handle each key-value lookup [20, 32, 40]

1

(see Figure 1 for the design space). We term this latter problem read
amplification and explicitly strive to avoid it in our design.

This paper presents a new flash-based key-value storage system,
called SILT (Small Index Large Table), that significantly reduces
per-key memory consumption with predictable system performance
and lifetime. SILT requires approximately 0.7 bytes of DRAM per
key-value entry and uses on average only 1.01 flash reads to handle
lookups. Consequently, SILT can saturate the random read I/O on
our experimental system, performing 46,000 lookups per second for
1024-byte key-value entries, and it can potentially scale to billions of
key-value items on a single host. SILT offers several knobs to trade
memory efficiency and performance to match available hardware.

This paper makes three main contributions:

• The design and implementation of three basic key-value stores
(LogStore, HashStore, and SortedStore) that use new fast and
compact indexing data structures (partial-key cuckoo hashing
and entropy-coded tries), each of which places different em-
phasis on memory-efficiency and write-friendliness.

• Synthesis of these basic stores to build SILT.
• An analytic model that enables an explicit and careful balance

between memory, storage, and computation to provide an ac-
curate prediction of system performance, flash lifetime, and
memory efficiency.

2. SILT KEY-VALUE STORAGE SYSTEM

Like other key-value systems, SILT implements a simple exact-
match hash table interface including PUT (map a new or existing key
to a value), GET (retrieve the value by a given key), and DELETE
(delete the mapping of a given key).

For simplicity, we assume that keys are uniformly distributed 160-
bit hash values (e.g., pre-hashed keys with SHA-1) and that data is
fixed-length. This type of key-value system is widespread in several
application domains such as data deduplication [1, 19, 20], and is
applicable to block storage [18, 36], microblogging [25, 38], WAN
acceleration [1], among others. In systems with lossy-compressible
data, e.g., picture stores [7, 26], data can be adaptively compressed to
fit in a fixed-sized slot. A key-value system may also let applications
choose one of multiple key-value stores, each of which is optimized
for a certain range of value sizes [21]. We discuss the relaxation of
these assumptions in Section 4.

Design Goals and Rationale The design of SILT follows from five
main goals:

1. Low read amplification: Issue at most 1+ ε flash reads for a
single GET, where ε is configurable and small (e.g., 0.01).
Rationale: Random reads remain the read throughput bottle-
neck when using flash memory. Read amplification therefore
directly reduces throughput.

2. Controllable write amplification and favoring sequential
writes: It should be possible to adjust how many times a key-
value entry is rewritten to flash over its lifetime. The system
should issue flash-friendly, large writes.
Rationale: Flash memory can undergo only a limited number
of erase cycles before it fails. Random writes smaller than the
SSD log-structured page size (typically 4 KiB1) cause extra
flash traffic.

1For clarity, binary prefixes (powers of 2) will include “i”, while SI
prefixes (powers of 10) will appear without any “i”.

Optimizations for memory efficiency and garbage collection
often require data layout changes on flash. The system designer
should be able to select an appropriate balance of flash lifetime,
performance, and memory overhead.

3. Memory-efficient indexing: SILT should use as little memory
as possible (e.g., less than one byte per key stored).
Rationale: DRAM is both more costly and power-hungry per
gigabyte than Flash, and its capacity is growing more slowly.

4. Computation-efficient indexing: SILT’s indexes should be
fast enough to let the system saturate the flash I/O.
Rationale: System balance and overall performance.

5. Effective use of flash space: Some data layout options use the
flash space more sparsely to improve lookup or insertion speed,
but the total space overhead of any such choice should remain
small – less than 20% or so.
Rationale: SSDs remain relatively expensive.

In the rest of this section, we first explore SILT’s high-level archi-
tecture, which we term a “multi-store approach”, contrasting it with
a simpler but less efficient single-store approach. We then briefly
outline the capabilities of the individual store types that we compose
to form SILT, and show how SILT handles key-value operations
using these stores.

Conventional Single-Store Approach A common approach to
building high-performance key-value stores on flash uses three com-
ponents:

1. an in-memory filter to efficiently test whether a given key is
stored in this store before accessing flash;

2. an in-memory index to locate the data on flash for a given key;
and

3. an on-flash data layout to store all key-value pairs persistently.

Unfortunately, to our knowledge, no existing index data structure
and on-flash layout achieve all of our goals simultaneously. For
example, HashCache-Set [4] organizes on-flash keys as a hash table,
eliminating the in-memory index, but incurring random writes that
impair insertion speed. To avoid expensive random writes, systems
such as FAWN-DS [2], FlashStore [19], and SkimpyStash [20] ap-
pend new values sequentially to a log. These systems then require
either an in-memory hash table to map a key to its offset in the log
(often requiring 4 bytes of DRAM or more per entry) [2, 20]; or
keep part of the index on flash using multiple random reads for each
lookup [20].

Multi-Store Approach BigTable [14], Anvil [29], and Buffer-
Hash [1] chain multiple stores, each with different properties such
as high write performance or inexpensive indexing.

Multi-store systems impose two challenges. First, they require
effective designs and implementations of the individual stores: they
must be efficient, compose well, and it must be efficient to transform
data between the store types. Second, it must be efficient to query
multiple stores when performing lookups. The design must keep
read amplification low by not issuing flash reads to each store. A
common solution uses a compact in-memory filter to test whether
a given key can be found in a particular store, but this filter can be
memory-intensive—e.g., BufferHash uses 4–6 bytes for each entry.

SILT’s multi-store design uses a series of basic key-value stores,
each optimized for a different purpose.

1. Keys are inserted into a write-optimized store, and over their
lifetime flow into increasingly more memory-efficient stores.

2

PUT &
DELETE

MERGE

Sorted LogHash Table

Index

CONVERT

Filter
SortedStore

In-memory

On-flash Data

HashStore LogStore

Figure 2: Architecture of SILT.

SortedStore (§3.3) HashStore (§3.2) LogStore (§3.1)
Mutability Read-only Read-only Writable

Data ordering Key order Hash order Insertion order
Multiplicity 1 ≥ 0 1
Typical size > 80% of total entries < 20% < 1%

DRAM usage 0.4 bytes/entry 2.2 bytes/entry 6.5 bytes/entry

Table 2: Summary of basic key-value stores in SILT.

2. Most key-value pairs are stored in the most memory-efficient
basic store. Although data outside this store uses less memory-
efficient indexes (e.g., to optimize writing performance), the
average index cost per key remains low.

3. SILT is tuned for high worst-case performance—a lookup
found in the last and largest store. As a result, SILT can avoid
using an in-memory filter on this last store, allowing all lookups
(successful or not) to take 1+ ε flash reads.

SILT’s architecture and basic stores (the LogStore, HashStore,
and SortedStore) are depicted in Figure 2. Table 2 summarizes these
stores’ characteristics.

LogStore is a write-friendly key-value store that handles individ-
ual PUTs and DELETEs. To achieve high performance, writes are
appended to the end of a log file on flash. Because these items are
ordered by their insertion time, the LogStore uses an in-memory
hash table to map each key to its offset in the log file. The ta-
ble doubles as an in-memory filter. SILT uses a memory-efficient,
high-performance hash table based upon cuckoo hashing [34]. As
described in Section 3.1, our partial-key cuckoo hashing achieves
93% occupancy with very low computation and memory overhead,
a substantial improvement over earlier systems such as FAWN-DS
and BufferHash that achieved only 50% hash table occupancy. Com-
pared to the next two read-only store types, however, this index is
still relatively memory-intensive, because it must store one 4-byte
pointer for every key. SILT therefore uses only one instance of
the LogStore (except during conversion to HashStore as described
below), with fixed capacity to bound its memory consumption.

Once full, the LogStore is converted to an immutable HashStore
in the background. The HashStore’s data is stored as an on-flash
hash table that does not require an in-memory index to locate entries.
SILT uses multiple HashStores at a time before merging them into
the next store type. Each HashStore therefore uses an efficient
in-memory filter to reject queries for nonexistent keys.

SortedStore maintains key-value data in sorted key order on flash,
which enables an extremely compact index representation (e.g., 0.4
bytes per key) using a novel design and implementation of entropy-
coded tries. Because of the expense of inserting a single item into
sorted data, SILT periodically merges in bulk several HashStores

along with an older version of a SortedStore and forms a new Sorted-
Store, garbage collecting deleted or overwritten keys in the process.

Key-Value Operations Each PUT operation inserts a
(key,value) pair into the LogStore, even if the key al-
ready exists. DELETE operations likewise append a “delete”
entry into the LogStore. The space occupied by deleted or
stale data is reclaimed when SILT merges HashStores into the
SortedStore. These lazy deletes trade flash space for sequential
write performance.

To handle GET, SILT searches for the key in the LogStore, Hash-
Stores, and SortedStore in sequence, returning the value found in
the youngest store. If the “deleted” entry is found, SILT will stop
searching and return “not found.”

Partitioning Finally, we note that each physical node runs multiple
SILT instances, responsible for disjoint key ranges, each with its own
LogStore, SortedStore, and HashStore(s). This partitioning improves
load-balance (e.g., virtual nodes [37]), reduces flash overhead during
merge (Section 3.3), and facilitates system-wide parameter tuning
(Section 5).

3. BASIC STORE DESIGN

3.1 LogStore
The LogStore writes PUTs and DELETEs sequentially to flash to
achieve high write throughput. Its in-memory partial-key cuckoo
hash index efficiently maps keys to their location in the flash log, as
shown in Figure 3.

Partial-Key Cuckoo Hashing The LogStore uses a new hash table
based on cuckoo hashing [34]. As with standard cuckoo hashing, it
uses two hash functions h1 and h2 to map each key to two candidate
buckets. On insertion of a new key, if one of the candidate buckets
is empty, the key is inserted in this empty slot; if neither bucket is
available, the new key “kicks out” the key that already resides in
one of the two buckets, and the displaced key is then inserted to its
own alternative bucket (and may kick out other keys). The insertion
algorithm repeats this process until a vacant position is found, or it
reaches a maximum number of displacements (e.g., 128 times in our

3

or, by

Log-Structured Data

DRAM
Flash

Key x

Inserted K-V entries
are appended

Hash Table

h1(x)

OffsetTag

h2(x)

h1(x)h2(x)

by

Figure 3: Design of LogStore: an in-memory cuckoo hash table
(index and filter) and an on-flash data log.

implementation). If no vacant slot found, it indicates the hash table
is almost full, so SILT freezes the LogStore and initializes a new
one without expensive rehashing.

To make it compact, the hash table does not store the entire key
(e.g., 160 bits in SILT), but only a “tag” of the actual key. A lookup
proceeds to flash only when the given key matches the tag, which
can prevent most unnecessary flash reads for non-existing keys. If
the tag matches, the full key and its value are retrieved from the log
on flash to verify if the key it read was indeed the correct key.

Although storing only the tags in the hash table saves memory, it
presents a challenge for cuckoo hashing: moving a key to its alter-
native bucket requires knowing its other hash value. Here, however,
the full key is stored only on flash, but reading it from flash is too
expensive. Even worse, moving this key to its alternative bucket may
in turn displace another key; ultimately, each displacement required
by cuckoo hashing would result in additional flash reads, just to
insert a single key.

To solve this costly displacement problem, our partial-key cuckoo
hashing algorithm stores the index of the alternative bucket as the
tag; in other words, partial-key cuckoo hashing uses the tag to reduce
flash reads for non-existent key lookups as well as to indicate an
alternative bucket index to perform cuckoo displacement without
any flash reads. For example, if a key x is assigned to bucket h1(x),
the other hash value h2(x) will become its tag stored in bucket h1(x),
and vice versa (see Figure 3). Therefore, when a key is displaced
from the bucket a, SILT reads the tag (value: b) at this bucket, and
moves the key to the bucket b without needing to read from flash.
Then it sets the tag at the bucket b to value a.

To find key x in the table, SILT checks if h1(x) matches the tag
stored in bucket h2(x), or if h2(x) matches the tag in bucket h1(x).
If the tag matches, the (key,value) pair is retrieved from the
flash location indicated in the hash entry.

Associativity Standard cuckoo hashing allows 50% of the table
entries to be occupied before unresolvable collisions occur. SILT
improves the occupancy by increasing the associativity of the cuckoo
hashing table. Each bucket of the table is of capacity four (i.e., it
contains up to 4 entries). Our experiments show that using a 4-way
set associative hash table improves space utilization of the table
to about 93%,2 which matches the known experimental result for

2Space utilization here is defined as the fraction of used entries (not used
buckets) in the table, which more precisely reflects actual memory utilization.

OffsetTag

h(K4)
h(K2)

h(K1)
h(K3)DRAM

Flash

HashStore LogStore

Insertion orderHash order

Tag

h(K4)
h(K2)

h(K1)
h(K3)

K2 K4 K1 K3 K1 K2 K3 K4

CONVERT

Figure 4: Convert a LogStore to a HashStore. Four keys K1, K2,
K3, and K4 are inserted to the LogStore, so the layout of the log
file is the insert order; the in-memory index keeps the offset of
each key on flash. In HashStore, the on-flash data forms a hash
table where keys are in the same order as the in-memory filter.

various variants of cuckoo hashing [24]; moreover, 4 entries/bucket
still allows each bucket to fit in a single cache line.3

Hash Functions Keys in SILT are 160-bit hash values, so the Log-
Store finds h1(x) and h2(x) by taking two non-overlapping slices of
the low-order bits of the key x.

By default, SILT uses a 15-bit key fragment as the tag. Each
hash table entry is 6 bytes, consisting of a 15-bit tag, a single valid
bit, and a 4-byte offset pointer. The probability of a false positive
retrieval is 0.024% (see Section 5 for derivation), i.e., on average
1 in 4,096 flash retrievals is unnecessary. The maximum number
of hash buckets (not entries) is limited by the key fragment length.
Given 15-bit key fragments, the hash table has at most 215 buckets,
or 4× 215 = 128 Ki entries. To store more keys in LogStore, one
can increase the size of the key fragment to have more buckets,
increase the associativity to pack more entries into one bucket, and/or
partition the key-space to smaller regions and assign each region to
one SILT instance with a LogStore. The tradeoffs associated with
these decisions are presented in Section 5.

3.2 HashStore
Once a LogStore fills up (e.g., the insertion algorithm terminates
without finding any vacant slot after a maximum number of displace-
ments in the hash table), SILT freezes the LogStore and converts
it into a more memory-efficient data structure. Directly sorting the
relatively small LogStore and merging it into the much larger Sorted-
Store requires rewriting large amounts of data, resulting in high write
amplification. On the other hand, keeping a large number of Log-
Stores around before merging could amortize the cost of rewriting,
but unnecessarily incurs high memory overhead from the LogStore’s
index. To bridge this gap, SILT first converts the LogStore to an
immutable HashStore with higher memory efficiency; once SILT
accumulates a configurable number of HashStores, it performs a

3Note that, another way to increase the utilization of a cuckoo hash table
is to use more hash functions (i.e., each key has more possible locations in
the table). For example, FlashStore [19] applies 16 hash functions to achieve
90% occupancy. However, having more hash functions increases the number
of cache lines read upon lookup and, in our case, requires more than one tag
stored in each entry, increasing overhead.

4

bulk merge to incorporate them into the SortedStore. During the
LogStore to HashStore conversion, the old LogStore continues to
serve lookups, and a new LogStore receives inserts.

HashStore saves memory over LogStore by eliminating the index
and reordering the on-flash (key,value) pairs from insertion
order to hash order (see Figure 4). HashStore is thus an on-flash
cuckoo hash table, and has the same occupancy (93%) as the in-
memory version found in LogStore. HashStores also have one
in-memory component, a filter to probabilistically test whether a key
is present in the store without performing a flash lookup.

Memory-Efficient Hash Filter Although prior approaches [1] used
Bloom filters [12] for the probabilistic membership test, SILT uses
a hash filter based on partial-key cuckoo hashing. Hash filters are
more memory-efficient than Bloom filters at low false positive rates.
Given a 15-bit tag in a 4-way set associative cuckoo hash table, the
false positive rate is f = 2−12 = 0.024% as calculated in Section 3.1.
With 93% table occupancy, the effective number of bits per key using
a hash filter is 15/0.93 = 16.12. In contrast, a standard Bloom filter
that sets its number of hash functions to optimize space consumption
requires at least 1.44log2(1/ f) = 17.28 bits of memory to achieve
the same false positive rate.

HashStore’s hash filter is also efficient to create: SILT simply
copies the tags from the LogStore’s hash table, in order, discarding
the offset pointers; on the contrary, Bloom filters would have been
built from scratch, hashing every item in the LogStore again.

3.3 SortedStore
SortedStore is a static key-value store with very low memory foot-
print. It stores (key,value) entries sorted by key on flash, in-
dexed by a new entropy-coded trie data structure that is fast to
construct, uses 0.4 bytes of index memory per key on average, and
keeps read amplification low (exactly 1) by directly pointing to the
correct location on flash.

Using Sorted Data on Flash Because of these desirable properties,
SILT keeps most of the key-value entries in a single SortedStore.
The entropy-coded trie, however, does not allow for insertions or
deletions; thus, to merge HashStore entries into the SortedStore,
SILT must generate a new SortedStore. The construction speed of the
SortedStore is therefore a large factor in SILT’s overall performance.

Sorting provides a natural way to achieve fast construction:

1. Sorting allows efficient bulk-insertion of new data. The new
data can be sorted and sequentially merged into the existing
sorted data.

2. Sorting is well-studied. SILT can use highly optimized and
tested sorting systems such as Nsort [33].

Indexing Sorted Data with a Trie A trie, or a prefix tree, is a tree
data structure that stores an array of keys where each leaf node
represents one key in the array, and each internal node represents the
longest common prefix of the keys represented by its descendants.

When fixed-length key-value entries are sorted by key on flash, a
trie for the shortest unique prefixes of the keys serves as an index for
these sorted data. The shortest unique prefix of a key is the shortest
prefix of a key that enables distinguishing the key from the other
keys. In such a trie, some prefix of a lookup key leads us to a leaf
node with a direct index for the looked up key in sorted data on flash.

Figure 5 shows an example of using a trie to index sorted data.
Key prefixes with no shading are the shortest unique prefixes which
are used for indexing. The shaded parts are ignored for indexing

Sorted
Data

0
0
0
1
0

0
0
1
0
1

0
1
1
1
0

1
0
0
1
0

1
0
1
0
0

1
0
1
1
1

1
1
0
1
0

1
1
1
0
1

Trie

Unused in
indexing

DRAM
Flash

(only key MSBs are shown)

0 1

0

0 0

0

0

1

1 1

1

1

10

0 1

2

3

4 5

6 7

0 1 2 3 4 5 6 7

Figure 5: Example of a trie built for indexing sorted keys. The
index of each leaf node matches the index of the corresponding
key in the sorted keys.

(b)

(c)

2/1

1/1

3/2

1/2 1/1

1/1

3/5(a)
3 2 1 3 1 1 1

00 0 1 11 11 1 1

Entropy coding

Figure 6: (a) Alternative view of Figure 5, where a pair of num-
bers in each internal node denotes the number of leaf nodes in
its left and right subtries. (b) A recursive form that represents
the trie. (c) Its entropy-coded representation used by Sorted-
Store.

because any value for the suffix part would not change the key
location. A lookup of a key, for example, 10010, follows down
to the leaf node that represents 100. As there are 3 preceding leaf
nodes, the index of the key is 3. With fixed-length key-value pairs
on flash, the exact offset of the data is the obtained index times the
key-value pair size (see Section 4 for extensions for variable-length
key-value pairs). Note that a lookup of similar keys with the same
prefix of 100 (e.g., 10000, 10011) would return the same index
even though they are not in the array; the trie guarantees a correct
index lookup for stored keys, but says nothing about the presence of
a lookup key.

Representing a Trie A typical tree data structure is unsuitable for
SILT because each node would require expensive memory pointers,
each 2 to 8 bytes long. Common trie representations such as level-
compressed tries [3] are also inadequate if they use pointers.

SortedStore uses a compact recursive representation to eliminate
pointers. The representation for a trie T having L and R as its left
and right subtries is defined as follows:

Repr(T) := |L| Repr(L) Repr(R)

where |L| is the number of leaf nodes in the left subtrie. When T
is empty or a leaf node, the representation for T is an empty string.
(We use a special mark (-1) instead of the empty string for brevity
in the simplified algorithm description, but the full algorithm does
not require the use of the special mark.)

5

@param T array of sorted keys
@return trie representation
def construct(T):
if len(T) == 0 or len(T) == 1:
return [-1]

else:
Partition keys according to their MSB
L = [key[1:] for key in T if key[0] == 0]
R = [key[1:] for key in T if key[0] == 1]
Recursively construct the representation
return [len(L)] + construct(L) + construct(R)

Algorithm 1: Trie representation generation in Python-like syn-
tax. key[0] and key[1:] denote the most significant bit and
the remaining bits of key, respectively.

Figure 6 (a,b) illustrates the uncompressed recursive representa-
tion for the trie in Figure 5. As there are 3 keys starting with 0,
|L|= 3. In its left subtrie, |L|= 2 because it has 2 keys that have 0
in their second bit position, so the next number in the representation
is 2. It again recurses into its left subtrie, yielding 1. Here there
are no more non-leaf nodes, so it returns to the root node and then
generates the representation for the right subtrie of the root, 3 1 1 1.

Algorithm 1 shows a simplified algorithm that builds a (non-
entropy-coded) trie representation from sorted keys. It resembles
quicksort in that it finds the partition of keys and recurses into both
subsets. Index generation is fast (≥ 7 M keys/sec on a modern Intel
desktop CPU, Section 6).

Looking up Keys Key-lookup works by incrementally reading the
trie representation (Algorithm 2). The function is supplied the
lookup key and a trie representation string. By decoding the en-
coded next number, thead, SortedStore knows if the current node is
an internal node where it can recurse into its subtrie. If the lookup
key goes to the left subtrie, SortedStore recurses into the left subtrie,
whose representation immediately follows in the given trie represen-
tation; otherwise, SortedStore recursively decodes and discards the
entire left subtrie and then recurses into the right. SortedStore sums
thead at every node where it recurses into a right subtrie; the sum of
the thead values is the offset at which the lookup key is stored, if it
exists.

For example, to look up 10010, SortedStore first obtains 3 from
the representation. Then, as the first bit of the key is 1, it skips the
next numbers (2 1) which are for the representation of the left subtrie,
and it proceeds to the right subtrie. In the right subtrie, SortedStore
reads the next number (3; not a leaf node), checks the second bit
of the key, and keeps recursing into its left subtrie. After reading
the next number for the current subtrie (1), SortedStore arrives at a
leaf node by taking the left subtrie. Until it reaches the leaf node,
it takes a right subtrie only at the root node; from n = 3 at the root
node, SortedStore knows that the offset of the data for 10010 is
(3×key-value-size) on flash.

Compression Although the above uncompressed representation
uses up to 3 integers per key on average, for hashed keys, Sort-
edStore can easily reduce the average representation size to 0.4
bytes/key by compressing each |L| value using entropy coding (Fig-
ure 6 (c)). The value of |L| tends to be close to half of |T | (the
number of leaf nodes in T) because fixed-length hashed keys are uni-
formly distributed over the key space, so both subtries have the same
probability of storing a key. More formally, |L| ∼ Binomial(|T |, 1

2).
When |L| is small enough (e.g., ≤ 16), SortedStore uses static, glob-

@param key lookup key
@param trepr trie representation
@return index of the key
in the original array
def lookup(key, trepr):
(thead, ttail) = (trepr[0], trepr[1:])
if thead == -1:
return 0

else:
if key[0] == 0:
Recurse into the left subtrie
return lookup(key[1:], ttail)

else:
Skip the left subtrie
ttail = discard_subtrie(ttail)
Recurse into the right subtrie
return thead + lookup(key[1:], ttail)

@param trepr trie representation
@return remaining trie representation
with the next subtrie consumed
def discard_subtrie(trepr):
(thead, ttail) = (trepr[0], trepr[1:])
if thead == -1:
return ttail

else:
Skip both subtries
ttail = discard_subtrie(ttail)
ttail = discard_subtrie(ttail)
return ttail

Algorithm 2: Key lookup on a trie representation.

ally shared Huffman tables based on the binomial distributions. If
|L| is large, SortedStore encodes the difference between |L| and its
expected value (i.e., |T |2) using Elias gamma coding [23] to avoid
filling the CPU cache with large Huffman tables. With this entropy
coding optimized for hashed keys, our entropy-coded trie represen-
tation is about twice as compact as the previous best recursive tree
encoding [16].

When handling compressed tries, Algorithm 1 and 2 are extended
to keep track of the number of leaf nodes at each recursion step. This
does not require any additional information in the representation
because the number of leaf nodes can be calculated recursively using
|T | = |L|+ |R|. Based on |T |, these algorithms choose an entropy
coder for encoding len(L) and decoding thead. It is noteworthy
that the special mark (-1) takes no space with entropy coding, as its
entropy is zero.

Ensuring Constant Time Index Lookups As described, a lookup
may have to decompress the entire trie, so that the cost of lookups
would grow (large) as the number of entries in the key-value store
grows.

To bound the lookup time, items are partitioned into 2k buckets
based on the first k bits of their key. Each bucket has its own trie
index. Using, e.g., k = 10 for a key-value store holding 216 items,
each bucket would hold in expectation 216−10 = 26 items. With
high probability, no bucket holds more than 28 items, so the time to
decompress the trie for bucket is both bounded by a constant value,
and small.

This bucketing requires additional information to be stored in
memory: (1) the pointers to the trie representations of each bucket
and (2) the number of entries in each bucket. SILT keeps the amount
of this bucketing information small (less than 1 bit/key) by using
a simpler version of a compact select data structure, semi-direct-

6

Comparison “Deleted”? Action on KSS Action on KHS
KSS < KHS any copy –
KSS > KHS no – copy
KSS > KHS yes – drop
KSS = KHS no drop copy
KSS = KHS yes drop drop

Table 3: Merge rule for SortedStore. KSS is the current key
from SortedStore, and KHS is the current key from the sorted
data of HashStores. “Deleted” means the current entry in
KHS is a special entry indicating a key of SortedStore has been
deleted.

16 [11]. With bucketing, our trie-based indexing belongs to the class
of data structures called monotone minimal perfect hashing [10, 13]
(Section 7).

Further Space Optimizations for Small Key-Value Sizes For
small key-value entries, SortedStore can reduce the trie size by
applying sparse indexing [22]. Sparse indexing locates the block
that contains an entry, rather than the exact offset of the entry. This
technique requires scanning or binary search within the block, but it
reduces the amount of indexing information. It is particularly useful
when the storage media has a minimum useful block size to read;
many flash devices, for instance, provide increasing I/Os per second
as the block size drops, but not past a certain limit (e.g., 512 or
4096 bytes) [31, 35]. SILT uses sparse indexing when configured
for key-value sizes of 64 bytes or smaller.

SortedStore obtains a sparse-indexing version of the trie by prun-
ing some subtries in it. When a trie has subtries that have entries all
in the same block, the trie can omit the representation of these sub-
tries because the omitted data only gives in-block offset information
between entries. Pruning can reduce the trie size to 1 bit per key or
less if each block contains 16 key-value entries or more.

Merging HashStores into SortedStore SortedStore is an im-
mutable store and cannot be changed. Accordingly, the merge pro-
cess generates a new SortedStore based on the given HashStores and
the existing SortedStore. Similar to the conversion from LogStore
to HashStore, HashStores and the old SortedStore can serve lookups
during merging.

The merge process consists of two steps: (1) sorting HashStores
and (2) sequentially merging sorted HashStores data and SortedStore.
First, SILT sorts all data in HashStores to be merged. This task is
done by enumerating every entry in the HashStores and sorting
these entries. Then, this sorted data from HashStores is sequentially
merged with already sorted data in the SortedStore. The sequential
merge chooses newest valid entries, as summarized in Table 3; either
copy or drop action on a key consumes the key (i.e., by advancing
the “merge pointer” in the corresponding store), while the current
key remains available for the next comparison again if no action is
applied to the key. After both steps have been completed, the old
SortedStore is atomically replaced by the new SortedStore. During
the merge process, both the old SortedStore and the new SortedStore
exist on flash; however, the flash space overhead from temporarily
having two SortedStores is kept small by performing the merge
process on a single SILT instance at the same time.

In Section 5, we discuss how frequently HashStores should be
merged into SortedStore.

Application of False Positive Filters Since SILT maintains only
one SortedStore per SILT instance, SortedStore does not have to

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2

Re
ad

 a
m

pl
ifi

ca
tio

n
(X

)

Flash space consumption (X)

exp=0.8
exp=1.0
exp=1.2
exp=1.4

Figure 7: Read amplification as a function of flash space con-
sumption when inlining is applied to key-values whose sizes fol-
low a Zipf distribution. “exp” is the exponent part of the distri-
bution.

use a false positive filter to reduce unnecessary I/O. However, an
extension to the SILT architecture might have multiple SortedStores.
In this case, the trie index can easily accommodate the false positive
filter; the filter is generated by extracting the key fragments from
the sorted keys. Key fragments can be stored in an in-memory array
so that they have the same order as the sorted data on flash. The
extended SortedStore can consult the key fragments before reading
data from flash.

4. EXTENDING SILT FUNCTIONALITY

SILT can support an even wider range of applications and workloads
than the basic design we have described. In this section, we present
potential techniques to extend SILT’s capabilities.

Crash Tolerance SILT ensures that all its in-memory data struc-
tures are backed-up to flash and/or easily re-created after failures.
All updates to LogStore are appended to the on-flash log chronologi-
cally; to recover from a fail-stop crash, SILT simply replays the log
file to construct the in-memory index and filter. For HashStore and
SortedStore, which are static, SILT keeps a copy of their in-memory
data structures on flash, which can be re-read during recovery.

SILT’s current design, however, does not provide crash tolerance
for new updates to the data store. These writes are handled asyn-
chronously, so a key insertion/update request to SILT may complete
before its data is written durably to flash. For applications that need
this additional level of crash tolerance, SILT would need to support
an additional synchronous write mode. For example, SILT could
delay returning from write calls until it confirms that the requested
write is fully flushed to the on-flash log.

Variable-Length Key-Values For simplicity, the design we pre-
sented so far focuses on fixed-length key-value data. In fact, SILT
can easily support variable-length key-value data by using indirec-
tion with inlining. This scheme follows the existing SILT design
with fixed-sized slots, but stores (offset, first part of
(key, value)) pairs instead of the actual (key, value) in
HashStores and SortedStores (LogStores can handle variable-length
data natively). These offsets point to the remaining part of the key-
value data stored elsewhere (e.g., a second flash device). If a whole
item is small enough to fit in a fixed-length slot, indirection can be
avoided; consequently, large data requires an extra flash read (or

7

write), but small data incurs no additional I/O cost. Figure 7 plots
an analytic result on the tradeoff of this scheme with different slot
sizes. It uses key-value pairs whose sizes range between 4 B and
1 MiB and follow a Zipf distribution, assuming a 4-byte header (for
key-value lengths), a 4-byte offset pointer, and an uniform access
pattern.

For specific applications, SILT can alternatively use segregated
stores for further efficiency. Similar to the idea of simple segregated
storage [39], the system could instantiate several SILT instances for
different fixed key-value size combinations. The application may
choose an instance with the most appropriate key-value size as done
in Dynamo [21], or SILT can choose the best instance for a new
key and return an opaque key containing the instance ID to the
application. Since each instance can optimize flash space overheads
and additional flash reads for its own dataset, using segregated stores
can reduce the cost of supporting variable-length key-values close
to the level of fixed-length key-values.

In the subsequent sections, we will discuss SILT with fixed-length
key-value pairs only.

Fail-Graceful Indexing Under high memory pressure, SILT may
temporarily operate in a degraded indexing mode by allowing higher
read amplification (e.g., more than 2 flash reads per lookup) to avoid
halting or crashing because of insufficient memory.

(1) Dropping in-memory indexes and filters. HashStore’s filters
and SortedStore’s indexes are stored on flash for crash tolerance, al-
lowing SILT to drop them from memory. This option saves memory
at the cost of one additional flash read for the SortedStore, or two
for the HashStore.

(2) Binary search on SortedStore. The SortedStore can be
searched without an index, so the in-memory trie can be dropped
even without storing a copy on flash, at the cost of log(n) additional
reads from flash.

These techniques also help speed SILT’s startup. By memory-
mapping on-flash index files or performing binary search, SILT can
begin serving requests before it has loaded its indexes into memory
in the background.

5. ANALYSIS

Compared to single key-value store approaches, the multi-store
design of SILT has more system parameters, such as the size of a
single LogStore and HashStore, the total number of HashStores, the
frequency to merge data into SortedStore, and so on. Having a much
larger design space, it is preferable to have a systematic way to do
parameter selection.

This section provides a simple model of the tradeoffs between
write amplification (WA), read amplification (RA), and memory over-
head (MO) in SILT, with an eye towards being able to set the system
parameters properly to achieve the design goals from Section 2.

WA =
data written to flash

data written by application
, (1)

RA =
data read from flash

data read by application
, (2)

MO =
total memory consumed

number of items
. (3)

Model A SILT system has a flash drive of size F bytes with a life-
time of E erase cycles. The system runs P SILT instances locally,
each of which handles one disjoint range of keys using one Log-
Store, one SortedStore, and multiple HashStores. Once an instance

Symbol Meaning Example

SILT design parameters
d maximum number of entries to merge 7.5 M
k tag size in bit 15 bits
P number of SILT instances 4
H number of HashStores per instance 31
f false positive rate per store 2−12

Workload characteristics
c key-value entry size 1024 B
N total number of distinct keys 100 M
U update rate 5 K/sec

Storage constraints
F total flash size 256 GB
E maximum flash erase cycle 10,000

Table 4: Notation.

has d keys in total in its HashStores, it merges these keys into its
SortedStore.

We focus here on a workload where the total amount of data
stored in the system remains constant (e.g., only applying updates
to existing keys). We omit for space the similar results when the
data volume is growing (e.g., new keys are inserted to the system)
and additional nodes are being added to provide capacity over time.
Table 4 presents the notation used in the analysis.

Write Amplification An update first writes one record to the Log-
Store. Subsequently converting that LogStore to a HashStore incurs
1/0.93 = 1.075 writes per key, because the space occupancy of the
hash table is 93%. Finally, d total entries (across multiple Hash-
Stores of one SILT instance) are merged into the existing Sorted-
Store, creating a new SortedStore with N/P entries. The total write
amplification is therefore

WA = 2.075+
N

d ·P
. (4)

Read Amplification The false positive rate of flash reads from a
4-way set associative hash table using k-bit tags is f = 8/2k because
there are eight possible locations for a given key—two possible
buckets and four items per bucket.

This 4-way set associative cuckoo hash table with k-bit tags can
store 2k+2 entries, so at 93% occupancy, each LogStore and Hash-
Store holds 0.93 ·2k+2 keys. In one SILT instance, the number of
items stored in HashStores ranges from 0 (after merging) to d, with
an average size of d/2, so the average number of HashStores is

H =
d/2

0.93 ·2k+2 = 0.134
d
2k . (5)

In the worst-case of a lookup, the system reads once from flash at
the SortedStore, after 1+H failed retrievals at the LogStore and H
HashStores. Note that each LogStore or HashStore rejects all but an
f fraction of false positive retrievals; therefore, the expected total
number of reads per lookup (read amplification) is:

RA = (1+H) f +1 =
8
2k +1.07

d
4k +1. (6)

By picking d and k to ensure 1.07d/4k+8/2k < ε , SILT can achieve
the design goal of read amplification 1+ ε .

8

 0
 2
 4
 6
 8

 10

 0 0.5 1 1.5 2
 0.98
 1
 1.02
 1.04
 1.06
 1.08

W
rit

e
am

pl
ifi

ca
tio

n

Re
ad

 a
m

pl
ifi

ca
tio

n

Memory overhead (bytes/key)

WA
RA

Figure 8: WA and RA as a function of MO when N=100 M, P=4,
and k=15, while d is varied.

Memory Overhead Each entry in LogStore uses (k + 1)/8 + 4
bytes (k bits for the tag, one valid bit, and 4 bytes for the pointer).
Each HashStore filter entry uses k/8 bytes for the tag. Each Sort-
edStore entry consumes only 0.4 bytes. Using one LogStore, one
SortedStore, and H HashStores, SILT’s memory overhead is:

MO =

(
(k+1

8 +4) ·2k+2 + k
8 ·2

k+2 ·H +0.4 · N
P

)
·P

N

=
(
(16.5+0.5k)2k +0.067 kd

) P
N
+0.4. (7)

Tradeoffs Improving either write amplification, read amplification,
or memory amplification comes at the cost of one of the other two
metrics. For example, using larger tags (i.e., increasing k) reduces
read amplification by reducing both f the false positive rate per store
and H the number of HashStores. However, the HashStores then
consume more DRAM due to the larger tags, increasing memory
overhead. Similarly, by increasing d, SILT can merge HashStores
into the SortedStore less frequently to reduce the write amplifica-
tion, but doing so increases the amount of DRAM consumed by the
HashStore filters. Figure 8 illustrates how write and read amplifica-
tion change as a function of memory overhead when the maximum
number of HashStore entries, d, is varied.

Update Rate vs. Flash Life Time The designer of a SILT instance
handling U updates per second wishes to ensure that the flash lasts
for at least T seconds. Assuming the flash device has perfect wear-
leveling when being sent a series of large sequential writes [15], the
total number of writes, multiplied by the write amplification WA,
must not exceed the flash device size times its erase cycle budget.
This creates a relationship between the lifetime, device size, update
rate, and memory overhead:

U · c ·WA ·T ≤ F ·E. (8)

Example Assume a SILT system is built with a 256 GB MLC flash
drive supporting 10,000 erase cycles [5] (E = 10000, F = 256×230).
It is serving N = 100 million items with P = 4 SILT instances, and
d = 7.5 million. Its workload is 1 KiB entries, 5,000 updates per
second (U = 5000).

By Eq. (4) the write amplification, WA, is 5.4. That is, each
key-value update incurs 5.4 writes/entry. On average the number
of HashStores is 31 according to Eq. (5). The read amplification,
however, is very close to 1. Eq. (6) shows that when choosing 15 bits
for the key fragment size, a GET incurs on average 1.008 of flash
reads even when all stores must be consulted. Finally, we can see
how the SILT design achieves its design goal of memory efficiency:
indexing a total of 102.4 GB of data, where each key-value pair

takes 1 KiB, requires only 73 MB in total or 0.73 bytes per entry
(Eq. (7)). With the write amplification of 5.4 from above, this device
will last 3 years.

6. EVALUATION

Using macro- and micro-benchmarks, we evaluate SILT’s overall
performance and explore how its system design and algorithms
contribute to meeting its goals. We specifically examine (1) an
end-to-end evaluation of SILT’s throughput, memory overhead, and
latency; (2) the performance of SILT’s in-memory indexing data
structures in isolation; and (3) the individual performance of each
data store type, including flash I/O.

Implementation SILT is implemented in 15 K lines of C++ using
a modular architecture similar to Anvil [29]. Each component of the
system exports the same, basic key-value interface. For example,
the classes which implement each of the three stores (LogStore,
HashStore, and SortedStore) export this interface but themselves
call into classes which implement the in-memory and on-disk data
structures using that same interface. The SILT system, in turn, unifies
the three stores and provides this key-value API to applications.
(SILT also has components for background conversion and merging.)

Evaluation System We evaluate SILT on Linux using a desktop
equipped with:

CPU Intel Core i7 860 @ 2.80 Ghz (4 cores)
DRAM DDR SDRAM / 8 GiB
SSD-L Crucial RealSSD C300 / 256 GB
SSD-S Intel X25-E / 32 GB

The 256 GB SSD-L stores the key-value data, and the SSD-S
is used as scratch space for sorting HashStores using Nsort [33].
The drives connect using SATA and are formatted with the ext4
filesystem using the discard mount option (TRIM support) to
enable the flash device to free blocks from deleted files. The baseline
performance of the data SSD is:

Random Reads (1024 B) 48 K reads/sec
Sequential Reads 256 MB/sec
Sequential Writes 233 MB/sec

6.1 Full System Benchmark
Workload Generation We use YCSB [17] to generate a key-value
workload. By default, we use a 10% PUT / 90% GET workload for
20-byte keys and 1000-byte values, and we also use a 50% PUT
/ 50% GET workload for 64-byte key-value pairs in throughput
and memory overhead benchmarks. To avoid the high cost of the
Java-based workload generator, we use a lightweight SILT client
to replay a captured trace file of queries made by YCSB. The
experiments use four SILT instances (P = 4), with 16 client threads
concurrently issuing requests. When applicable, we limit the rate
at which SILT converts entries from LogStores to HashStores to
10 K entries/second, and from HashStores to the SortedStore to 20 K
entries/second in order to prevent these background operations from
exhausting I/O resources.

Throughput: SILT can sustain an average insert rate of 3,000
1 KiB key-value pairs per second, while simultaneously supporting
33,000 queries/second, or 69% of the SSD’s random read capacity.
With no inserts, SILT supports 46 K queries per second (96% of the
drive’s raw capacity), and with no queries, can sustain an insert rate
of approximately 23 K inserts per second. On a deduplication-like

9

 0
 10
 20
 30
 40
 50
 60

K
qu

er
ies

 p
er

 se
co

nd

CONVERT operations

MERGE operations

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 5 10 15 20 25 30

K
qu

er
ies

 p
er

 se
co

nd

Time (minutes)

CONVERT operations

MERGE operations

Figure 9: GET throughput under high (upper) and low (lower)
loads.

workload with 50% writes and 50% reads of 64 byte records, SILT
handles 72,000 requests/second.

SILT’s performance under insert workloads is limited by the time
needed to convert and merge data into HashStores and SortedStores.
These background operations compete for flash I/O resources, re-
sulting in a tradeoff between query latency and throughput. Figure 9
shows the sustainable query rate under both high query load (approx.
33 K queries/second) and low query load (22.2 K queries/second)
for 1 KiB key-value pairs. SILT is capable of providing predictable,
low latency, or can be tuned for higher overall throughput. The
middle line shows when SILT converts LogStores into HashStores
(periodically, in small bursts). The top line shows that at nearly
all times, SILT is busy merging HashStores into the SortedStore in
order to optimize its index size.4 In Section 6.3, we evaluate in more
detail the speed of the individual stores and conversion processes.

Memory overhead: SILT meets its goal of providing high through-
put with low memory overhead. We measured the time and memory
required to insert 50 million new 1 KiB entries into a table with 50
million existing entries, while simultaneously handling a high query
rate. SILT used at most 69 MB of DRAM, or 0.69 bytes per entry.
(This workload is worst-case because it is never allowed time for
SILT to compact all of its HashStores into the SortedStore.) For the
50% PUT / 50% GET workload with 64-byte key-value pairs, SILT
required at most 60 MB of DRAM for 100 million entries, or 0.60
bytes per entry.

The drastic improvement in memory overhead from SILT’s three-
store architecture is shown in Figure 10. The figure shows the
memory consumption during the insertion run over time, using
four different configurations of basic store types and 1 KiB key-
value entries. The bottom right graph shows the memory consumed
using the full SILT system. The bottom left configuration omits the
intermediate HashStore, thus requiring twice as much memory as

4In both workloads, when merge operations complete (e.g., at 25 min-
utes), there is a momentary drop in query speed. This is due to bursty
TRIMming by the ext4 filesystem implementation (discard) used in the
experiment when the previous multi-gigabyte SortedStore file is deleted from
flash.

Type Cuckoo hashing Trie
(K keys/s) (K keys/s)

Individual insertion 10182 –
Bulk insertion – 7603
Lookup 1840 208

Table 5: In-memory performance of index data structures in
SILT on a single CPU core.

the full SILT configuration. The upper right configuration instead
omits the SortedStore, and consumes four times as much memory.
Finally, the upper left configuration uses only the basic LogStore,
which requires nearly 10x as much memory as SILT. To make this
comparison fair, the test generates unique new items so that garbage
collection of old entries cannot help the SortedStore run faster.

The figures also help understand the modest cost of SILT’s mem-
ory efficiency. The LogStore-only system processes the 50 million
inserts (500 million total operations) in under 170 minutes, whereas
the full SILT system takes only 40% longer–about 238 minutes–to
incorporate the records, but achieves an order of magnitude better
memory efficiency.

Latency: SILT is fast, processing queries in 367 µs on average,
as shown in Figure 11 for 100% GET queries for 1 KiB key-value
entries. GET responses are fastest when served by the LogStore
(309 µs), and slightly slower when they must be served by the
SortedStore. The relatively small latency increase when querying
the later stores shows the effectiveness (reducing the number of extra
flash reads to ε < 0.01) and speed of SILT’s in-memory filters used
in the Log and HashStores.

In the remaining sections, we evaluate the performance of SILT’s
individual in-memory indexing techniques, and the performance of
the individual stores (in-memory indexes plus on-flash data struc-
tures).

6.2 Index Microbenchmark
The high random read speed of flash drives means that the CPU
budget available for each index operation is relatively limited. This
microbenchmark demonstrates that SILT’s indexes meet their design
goal of computation-efficient indexing.

Experiment Design This experiment measures insertion and
lookup speed of SILT’s in-memory partial-key cuckoo hash and
entropy-coded trie indexes. The benchmark inserts 126 million total
entries and looks up a subset of 10 million random 20-byte keys.

This microbenchmark involves memory only, no flash I/O. Al-
though the SILT system uses multiple CPU cores to access multiple
indexes concurrently, access to individual indexes in this benchmark
is single-threaded. Note that inserting into the cuckoo hash table
(LogStore) proceeds key-by-key, whereas the trie (SortedStore) is
constructed en mass using bulk insertion. Table 5 summarizes the
measurement results.

Individual Insertion Speed (Cuckoo Hashing) SILT’s cuckoo
hash index implementation can handle 10.18 M 20-byte key in-
sertions (PUTs or DELETEs) per second. Even at a relatively small,
higher overhead key-value entry size of 32-byte (i.e., 12-byte data),
the index would support 326 MB/s of incoming key-value data on
one CPU core. This rate exceeds the typical sequential write speed
of a single flash drive: inserting keys into our cuckoo hashing is
unlikely to become a bottleneck in SILT given current trends.

10

0
100
200
300
400
500
600
700

 0
 1
 2
 3
 4
 5
 6
 7

To
ta

l i
nd

ex
 si

ze
 (M

B)

Av
g

in
de

x
siz

e
(B

/e
nt

ry
)

0
100
200
300
400
500
600
700

 0
 1
 2
 3
 4
 5
 6
 7

To
ta

l i
nd

ex
 si

ze
 (M

B)

Av
g

in
de

x
siz

e
(B

/e
nt

ry
)

0
100
200
300
400
500
600
700

0 50 100 150 200 250
 0
 1
 2
 3
 4
 5
 6
 7

To
ta

l i
nd

ex
 si

ze
 (M

B)

Av
g

in
de

x
siz

e
(B

/e
nt

ry
)

Time (minutes)

0
100
200
300
400
500
600
700

0 50 100 150 200 250
 0
 1
 2
 3
 4
 5
 6
 7

To
ta

l i
nd

ex
 si

ze
 (M

B)

Av
g

in
de

x
siz

e
(B

/e
nt

ry
)

Time (minutes)

LogStore
HashStore

SortedStore
Average index size

Figure 10: Index size changes for four different store combinations while inserting new 50 M entries.

 0
 50

 100
 150
 200
 250
 300
 350
 400

SortedStore HashStores LogStore

Av
er

ag
e

lat
en

cy
 (µ

s)

Key match location

Hit at SortedStore
Miss

Hit at LogStore
Hit at HashStore

Figure 11: GET query latency when served from different store
locations.

Bulk Insertion Speed (Trie) Building the trie index over 126 mil-
lion pre-sorted keys required approximately 17 seconds, or 7.6 M
keys/second.

Key Lookup Speed Each SILT GET operation requires a lookup
in the LogStore and potentially in one or more HashStores and the
SortedStore. A single CPU core can perform 1.84 million cuckoo
hash lookups per second. If a SILT instance has 1 LogStore and
31 HashStores, each of which needs to be consulted, then one core
can handle about 57.5 K GETs/sec. Trie lookups are approximately
8.8 times slower than cuckoo hashing lookups, but a GET triggers a
lookup in the trie only after SILT cannot find the key in the LogStore
and HashStores. When combined, the SILT indexes can handle about
1/(1/57.5 K+1/208 K)≈ 45 K GETs/sec with one CPU core.

Type Speed (K keys/s)

LogStore (by PUT) 204.6
HashStore (by CONVERT) 67.96
SortedStore (by MERGE) 26.76

Table 6: Construction performance for basic stores. The con-
struction method is shown in the parentheses.

Insertions are faster than lookups in cuckoo hashing because
insertions happen to only a few tables at the same time and thus
benefit from the CPU’s L2 cache; lookups, however, can occur to
any table in memory, making CPU cache less effective.

Operation on Multiple Cores Using four cores, SILT indexes han-
dle 180 K GETs/sec in memory. At this speed, the indexes are
unlikely to become a bottleneck: their overhead is on-par or lower
than the operating system overhead for actually performing that
many 1024-byte reads per second from flash. As we see in the next
section, SILT’s overall performance is limited by sorting, but its
index CPU use is high enough that adding many more flash drives
would require more CPU cores. Fortunately, SILT offers many op-
portunities for parallel execution: Each SILT node runs multiple,
completely independent instances of SILT to handle partitioning,
and each of these instances can query many stores.

6.3 Individual Store Microbenchmark
Here we measure the performance of each SILT store type in its
entirety (in-memory indexing plus on-flash I/O). The first experiment
builds multiple instances of each basic store type with 100 M key-
value pairs (20-byte key, 1000-byte value). The second experiment
queries each store for 10 M random keys.

11

Type SortedStore HashStore LogStore
(K ops/s) (K ops/s) (K ops/s)

GET (hit) 46.57 44.93 46.79
GET (miss) 46.61 7264 7086

Table 7: Query performance for basic stores that include in-
memory and on-flash data structures.

Table 6 shows the construction performance for all three stores;
the construction method is shown in parentheses. LogStore con-
struction, built through entry-by-entry insertion using PUT, can use
90% of sequential write bandwidth of the flash drive. Thus, SILT is
well-suited to handle bursty inserts. The conversion from LogStores
to HashStores is about three times slower than LogStore construction
because it involves bulk data reads and writes from/to the same flash
drive. SortedStore construction is slowest, as it involves an external
sort for the entire group of 31 HashStores to make one SortedStore
(assuming no previous SortedStore). If constructing the SortedStore
involved merging the new data with an existing SortedStore, the
performance would be worse. The large time required to create a
SortedStore was one of the motivations for introducing HashStores
rather than keeping un-merged data in LogStores.

Table 7 shows that the minimum GET performance across all
three stores is 44.93 K ops/s. Note that LogStores and HashStores
are particularly fast at GET for non-existent keys (more than 7 M
ops/s). This extremely low miss penalty explains why there was only
a small variance in the average GET latency in Figure 11 where bad
cases looked up 32 Log and HashStores and failed to find a matching
item in any of them.

7. RELATED WORK

Hashing Cuckoo hashing [34] is an open-addressing scheme to
resolve hash collisions efficiently with high space occupancy. Our
partial-key cuckoo hashing—storing only a small part of the key
in memory without fetching the entire keys from slow storage on
collisions—makes cuckoo hashing more memory-efficient while
ensuring high performance.

Minimal perfect hashing is a family of collision-free hash func-
tions that map n distinct keys to n consecutive integers 0 . . .n− 1,
and is widely used for memory-efficient indexing. In theory, any
minimal perfect hash scheme requires at least 1.44 bits/key [27];
in practice, the state-of-the-art schemes can index any static data
set with 2.07 bits/key [10]. Our entropy-coded trie achieves 3.1
bits/key, but it also preserves the lexicographical order of the keys to
facilitate data merging. Thus, it belongs to the family of monotone
minimal perfect hashing (MMPH). Compared to other proposals for
MMPH [8, 9], our trie-based index is simple, lightweight to generate,
and has very small CPU/memory overhead.

External-Memory Index on Flash Recent work such as Micro-
Hash [40] and FlashDB [32] minimizes memory consumption by
having indexes on flash. MicroHash uses a hash table chained by
pointers on flash. FlashDB proposes a self-tuning B+-tree index
that dynamically adapts the node representation according to the
workload. Both systems are optimized for memory and energy
consumption of sensor devices, but not for latency as lookups in
both systems require reading multiple flash pages. In contrast, SILT
achieves very low memory footprint while still supporting high
throughput.

Key-Value Stores HashCache [4] proposes several policies to com-
bine hash table-based in-memory indexes and on-disk data layout
for caching web objects. FAWN-DS [2] consists of an on-flash
data log and in-memory hash table index built using relatively slow
CPUs with a limited amount of memory. SILT dramatically re-
duces DRAM consumption compared to these systems by combin-
ing more memory-efficient data stores with minimal performance
impact. FlashStore [19] also uses a single hash table to index all
keys on flash similar to FAWN-DS. The flash storage, however, is
used as a cache of a hard disk-backed database. Thus, the cache
hierarchy and eviction algorithm is orthogonal to SILT. To achieve
low memory footprint (about 1 byte/key), SkimpyStash [20] moves
its indexing hash table to flash with linear chaining. However, it
requires on average 5 flash reads per lookup, while SILT only needs
1+ ε per lookup.

More closely related to our design is BufferHash [1], which keeps
keys in multiple equal-sized hash tables—one in memory and the oth-
ers on flash. The on-flash tables are guarded by in-memory Bloom
filters to reduce unnecessary flash reads. In contrast, SILT data
stores have different sizes and types. The largest store (SortedStore),
for example, does not have a filter and is accessed at most once per
lookup, which saves memory while keeping the read amplification
low. In addition, writes in SILT are appended to a log stored on
flash for crash recovery, whereas inserted keys in BufferHash do not
persist until flushed to flash in batch.

Several key-value storage libraries rely on caching to compensate
for their high read amplifications [6, 28], making query performance
depend greatly on whether the working set fits in the in-memory
cache. In contrast, SILT provides uniform and predictably high
performance regardless of the working set size and query patterns.

Distributed Key-Value Systems Distributed key-value storage
clusters such as BigTable [14], Dynamo [21], and FAWN-KV [2]
all try to achieve high scalability and availability using a cluster of
key-value store nodes. SILT focuses on how to use flash memory-
efficiently with novel data structures, and is complementary to the
techniques used in these other systems aimed at managing failover
and consistency.

Modular Storage Systems BigTable [14] and Anvil [29] both pro-
vide a modular architecture for chaining specialized stores to benefit
from combining different optimizations. SILT borrows its design phi-
losophy from these systems; we believe and hope that the techniques
we developed for SILT could also be used within these frameworks.

8. CONCLUSION

SILT combines new algorithmic and systems techniques to balance
the use of memory, storage, and computation to craft a memory-
efficient, high-performance flash-based key value store. It uses two
new in-memory index structures—partial-key cuckoo hashing and
entropy-coded tries—to reduce drastically the amount of memory
needed compared to prior systems. SILT chains the right combi-
nation of basic key-value stores together to create a system that
provides high write speed, high read throughput, and uses little
memory, attributes that no single store can achieve alone. SILT uses
in total only 0.7 bytes of memory per entry it stores, and makes
only 1.01 flash reads to service a lookup, doing so in under 400
microseconds. Our hope is that SILT, and the techniques described
herein, can form an efficient building block for a new generation of
fast data-intensive services.

12

ACKNOWLEDGMENTS
This work was supported by funding from National Science Founda-
tion award CCF-0964474, Google, the Intel Science and Technology
Center for Cloud Computing, by CyLab at Carnegie Mellon under
grant DAAD19-02-1-0389 from the Army Research Office. Hyeon-
taek Lim is supported in part by the Korea Foundation for Advanced
Studies. We thank the SOSP reviewers, Phillip B. Gibbons, Vijay
Vasudevan, and Amar Phanishayee for their feedback, Guy Blelloch
and Rasmus Pagh for pointing out several algorithmic possibilities,
and Robert Morris for shepherding this paper.

REFERENCES
[1] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath.

Cheap and large CAMs for high performance data-intensive networked
systems. In NSDI’10: Proceedings of the 7th USENIX conference on
Networked systems design and implementation, pages 29–29. USENIX
Association, 2010.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: A fast array of wimpy nodes. In Proc. SOSP,
Oct. 2009.

[3] A. Andersson and S. Nilsson. Improved behaviour of tries by adaptive
branching. Information Processing Letters, 46(6):295–300, 1993.

[4] A. Badam, K. Park, V. S. Pai, and L. L. Peterson. HashCache: Cache
storage for the next billion. In Proc. 6th USENIX NSDI, Apr. 2009.

[5] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi. Differen-
tial RAID: Rethinking RAID for SSD reliability. In Proc. European
Conference on Computer Systems (Eurosys), 2010.

[6] Berkeley DB. http://www.oracle.com/technetwork/
database/berkeleydb/, 2011.

[7] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle
in Haystack: Facebook’s photo storage. In Proc. 9th USENIX OSDI,
Oct. 2010.

[8] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Theory and practise
of monotone minimal perfect hashing. In Proc. 11th Workshop on
Algorithm Engineering and Experiments, ALENEX ’09, 2009.

[9] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal
perfect hashing: searching a sorted table with O(1) accesses. In Pro-
ceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’09, pages 785–794, 2009.

[10] D. Belazzougui, F. Botelho, and M. Dietzfelbinger. Hash, displace,
and compress. In Proceedings of the 17th European Symposium on
Algorithms, ESA ’09, pages 682–693, 2009.

[11] D. K. Blandford, G. E. Blelloch, and I. A. Kash. An experimental
analysis of a compact graph representation. In Proc. 6th Workshop on
Algorithm Engineering and Experiments, ALENEX ’04, 2004.

[12] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[13] F. C. Botelho, A. Lacerda, G. V. Menezes, and N. Ziviani. Minimal
perfect hashing: A competitive method for indexing internal memory.
Information Sciences, 181:2608–2625, 2011.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. In Proc. 7th USENIX OSDI, Nov.
2006.

[15] L.-P. Chang. On efficient wear leveling for large-scale flash-memory
storage systems. In Proceedings of the 2007 ACM symposium on
Applied computing (SAC ’07), Mar. 2007.

[16] D. R. Clark. Compact PAT trees. PhD thesis, University of Waterloo,
Waterloo, Ontario, Canada, 1998.

[17] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proc. 1st ACM
Symposium on Cloud Computing (SOCC), June 2010.

[18] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with CFS. In Proc. 18th ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2001.

[19] B. Debnath, S. Sengupta, and J. Li. FlashStore: High throughput
persistent key-value store. Proc. VLDB Endowment, 3:1414–1425,
September 2010.

[20] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM space skimpy
key-value store on flash-based storage. In Proc. International Con-
ference on Management of Data, ACM SIGMOD ’11, pages 25–36,
2011.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proc. 21st ACM Sympo-
sium on Operating Systems Principles (SOSP), Oct. 2007.

[22] J. Dong and R. Hull. Applying approximate order dependency to reduce
indexing space. In Proc. ACM SIGMOD International Conference on
Management of data, SIGMOD ’82, pages 119–127, 1982.

[23] P. Elias. Universal codeword sets and representations of the integers.
IEEE Transactions on Information Theory, 21(2):194–203, Mar. 1975.

[24] Ú. Erlingsson, M. Manasse, and F. Mcsherry. A cool and practical alter-
native to traditional hash tables. In Proc. 7th Workshop on Distributed
Data and Structures (WDAS’06), 2006.

[25] Facebook. http://www.facebook.com/, 2011.
[26] Flickr. http://www.flickr.com/, 2011.
[27] E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud. Practical minimal

perfect hash functions for large databases. Communications of the ACM,
35:105–121, Jan. 1992.

[28] S. Ghemawat and J. Dean. LevelDB. https://code.google.
com/p/leveldb/, 2011.

[29] M. Mammarella, S. Hovsepian, and E. Kohler. Modular data storage
with Anvil. In Proc. SOSP, Oct. 2009.

[30] Memcached: A distributed memory object caching system. http:
//www.danga.com/memcached/, 2011.

[31] S. Nath and P. B. Gibbons. Online maintenance of very large random
samples on flash storage. In Proc. VLDB, Aug. 2008.

[32] S. Nath and A. Kansal. FlashDB: Dynamic self-tuning database for
NAND flash. In Proc. ACM/IEEE International Conference on Infor-
mation Processing in Sensor Networks, Apr. 2007.

[33] C. Nyberg and C. Koester. Ordinal Technology - NSort. http://
www.ordinal.com/, 2011.

[34] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms, (2):
122–144, May 2004.

[35] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid state disks
performance. In Proc. Workshop on Integrating Solid-state Memory
into the Storage Hierarchy, Mar. 2009.

[36] S. Quinlan and S. Dorward. Venti: A new approach to archival storage.
In Proc. USENIX Conference on File and Storage Technologies (FAST),
pages 89–101, Jan. 2002.

[37] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proc. ACM SIGCOMM, Aug. 2001.

[38] Twitter. http://www.twitter.com/, 2011.
[39] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic storage

allocation: A survey and critical review. Lecture Notes in Computer
Science, 1995.

[40] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A.
Najjar. MicroHash: An efficient index structure for flash-based sen-
sor devices. In Proc. 4th USENIX Conference on File and Storage
Technologies, Dec. 2005.

13

http://www.oracle.com/technetwork/database/berkeleydb/
http://www.oracle.com/technetwork/database/berkeleydb/
http://www.facebook.com/
http://www.flickr.com/
https://code.google.com/p/leveldb/
https://code.google.com/p/leveldb/
http://www.danga.com/memcached/
http://www.danga.com/memcached/
http://www.ordinal.com/
http://www.ordinal.com/
http://www.twitter.com/

	Introduction
	SILT Key-Value Storage System
	Basic Store Design
	LogStore
	HashStore
	SortedStore

	Extending SILT Functionality
	Analysis
	Evaluation
	Full System Benchmark
	Index Microbenchmark
	Individual Store Microbenchmark

	Related Work
	Conclusion

